pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise

In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2020-10, Vol.183 (1), p.62-75.e17
Hauptverfasser: Reddy, Anita, Bozi, Luiz H.M., Yaghi, Omar K., Mills, Evanna L., Xiao, Haopeng, Nicholson, Hilary E., Paschini, Margherita, Paulo, Joao A., Garrity, Ryan, Laznik-Bogoslavski, Dina, Ferreira, Julio C.B., Carl, Christian S., Sjøberg, Kim A., Wojtaszewski, Jørgen F.P., Jeppesen, Jacob F., Kiens, Bente, Gygi, Steven P., Richter, Erik A., Mathis, Diane, Chouchani, Edward T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75.e17
container_issue 1
container_start_page 62
container_title Cell
container_volume 183
creator Reddy, Anita
Bozi, Luiz H.M.
Yaghi, Omar K.
Mills, Evanna L.
Xiao, Haopeng
Nicholson, Hilary E.
Paschini, Margherita
Paulo, Joao A.
Garrity, Ryan
Laznik-Bogoslavski, Dina
Ferreira, Julio C.B.
Carl, Christian S.
Sjøberg, Kim A.
Wojtaszewski, Jørgen F.P.
Jeppesen, Jacob F.
Kiens, Bente
Gygi, Steven P.
Richter, Erik A.
Mathis, Diane
Chouchani, Edward T.
description In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation. Selective secretion of succinate is facilitated by its transient protonation, which occurs upon muscle cell acidification. In the protonated monocarboxylic form, succinate is rendered a transport substrate for monocarboxylate transporter 1, which facilitates pH-gated release. Upon secretion, succinate signals via its cognate receptor SUCNR1 in non-myofibrillar cells in muscle tissue to control muscle-remodeling transcriptional programs. This succinate-SUCNR1 signaling is required for paracrine regulation of muscle innervation, muscle matrix remodeling, and muscle strength in response to exercise training. In sum, we define a bioenergetic sensor in muscle that utilizes intracellular pH and succinate to coordinate tissue adaptation to exercise. [Display omitted] •Mouse and human muscle selectively release succinate during exercise•Muscle cells release succinate by pH-gated secretion via MCT1•Extracellular succinate regulates paracrine responses to exercise through SUCNR1•SUCNR1 signaling mediates muscle remodeling responses to exercise training Reddy et al. identify a bioenergetic sensor that uses pH and succinate to regulate muscle tissue adaptation to exercise.
doi_str_mv 10.1016/j.cell.2020.08.039
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7778787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867420310813</els_id><sourcerecordid>2444382664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-6c1981a43f004bf89555f85a2e350149bf5222e3474f26b01ec5dc39ff52fe3c3</originalsourceid><addsrcrecordid>eNp9UU1LxDAQDaLo-vEHPEiPXlonadqmIIIs6yooih_n0E0na5Zusybtov_elFXRi-SQzJv3XoY3hBxTSCjQ_GyRKGyahAGDBEQCablFRhTKIua0YNtkBFCyWOQF3yP73i8AQGRZtkv2UlbyXFA6Ig-r63hadVhHT71Spg3P6AmVw87YNnrEed8EyEd3vVcNBmBpa2xMO4_M0PYr23qMOhtN3tEp4_GQ7Oiq8Xj0dR-Ql6vJ8_g6vr2f3owvb2OVMdrFuaKloBVPNQCfaVGGwbTIKoZpBpSXM50xFgpecM3yGVBUWa3SUgdcY6rSA3Kx8V31syXWCtvOVY1cObOs3Ie0lZF_O615lXO7lkVRiHCCwemXgbNvPfpOLo0fAq1atL2XjHOeCpbnPFDZhqqc9d6h_vmGghxWIRdyUMphFRKEDKsIopPfA_5IvrMPhPMNAUNMa4NOemWwVVgbh6qTtTX_-X8CO6mbPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444382664</pqid></control><display><type>article</type><title>pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Reddy, Anita ; Bozi, Luiz H.M. ; Yaghi, Omar K. ; Mills, Evanna L. ; Xiao, Haopeng ; Nicholson, Hilary E. ; Paschini, Margherita ; Paulo, Joao A. ; Garrity, Ryan ; Laznik-Bogoslavski, Dina ; Ferreira, Julio C.B. ; Carl, Christian S. ; Sjøberg, Kim A. ; Wojtaszewski, Jørgen F.P. ; Jeppesen, Jacob F. ; Kiens, Bente ; Gygi, Steven P. ; Richter, Erik A. ; Mathis, Diane ; Chouchani, Edward T.</creator><creatorcontrib>Reddy, Anita ; Bozi, Luiz H.M. ; Yaghi, Omar K. ; Mills, Evanna L. ; Xiao, Haopeng ; Nicholson, Hilary E. ; Paschini, Margherita ; Paulo, Joao A. ; Garrity, Ryan ; Laznik-Bogoslavski, Dina ; Ferreira, Julio C.B. ; Carl, Christian S. ; Sjøberg, Kim A. ; Wojtaszewski, Jørgen F.P. ; Jeppesen, Jacob F. ; Kiens, Bente ; Gygi, Steven P. ; Richter, Erik A. ; Mathis, Diane ; Chouchani, Edward T.