Interferon-mediated reprogramming of membrane cholesterol to evade bacterial toxins

Plasma membranes of animal cells are enriched for cholesterol. Cholesterol-dependent cytolysins (CDCs) are pore-forming toxins secreted by bacteria that target membrane cholesterol for their effector function. Phagocytes are essential for clearance of CDC-producing bacteria; however, the mechanisms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature immunology 2020-07, Vol.21 (7), p.746-755
Hauptverfasser: Zhou, Quan D., Chi, Xun, Lee, Min Sub, Hsieh, Wei Yuan, Mkrtchyan, Jonathan J., Feng, An-Chieh, He, Cuiwen, York, Autumn G., Bui, Viet L., Kronenberger, Eliza B., Ferrari, Alessandra, Xiao, Xu, Daly, Allison E., Tarling, Elizabeth J., Damoiseaux, Robert, Scumpia, Philip O., Smale, Stephen T., Williams, Kevin J., Tontonoz, Peter, Bensinger, Steven J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 755
container_issue 7
container_start_page 746
container_title Nature immunology
container_volume 21
creator Zhou, Quan D.
Chi, Xun
Lee, Min Sub
Hsieh, Wei Yuan
Mkrtchyan, Jonathan J.
Feng, An-Chieh
He, Cuiwen
York, Autumn G.
Bui, Viet L.
Kronenberger, Eliza B.
Ferrari, Alessandra
Xiao, Xu
Daly, Allison E.
Tarling, Elizabeth J.
Damoiseaux, Robert
Scumpia, Philip O.
Smale, Stephen T.
Williams, Kevin J.
Tontonoz, Peter
Bensinger, Steven J.
description Plasma membranes of animal cells are enriched for cholesterol. Cholesterol-dependent cytolysins (CDCs) are pore-forming toxins secreted by bacteria that target membrane cholesterol for their effector function. Phagocytes are essential for clearance of CDC-producing bacteria; however, the mechanisms by which these cells evade the deleterious effects of CDCs are largely unknown. Here, we report that interferon (IFN) signals convey resistance to CDC-induced pores on macrophages and neutrophils. We traced IFN-mediated resistance to CDCs to the rapid modulation of a specific pool of cholesterol in the plasma membrane of macrophages without changes to total cholesterol levels. Resistance to CDC-induced pore formation requires the production of the oxysterol 25-hydroxycholesterol (25HC), inhibition of cholesterol synthesis and redistribution of cholesterol to an esterified cholesterol pool. Accordingly, blocking the ability of IFN to reprogram cholesterol metabolism abrogates cellular protection and renders mice more susceptible to CDC-induced tissue damage. These studies illuminate targeted regulation of membrane cholesterol content as a host defense strategy. Bensinger and colleagues show that interferons promote host cell resistance to bacterial cytolysins by decreasing cholesterol synthesis and promoting the esterification of cholesterol, which alters the availability of this pool of ‘free’ cholesterol needed for pore formation.
