Comparative transcriptomic and metabolomic analyses of carotenoid biosynthesis reveal the basis of white petal color in Brassica napus

Rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide, but the mechanisms underlying flower color in this crop are known less. Here, we performed metabolomic and transcriptomic analyses of the yellow-flowered rapeseed cultivar ‘Zhongshuang 11’ (ZS11) and the white-flowere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2021, Vol.253 (1), p.1-14, Article 8
Hauptverfasser: Jia, Ledong, Wang, Junsheng, Wang, Rui, Duan, Mouzheng, Qiao, Cailin, Chen, Xue, Ma, Guoqiang, Zhou, Xintong, Zhu, Meichen, Jing, Fuyu, Zhang, Shengsen, Qu, Cunmin, Li, Jiana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 1
container_title Planta
container_volume 253
creator Jia, Ledong
Wang, Junsheng
Wang, Rui
Duan, Mouzheng
Qiao, Cailin
Chen, Xue
Ma, Guoqiang
Zhou, Xintong
Zhu, Meichen
Jing, Fuyu
Zhang, Shengsen
Qu, Cunmin
Li, Jiana
description Rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide, but the mechanisms underlying flower color in this crop are known less. Here, we performed metabolomic and transcriptomic analyses of the yellow-flowered rapeseed cultivar ‘Zhongshuang 11’ (ZS11) and the white-flowered inbred line ‘White Petal’ (WP). The total carotenoid contents were 1.778-fold and 1.969-fold higher in ZS11 vs. WP petals at stages S2 and S4, respectively. Our findings suggest that white petal color in WP flowers is primarily due to decreased lutein and zeaxanthin contents. Transcriptome analysis revealed 10,116 differentially expressed genes with a fourfold or greater change in expression (P-value less than 0.001) in WP vs. ZS11 petals, including 1,209 genes that were differentially expressed at four different stages and 20 genes in the carotenoid metabolism pathway. BnNCED4b, encoding a protein involved in carotenoid degradation, was expressed at abnormally high levels in WP petals, suggesting it might play a key role in white petal formation. The results of qRT-PCR were consistent with the transcriptome data. The results of this study provide important insights into the molecular mechanisms of the carotenoid metabolic pathway in rapeseed petals, and the candidate genes identified in this study provide a resource for the creation of new B. napus germplasms with different petal colors.
doi_str_mv 10.1007/s00425-020-03536-6
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7778631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27294179</jstor_id><sourcerecordid>27294179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-fe4b1cc84c8a37a2152ae69c3c48a3656bdebff1da828d6081d1eabc056774ab3</originalsourceid><addsrcrecordid>eNp9kcuO1DAQRS0EYpqBH0ACWWIzm4BfsZ0NErSGhzQSG1hbFceZdiuxg5006h_gu_GQpnksWNlVdeqWyxehp5S8pISoV5kQweqKMFIRXnNZyXtoQwVnFSNC30cbQsqdNLy-QI9y3hNSiko9RBecc62IUBv0fRvHCRLM_uDwnCBkm_w0x9FbDKHDo5uhjcMphuGYXcaxxxZSnF2IvsOtj_kY5p3LPuPkDg4GXCLcwl2isN92fnZ4KkoDtkUrYR_w2wQ5ews4wLTkx-hBD0N2T07nJfry7vrz9kN18-n9x-2bm8qKRs5V70RLrdXCauAKGK0ZONlYbkVJyFq2nWv7nnagme4k0bSjDlpLaqmUgJZfoter7rS0o-usC2XnwUzJj5COJoI3f1eC35nbeDBKKS05LQJXJ4EUvy4uz2b02bphgODikg0TSmghZCMK-uIfdB-XVP5wpWrNiawLxVbKpphzcv35MZSYO5vNarMpNpufNhtZmp7_uca55ZevBeArkEsp3Lr0e_Z_ZZ-tXfs8x3RWZYo1gqqG_wAKRsEL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474583065</pqid></control><display><type>article</type><title>Comparative transcriptomic and metabolomic analyses of carotenoid biosynthesis reveal the basis of white petal color in Brassica napus</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Jia, Ledong ; Wang, Junsheng ; Wang, Rui ; Duan, Mouzheng ; Qiao, Cailin ; Chen, Xue ; Ma, Guoqiang ; Zhou, Xintong ; Zhu, Meichen ; Jing, Fuyu ; Zhang, Shengsen ; Qu, Cunmin ; Li, Jiana</creator><creatorcontrib>Jia, Ledong ; Wang, Junsheng ; Wang, Rui ; Duan, Mouzheng ; Qiao, Cailin ; Chen, Xue ; Ma, Guoqiang ; Zhou, Xintong ; Zhu, Meichen ; Jing, Fuyu ; Zhang, Shengsen ; Qu, Cunmin ; Li, Jiana</creatorcontrib><description>Rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide, but the mechanisms underlying flower color in this crop are known less. Here, we performed metabolomic and transcriptomic