</creatorcontrib><description>In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation. Selective secretion of succinate is facilitated by its transient protonation, which occurs upon muscle cell acidification. In the protonated monocarboxylic form, succinate is rendered a transport substrate for monocarboxylate transporter 1, which facilitates pH-gated release. Upon secretion, succinate signals via its cognate receptor SUCNR1 in non-myofibrillar cells in muscle tissue to control muscle-remodeling transcriptional programs. This succinate-SUCNR1 signaling is required for paracrine regulation of muscle innervation, muscle matrix remodeling, and muscle strength in response to exercise training. In sum, we define a bioenergetic sensor in muscle that utilizes intracellular pH and succinate to coordinate tissue adaptation to exercise. [Display omitted] •Mouse and human muscle selectively release succinate during exercise•Muscle cells release succinate by pH-gated secretion via MCT1•Extracellular succinate regulates paracrine responses to exercise through SUCNR1•SUCNR1 signaling mediates muscle remodeling responses to exercise training Reddy et al. identify a bioenergetic sensor that uses pH and succinate to regulate muscle tissue adaptation to exercise.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2020.08.039</identifier><identifier>PMID: 32946811</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; exercise ; Humans ; Hydrogen-Ion Concentration ; Inflammation - metabolism ; innervation ; Mice ; Mitochondria - metabolism ; Monocarboxylic Acid Transporters - metabolism ; muscle ; Muscle Contraction ; Muscle, Skeletal - metabolism ; Receptors, G-Protein-Coupled - metabolism ; Receptors, G-Protein-Coupled - physiology ; Signal Transduction ; succinate ; Succinates - metabolism ; Succinic Acid - metabolism ; SUCNR1 ; Symporters - metabolism</subject><ispartof>Cell, 2020-10, Vol.183 (1), p.62-75.e17</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-6c1981a43f004bf89555f85a2e350149bf5222e3474f26b01ec5dc39ff52fe3c3</citedby><cites>FETCH-LOGICAL-c521t-6c1981a43f004bf89555f85a2e350149bf5222e3474f26b01ec5dc39ff52fe3c3</cites><orcidid>0000-0003-2694-239X ; 0000-0003-0447-8995 ; 0000-0002-4291-413X ; 0000-0002-6850-3056 ; 0000-0002-9551-5837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867420310813$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32946811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reddy, Anita</creatorcontrib><creatorcontrib>Bozi, Luiz H.M.</creatorcontrib><creatorcontrib>Yaghi, Omar K.</creatorcontrib><creatorcontrib>Mills, Evanna L.</creatorcontrib><creatorcontrib>Xiao, Haopeng</creatorcontrib><creatorcontrib>Nicholson, Hilary E.</creatorcontrib><creatorcontrib>Paschini, Margherita</creatorcontrib><creatorcontrib>Paulo, Joao A.</creatorcontrib><creatorcontrib>Garrity, Ryan</creatorcontrib><creatorcontrib>Laznik-Bogoslavski, Dina</creatorcontrib><creatorcontrib>Ferreira, Julio C.B.</creatorcontrib><creatorcontrib>Carl, Christian S.</creatorcontrib><creatorcontrib>Sjøberg, Kim A.</creatorcontrib><creatorcontrib>Wojtaszewski, Jørgen F.P.</creatorcontrib><creatorcontrib>Jeppesen, Jacob F.</creatorcontrib><creatorcontrib>Kiens, Bente</creatorcontrib><creatorcontrib>Gygi, Steven P.</creatorcontrib><creatorcontrib>Richter, Erik A.</creatorcontrib><creatorcontrib>Mathis, Diane</creatorcontrib><creatorcontrib>Chouchani, Edward T.</creatorcontrib><title>pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise</title><title>Cell</title><addtitle>Cell</addtitle><description>In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation. Selective secretion of succinate is facilitated by its transient protonation, which occurs upon muscle cell acidification. In the protonated monocarboxylic form, succinate is rendered a transport substrate for monocarboxylate transporter 1, which facilitates pH-gated release. Upon secretion, succinate signals via its cognate receptor SUCNR1 in non-myofibrillar cells in muscle tissue to control muscle-remodeling transcriptional programs. This succinate-SUCNR1 signaling is required for paracrine regulation of muscle innervation, muscle matrix remodeling, and muscle strength in response to exercise training. In sum, we define a bioenergetic sensor in muscle that utilizes intracellular pH and succinate to coordinate tissue adaptation to exercise. [Display omitted] •Mouse and human muscle selectively release succinate during exercise•Muscle cells release succinate by pH-gated secretion via MCT1•Extracellular succinate regulates paracrine responses to exercise through SUCNR1•SUCNR1 signaling mediates muscle remodeling responses to exercise training Reddy et al. identify a bioenergetic sensor that uses pH and succinate to regulate muscle tissue adaptation to exercise.