doi_str_mv 10.1038/s41590-020-0695-4
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7778040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627539034</galeid><sourcerecordid>A627539034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-e8792f5ac44394cbd0f5ef0756d9f205ab6877af3d594b477e4615041fd997883</originalsourceid><addsrcrecordid>eNp9kt9r1TAUx4sobk7_AF-k4Mt86DxJ86N5Ecbwx4WB4PQ5pO1Jl9Em16Qd87835c47r6gJIeHk8z05J3yL4iWBMwJ18zYxwhVUQPMSilfsUXFMOFUVVUQ83p-hOSqepXQDQJgU7GlxVFNOGAh2XFxt_IzRYgy-mrB3Zsa-jLiNYYhmmpwfymDLCac2Go9ldx1GTFkRxnIOJd6aHsvWdDnizBq6cz49L55YMyZ8cb-fFN8-vP968am6_Pxxc3F-WXVcqbnCRipquekYqxXr2h4sRwuSi15ZCty0opHS2LrnirVMSmSCcGDE9krJpqlPine7vNulzbV36OdoRr2NbjLxhw7G6cMb7671EG61lLIBBjnB6X2CGL4vuS89udThOOZWw5I0ZSQPoI3K6Os_0JuwRJ_by5TkAAqI_D9FBNSCNuKBGsyI2nkbcnXd-rQ-F1TyWkHNMnX2FyrPHifXBY_W5fiB4M2BIDMz3s2DWVLSm6svhyzZsV0MKUW0-18joFdv6Z23dPaWXr2lV82r3797r_hlpgzQHZDylR8wPnT_76w_ASPX1x0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416036286</pqid></control><display><type>article</type><title>Interferon-mediated reprogramming of membrane cholesterol to evade bacterial toxins</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Zhou, Quan D. ; Chi, Xun ; Lee, Min Sub ; Hsieh, Wei Yuan ; Mkrtchyan, Jonathan J. ; Feng, An-Chieh ; He, Cuiwen ; York, Autumn G. ; Bui, Viet L. ; Kronenberger, Eliza B. ; Ferrari, Alessandra ; Xiao, Xu ; Daly, Allison E. ; Tarling, Elizabeth J. ; Damoiseaux, Robert ; Scumpia, Philip O. ; Smale, Stephen T. ; Williams, Kevin J. ; Tontonoz, Peter ; Bensinger, Steven J.</creator><creatorcontrib>Zhou, Quan D. ; Chi, Xun ; Lee, Min Sub ; Hsieh, Wei Yuan ; Mkrtchyan, Jonathan J. ; Feng, An-Chieh ; He, Cuiwen ; York, Autumn G. ; Bui, Viet L. ; Kronenberger, Eliza B. ; Ferrari, Alessandra ; Xiao, Xu ; Daly, Allison E. ; Tarling, Elizabeth J. ; Damoiseaux, Robert ; Scumpia, Philip O. ; Smale, Stephen T. ; Williams, Kevin J. ; Tontonoz, Peter ; Bensinger, Steven J.</creatorcontrib><description>Plasma membranes of animal cells are enriched for cholesterol. Cholesterol-dependent cytolysins (CDCs) are pore-forming toxins secreted by bacteria that target membrane cholesterol for their effector function. Phagocytes are essential for clearance of CDC-producing bacteria; however, the mechanisms by which these cells evade the deleterious effects of CDCs are largely unknown. Here, we report that interferon (IFN) signals convey resistance to CDC-induced pores on macrophages and neutrophils. We traced IFN-mediated resistance to CDCs to the rapid modulation of a specific pool of cholesterol in the plasma membrane of macrophages without changes to total cholesterol levels. Resistance to CDC-induced pore formation requires the production of the oxysterol 25-hydroxycholesterol (25HC), inhibition of cholesterol synthesis and redistribution of cholesterol to an esterified cholesterol pool. Accordingly, blocking the ability of IFN to reprogram cholesterol metabolism abrogates cellular protection and renders mice more susceptible to CDC-induced tissue damage. These studies illuminate targeted regulation of membrane cholesterol content as a host defense strategy. Bensinger and colleagues show that interferons promote host cell resistance to bacterial cytolysins by decreasing cholesterol synthesis and promoting the esterification of cholesterol, which alters the availability of this pool of ‘free’ cholesterol needed for pore formation.