analyses of the yellow-flowered rapeseed cultivar ‘Zhongshuang 11’ (ZS11) and the white-flowered inbred line ‘White Petal’ (WP). The total carotenoid contents were 1.778-fold and 1.969-fold higher in ZS11 vs. WP petals at stages S2 and S4, respectively. Our findings suggest that white petal color in WP flowers is primarily due to decreased lutein and zeaxanthin contents. Transcriptome analysis revealed 10,116 differentially expressed genes with a fourfold or greater change in expression (P-value less than 0.001) in WP vs. ZS11 petals, including 1,209 genes that were differentially expressed at four different stages and 20 genes in the carotenoid metabolism pathway. BnNCED4b, encoding a protein involved in carotenoid degradation, was expressed at abnormally high levels in WP petals, suggesting it might play a key role in white petal formation. The results of qRT-PCR were consistent with the transcriptome data. The results of this study provide important insights into the molecular mechanisms of the carotenoid metabolic pathway in rapeseed petals, and the candidate genes identified in this study provide a resource for the creation of new B. napus germplasms with different petal colors.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-020-03536-6</identifier><identifier>PMID: 33387047</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Agriculture ; Biomedical and Life Sciences ; Biosynthesis ; Brassica ; Brassica napus ; Brassica napus - genetics ; Carotenoids ; Carotenoids - metabolism ; Color ; Cultivars ; Ecology ; Flowers ; Flowers - genetics ; Forestry ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Inbreeding ; Life Sciences ; Lutein ; Metabolic pathways ; Metabolome - genetics ; Metabolomics ; Molecular modelling ; Oilseed crops ; Oilseeds ; Original ; ORIGINAL ARTICLE ; Petals ; Pigmentation - genetics ; Plant Sciences ; Protein turnover ; Rape plants ; Rapeseed ; Transcriptome - genetics ; Transcriptomes ; Zeaxanthin</subject><ispartof>Planta, 2021, Vol.253 (1), p.1-14, Article 8</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-fe4b1cc84c8a37a2152ae69c3c48a3656bdebff1da828d6081d1eabc056774ab3</citedby><cites>FETCH-LOGICAL-c496t-fe4b1cc84c8a37a2152ae69c3c48a3656bdebff1da828d6081d1eabc056774ab3</cites><orcidid>0000-0002-1605-8528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00425-020-03536-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00425-020-03536-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33387047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Ledong</creatorcontrib><creatorcontrib>Wang, Junsheng</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Duan, Mouzheng</creatorcontrib><creatorcontrib>Qiao, Cailin</creatorcontrib><creatorcontrib>Chen, Xue</creatorcontrib><creatorcontrib>Ma, Guoqiang</creatorcontrib><creatorcontrib>Zhou, Xintong</creatorcontrib><creatorcontrib>Zhu, Meichen</creatorcontrib><creatorcontrib>Jing, Fuyu</creatorcontrib><creatorcontrib>Zhang, Shengsen</creatorcontrib><creatorcontrib>Qu, Cunmin</creatorcontrib><creatorcontrib>Li, Jiana</creatorcontrib><title>Comparative transcriptomic and metabolomic analyses of carotenoid biosynthesis reveal the basis of white petal color in Brassica napus</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide, but the mechanisms underlying flower color in this crop are known less. Here, we performed metabolomic and transcriptomic analyses of the yellow-flowered rapeseed cultivar ‘Zhongshuang 11’ (ZS11) and the white-flowered inbred line ‘White Petal’ (WP). The total carotenoid contents were 1.778-fold and 1.969-fold higher in ZS11 vs. WP petals at stages S2 and S4, respectively. Our findings suggest that white petal color in WP flowers is primarily due to decreased lutein and zeaxanthin contents. Transcriptome analysis revealed 10,116 differentially expressed genes with a fourfold or greater change in expression (P-value less than 0.001) in WP vs. ZS11 petals, including 1,209 genes that were differentially expressed at four different stages and 20 genes in the carotenoid metabolism pathway. BnNCED4b, encoding a protein involved in carotenoid degradation, was expressed at abnormally high levels in WP petals, suggesting it might play a key role in white petal formation. The results of qRT-PCR were consistent with the transcriptome data. The results of this study provide important insights into the molecular mechanisms of the carotenoid metabolic pathway in rapeseed petals, and the candidate genes identified in this study provide a resource for the creation of new B. napus germplasms with different petal colors.