</description><subject>Animals</subject><subject>exercise</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Inflammation - metabolism</subject><subject>innervation</subject><subject>Mice</subject><subject>Mitochondria - metabolism</subject><subject>Monocarboxylic Acid Transporters - metabolism</subject><subject>muscle</subject><subject>Muscle Contraction</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Receptors, G-Protein-Coupled - physiology</subject><subject>Signal Transduction</subject><subject>succinate</subject><subject>Succinates - metabolism</subject><subject>Succinic Acid - metabolism</subject><subject>SUCNR1</subject><subject>Symporters - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1LxDAQDaLo-vEHPEiPXlonadqmIIIs6yooih_n0E0na5Zusybtov_elFXRi-SQzJv3XoY3hBxTSCjQ_GyRKGyahAGDBEQCablFRhTKIua0YNtkBFCyWOQF3yP73i8AQGRZtkv2UlbyXFA6Ig-r63hadVhHT71Spg3P6AmVw87YNnrEed8EyEd3vVcNBmBpa2xMO4_M0PYr23qMOhtN3tEp4_GQ7Oiq8Xj0dR-Ql6vJ8_g6vr2f3owvb2OVMdrFuaKloBVPNQCfaVGGwbTIKoZpBpSXM50xFgpecM3yGVBUWa3SUgdcY6rSA3Kx8V31syXWCtvOVY1cObOs3Ie0lZF_O615lXO7lkVRiHCCwemXgbNvPfpOLo0fAq1atL2XjHOeCpbnPFDZhqqc9d6h_vmGghxWIRdyUMphFRKEDKsIopPfA_5IvrMPhPMNAUNMa4NOemWwVVgbh6qTtTX_-X8CO6mbPg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Reddy, Anita</creator><creator>Bozi, Luiz H.M.</creator><creator>Yaghi, Omar K.</creator><creator>Mills, Evanna L.</creator><creator>Xiao, Haopeng</creator><creator>Nicholson, Hilary E.</creator><creator>Paschini, Margherita</creator><creator>Paulo, Joao A.</creator><creator>Garrity, Ryan</creator><creator>Laznik-Bogoslavski, Dina</creator><creator>Ferreira, Julio C.B.</creator><creator>Carl, Christian S.</creator><creator>Sjøberg, Kim A.</creator><creator>Wojtaszewski, Jørgen F.P.</creator><creator>Jeppesen, Jacob F.</creator><creator>Kiens, Bente</creator><creator>Gygi, Steven P.</creator><creator>Richter, Erik A.</creator><creator>Mathis, Diane</creator><creator>Chouchani, Edward T.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2694-239X</orcidid><orcidid>https://orcid.org/0000-0003-0447-8995</orcidid><orcidid>https://orcid.org/0000-0002-4291-413X</orcidid><orcidid>https://orcid.org/0000-0002-6850-3056</orcidid><orcidid>https://orcid.org/0000-0002-9551-5837</orcidid></search><sort><creationdate>20201001</creationdate><title>pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise</title><author>Reddy, Anita ; Bozi, Luiz H.M. ; Yaghi, Omar K. ; Mills, Evanna L. ; Xiao, Haopeng ; Nicholson, Hilary E. ; Paschini, Margherita ; Paulo, Joao A. ; Garrity, Ryan ; Laznik-Bogoslavski, Dina ; Ferreira, Julio C.B. ; Carl, Christian S. ; Sjøberg, Kim A. ; Wojtaszewski, Jørgen F.P. ; Jeppesen, Jacob F. ; Kiens, Bente ; Gygi, Steven P. ; Richter, Erik A. ; Mathis, Diane ; Chouchani, Edward T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-6c1981a43f004bf89555f85a2e350149bf5222e3474f26b01ec5dc39ff52fe3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>exercise</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Inflammation - metabolism</topic><topic>innervation</topic><topic>Mice</topic><topic>Mitochondria - metabolism</topic><topic>Monocarboxylic Acid Transporters - metabolism</topic><topic>muscle</topic><topic>Muscle Contraction</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Receptors, G-Protein-Coupled - physiology</topic><topic>Signal Transduction</topic><topic>succinate</topic><topic>Succinates - metabolism</topic><topic>Succinic Acid - metabolism</topic><topic>SUCNR1</topic><topic>Symporters - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, Anita</creatorcontrib><creatorcontrib>Bozi, Luiz H.M.</creatorcontrib><creatorcontrib>Yaghi, Omar K.</creatorcontrib><creatorcontrib>Mills, Evanna L.