</description><subject>Agriculture</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Brassica</subject><subject>Brassica napus</subject><subject>Brassica napus - genetics</subject><subject>Carotenoids</subject><subject>Carotenoids - metabolism</subject><subject>Color</subject><subject>Cultivars</subject><subject>Ecology</subject><subject>Flowers</subject><subject>Flowers - genetics</subject><subject>Forestry</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Inbreeding</subject><subject>Life Sciences</subject><subject>Lutein</subject><subject>Metabolic pathways</subject><subject>Metabolome - genetics</subject><subject>Metabolomics</subject><subject>Molecular modelling</subject><subject>Oilseed crops</subject><subject>Oilseeds</subject><subject>Original</subject><subject>ORIGINAL ARTICLE</subject><subject>Petals</subject><subject>Pigmentation - genetics</subject><subject>Plant Sciences</subject><subject>Protein turnover</subject><subject>Rape plants</subject><subject>Rapeseed</subject><subject>Transcriptome - genetics</subject><subject>Transcriptomes</subject><subject>Zeaxanthin</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcuO1DAQRS0EYpqBH0ACWWIzm4BfsZ0NErSGhzQSG1hbFceZdiuxg5006h_gu_GQpnksWNlVdeqWyxehp5S8pISoV5kQweqKMFIRXnNZyXtoQwVnFSNC30cbQsqdNLy-QI9y3hNSiko9RBecc62IUBv0fRvHCRLM_uDwnCBkm_w0x9FbDKHDo5uhjcMphuGYXcaxxxZSnF2IvsOtj_kY5p3LPuPkDg4GXCLcwl2isN92fnZ4KkoDtkUrYR_w2wQ5ews4wLTkx-hBD0N2T07nJfry7vrz9kN18-n9x-2bm8qKRs5V70RLrdXCauAKGK0ZONlYbkVJyFq2nWv7nnagme4k0bSjDlpLaqmUgJZfoter7rS0o-usC2XnwUzJj5COJoI3f1eC35nbeDBKKS05LQJXJ4EUvy4uz2b02bphgODikg0TSmghZCMK-uIfdB-XVP5wpWrNiawLxVbKpphzcv35MZSYO5vNarMpNpufNhtZmp7_uca55ZevBeArkEsp3Lr0e_Z_ZZ-tXfs8x3RWZYo1gqqG_wAKRsEL</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Jia, Ledong</creator><creator>Wang, Junsheng</creator><creator>Wang, Rui</creator><creator>Duan, Mouzheng</creator><creator>Qiao, Cailin</creator><creator>Chen, Xue</creator><creator>Ma, Guoqiang</creator><creator>Zhou, Xintong</creator><creator>Zhu, Meichen</creator><creator>Jing, Fuyu</creator><creator>Zhang, Shengsen</creator><creator>Qu, Cunmin</creator><creator>Li, Jiana</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1605-8528</orcidid></search><sort><creationdate>2021</creationdate><title>Comparative transcriptomic and metabolomic analyses of carotenoid biosynthesis reveal the basis of white petal color in Brassica napus</title><author>Jia, Ledong ; Wang, Junsheng ; Wang, Rui ; Duan, Mouzheng ; Qiao, Cailin ; Chen, Xue ; Ma, Guoqiang ; Zhou, Xintong ; Zhu, Meichen ; Jing, Fuyu ; Zhang, Shengsen ; Qu, Cunmin ; Li, Jiana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-fe4b1cc84c8a37a2152ae69c3c48a3656bdebff1da828d6081d1eabc056774ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Brassica</topic><topic>Brassica napus</topic><topic>Brassica napus - genetics</topic><topic>Carotenoids</topic><topic>Carotenoids - metabolism</topic><topic>Color</topic><topic>Cultivars</topic><topic>Ecology</topic><topic>Flowers</topic><topic>Flowers - genetics</topic><topic>Forestry</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Inbreeding</topic><topic>Life Sciences</topic><topic>Lutein</topic><topic>Metabolic pathways</topic><topic>Metabolome - genetics</topic><topic>Metabolomics</topic><topic>Molecular modelling</topic><topic>Oilseed crops</topic><topic>Oilseeds</topic><topic>Original</topic><topic>ORIGINAL ARTICLE</topic><topic>Petals</topic><topic>Pigmentation - genetics</topic><topic>Plant Sciences</topic><topic>Protein turnover</topic><topic>Rape plants</topic><topic>Rapeseed</topic><topic>Transcriptome - genetics</topic><topic>Transcriptomes</topic><topic>Zeaxanthin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Ledong</creatorcontrib><creatorcontrib>Wang, Junsheng</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Duan, Mouzheng</creatorcontrib><creatorcontrib>Qiao, Cailin</creatorcontrib><creatorcontrib>Chen, Xue</creatorcontrib><creatorcontrib>Ma, Guoqiang</creatorcontrib><creatorcontrib>Zhou, Xintong</creatorcontrib><creatorcontrib>Zhu, Meichen</creatorcontrib><creatorcontrib>Jing, Fuyu</creatorcontrib><creatorcontrib>Zhang, Shengsen</creatorcontrib><creatorcontrib>Qu, Cunmin</creatorcontrib><creatorcontrib>Li, Jiana</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Ledong</au><au>Wang, Junsheng</au><au>Wang, Rui</au><au>Duan, Mouzheng</au><au>Qiao, Cailin</au><au>Chen, Xue</au><au>Ma, Guoqiang</au><au>Zhou, Xintong</au><au>Zhu, Meichen</au><au>Jing, Fuyu</au><au>Zhang, Shengsen</au><au>Qu, Cunmin</au><au>Li, Jiana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative transcriptomic and metabolomic analyses of carotenoid biosynthesis reveal the basis of white petal color in Brassica napus</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2021</date><risdate>2021</risdate><volume>253</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>8</artnum><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide, but the mechanisms underlying flower color in this crop are known less. Here, we performed metabolomic and transcriptomic analyses of the yellow-flowered rapeseed cultivar ‘Zhongshuang 11’ (ZS11) and the white-flowered inbred line ‘White Petal’ (WP). The total carotenoid contents were 1.778-fold and 1.969-fold higher in ZS11 vs. WP petals at stages S2 and S4, respectively. Our findings suggest that white petal color in WP flowers is primarily due to decreased lutein and zeaxanthin contents. Transcriptome analysis revealed 10,116 differentially expressed genes with a fourfold or greater change in expression (P-value less than 0.001) in WP vs. ZS11 petals, including 1,209 genes that were differentially expressed at four different stages and 20 genes in the carotenoid metabolism pathway. BnNCED4b, encoding a protein involved in carotenoid degradation, was expressed at abnormally high levels in WP petals, suggesting it might play a key role in white petal formation. The results of qRT-PCR were consistent with the transcriptome data. The results of this study provide important insights into the molecular mechanisms of the carotenoid metabolic pathway in rapeseed petals, and the candidate genes identified in this study provide a resource for the creation of new B. napus germplasms with different petal colors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>33387047</pmid><doi>10.1007/s00425-020-03536-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1605-8528</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2021, Vol.253 (1), p.1-14, Article 8
issn 0032-0935
1432-2048
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7778631
source MEDLINE; SpringerLink Journals
subjects Agriculture
Biomedical and Life Sciences
Biosynthesis
Brassica
Brassica napus
Brassica napus - genetics
Carotenoids
Carotenoids - metabolism
Color
Cultivars
Ecology
Flowers
Flowers - genetics
Forestry
Gene expression
Gene Expression Regulation, Plant
Genes
Inbreeding
Life Sciences
Lutein
Metabolic pathways
Metabolome - genetics
Metabolomics
Molecular modelling
Oilseed crops
Oilseeds
Original
ORIGINAL ARTICLE
Petals
Pigmentation - genetics
Plant Sciences
Protein turnover
Rape plants
Rapeseed
Transcriptome - genetics
Transcriptomes
Zeaxanthin
title Comparative transcriptomic and metabolomic analyses of carotenoid biosynthesis reveal the basis of white petal color in Brassica napus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20transcriptomic%20and%20metabolomic%20analyses%20of%20carotenoid%20biosynthesis%20reveal%20the%20basis%20of%20white%20petal%20color%20in%20Brassica%20napus&rft.jtitle=Planta&rft.au=Jia,%20Ledong&rft.date=2021&rft.volume=253&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=8&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-020-03536-6&rft_dat=%3Cjstor_pubme%3E27294179%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474583065&rft_id=info:pmid/33387047&rft_jstor_id=27294179&rfr_iscdi=true