</creatorcontrib><creatorcontrib>Xiao, Haopeng</creatorcontrib><creatorcontrib>Nicholson, Hilary E.</creatorcontrib><creatorcontrib>Paschini, Margherita</creatorcontrib><creatorcontrib>Paulo, Joao A.</creatorcontrib><creatorcontrib>Garrity, Ryan</creatorcontrib><creatorcontrib>Laznik-Bogoslavski, Dina</creatorcontrib><creatorcontrib>Ferreira, Julio C.B.</creatorcontrib><creatorcontrib>Carl, Christian S.</creatorcontrib><creatorcontrib>Sjøberg, Kim A.</creatorcontrib><creatorcontrib>Wojtaszewski, Jørgen F.P.</creatorcontrib><creatorcontrib>Jeppesen, Jacob F.</creatorcontrib><creatorcontrib>Kiens, Bente</creatorcontrib><creatorcontrib>Gygi, Steven P.</creatorcontrib><creatorcontrib>Richter, Erik A.</creatorcontrib><creatorcontrib>Mathis, Diane</creatorcontrib><creatorcontrib>Chouchani, Edward T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, Anita</au><au>Bozi, Luiz H.M.</au><au>Yaghi, Omar K.</au><au>Mills, Evanna L.</au><au>Xiao, Haopeng</au><au>Nicholson, Hilary E.</au><au>Paschini, Margherita</au><au>Paulo, Joao A.</au><au>Garrity, Ryan</au><au>Laznik-Bogoslavski, Dina</au><au>Ferreira, Julio C.B.</au><au>Carl, Christian S.</au><au>Sjøberg, Kim A.</au><au>Wojtaszewski, Jørgen F.P.</au><au>Jeppesen, Jacob F.</au><au>Kiens, Bente</au><au>Gygi, Steven P.</au><au>Richter, Erik A.</au><au>Mathis, Diane</au><au>Chouchani, Edward T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>183</volume><issue>1</issue><spage>62</spage><epage>75.e17</epage><pages>62-75.e17</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation. Selective secretion of succinate is facilitated by its transient protonation, which occurs upon muscle cell acidification. In the protonated monocarboxylic form, succinate is rendered a transport substrate for monocarboxylate transporter 1, which facilitates pH-gated release. Upon secretion, succinate signals via its cognate receptor SUCNR1 in non-myofibrillar cells in muscle tissue to control muscle-remodeling transcriptional programs. This succinate-SUCNR1 signaling is required for paracrine regulation of muscle innervation, muscle matrix remodeling, and muscle strength in response to exercise training. In sum, we define a bioenergetic sensor in muscle that utilizes intracellular pH and succinate to coordinate tissue adaptation to exercise. [Display omitted] •Mouse and human muscle selectively release succinate during exercise•Muscle cells release succinate by pH-gated secretion via MCT1•Extracellular succinate regulates paracrine responses to exercise through SUCNR1•SUCNR1 signaling mediates muscle remodeling responses to exercise training Reddy et al. identify a bioenergetic sensor that uses pH and succinate to regulate muscle tissue adaptation to exercise.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32946811</pmid><doi>10.1016/j.cell.2020.08.039</doi><orcidid>https://orcid.org/0000-0003-2694-239X</orcidid><orcidid>https://orcid.org/0000-0003-0447-8995</orcidid><orcidid>https://orcid.org/0000-0002-4291-413X</orcidid><orcidid>https://orcid.org/0000-0002-6850-3056</orcidid><orcidid>https://orcid.org/0000-0002-9551-5837</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2020-10, Vol.183 (1), p.62-75.e17
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7778787
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Animals
exercise
Humans
Hydrogen-Ion Concentration
Inflammation - metabolism
innervation
Mice
Mitochondria - metabolism
Monocarboxylic Acid Transporters - metabolism
muscle
Muscle Contraction
Muscle, Skeletal - metabolism
Receptors, G-Protein-Coupled - metabolism
Receptors, G-Protein-Coupled - physiology
Signal Transduction
succinate
Succinates - metabolism
Succinic Acid - metabolism
SUCNR1
Symporters - metabolism
title pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pH-Gated%20Succinate%20Secretion%20Regulates%20Muscle%20Remodeling%20in%20Response%20to%20Exercise&rft.jtitle=Cell&rft.au=Reddy,%20Anita&rft.date=2020-10-01&rft.volume=183&rft.issue=1&rft.spage=62&rft.epage=75.e17&rft.pages=62-75.e17&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2020.08.039&rft_dat=%3Cproquest_pubme%3E2444382664%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444382664&rft_id=info:pmid/32946811&rft_els_id=S0092867420310813&rfr_iscdi=true