</description><identifier>ISSN: 1529-2908</identifier><identifier>EISSN: 1529-2916</identifier><identifier>DOI: 10.1038/s41590-020-0695-4</identifier><identifier>PMID: 32514064</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/250/262 ; 631/45/287 ; Animals ; Bacteria ; Bacteria - immunology ; Bacteria - metabolism ; Bacterial Infections - immunology ; Bacterial Proteins - administration &amp; dosage ; Bacterial Proteins - immunology ; Bacterial Proteins - metabolism ; Bacterial Toxins - immunology ; Bacterial Toxins - metabolism ; Biological response modifiers ; Biomedical and Life Sciences ; Biomedicine ; Cell Membrane - metabolism ; Cell Membrane Permeability - immunology ; Cells, Cultured ; Cholesterol ; Cytolysins ; Disease Models, Animal ; Disease Susceptibility - immunology ; Esterification ; Female ; Host Microbial Interactions - immunology ; Humans ; Hydroxycholesterols - metabolism ; Immunology ; Infectious Diseases ; Interferon ; Interferons - isolation &amp; purification ; Intravital Microscopy ; Leukocytes (neutrophilic) ; Lipid metabolism ; Macrophages ; Male ; Membranes ; Mice ; Mice, Transgenic ; Phagocytes ; Phagocytes - cytology ; Phagocytes - immunology ; Phagocytes - metabolism ; Physiological aspects ; Plasma membranes ; Primary Cell Culture ; Steroid Hydroxylases - genetics ; Steroid Hydroxylases - metabolism ; Streptolysins - administration &amp; dosage ; Streptolysins - immunology ; Streptolysins - metabolism ; Toxins</subject><ispartof>Nature immunology, 2020-07, Vol.21 (7), p.746-755</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-e8792f5ac44394cbd0f5ef0756d9f205ab6877af3d594b477e4615041fd997883</citedby><cites>FETCH-LOGICAL-c599t-e8792f5ac44394cbd0f5ef0756d9f205ab6877af3d594b477e4615041fd997883</cites><orcidid>0000-0002-9657-4206 ; 0000-0003-1259-0477 ; 0000-0001-5519-6037 ; 0000-0002-0184-4884 ; 0000-0002-7030-8663 ; 0000-0002-0599-0432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32514064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Quan D.</creatorcontrib><creatorcontrib>Chi, Xun</creatorcontrib><creatorcontrib>Lee, Min Sub</creatorcontrib><creatorcontrib>Hsieh, Wei Yuan</creatorcontrib><creatorcontrib>Mkrtchyan, Jonathan J.</creatorcontrib><creatorcontrib>Feng, An-Chieh</creatorcontrib><creatorcontrib>He, Cuiwen</creatorcontrib><creatorcontrib>York, Autumn G.</creatorcontrib><creatorcontrib>Bui, Viet L.</creatorcontrib><creatorcontrib>Kronenberger, Eliza B.</creatorcontrib><creatorcontrib>Ferrari, Alessandra</creatorcontrib><creatorcontrib>Xiao, Xu</creatorcontrib><creatorcontrib>Daly, Allison E.</creatorcontrib><creatorcontrib>Tarling, Elizabeth J.</creatorcontrib><creatorcontrib>Damoiseaux, Robert</creatorcontrib><creatorcontrib>Scumpia, Philip O.</creatorcontrib><creatorcontrib>Smale, Stephen T.</creatorcontrib><creatorcontrib>Williams, Kevin J.</creatorcontrib><creatorcontrib>Tontonoz, Peter</creatorcontrib><creatorcontrib>Bensinger, Steven J.</creatorcontrib><title>Interferon-mediated reprogramming of membrane cholesterol to evade bacterial toxins</title><title>Nature immunology</title><addtitle>Nat Immunol</addtitle><addtitle>Nat Immunol</addtitle><description>Plasma membranes of animal cells are enriched for cholesterol. Cholesterol-dependent cytolysins (CDCs) are pore-forming toxins secreted by bacteria that target membrane cholesterol for their effector function. Phagocytes are essential for clearance of CDC-producing bacteria; however, the mechanisms by which these cells evade the deleterious effects of CDCs are largely unknown. Here, we report that interferon (IFN) signals convey resistance to CDC-induced pores on macrophages and neutrophils. We traced IFN-mediated resistance to CDCs to the rapid modulation of a specific pool of cholesterol in the plasma membrane of macrophages without changes to total cholesterol levels. Resistance to CDC-induced pore formation requires the production of the oxysterol 25-hydroxycholesterol (25HC), inhibition of cholesterol synthesis and redistribution of cholesterol to an esterified cholesterol pool. Accordingly, blocking the ability of IFN to reprogram cholesterol metabolism abrogates cellular protection and renders mice more susceptible to CDC-induced tissue damage. These studies illuminate targeted regulation of membrane cholesterol content as a host defense strategy. Bensinger and colleagues show that interferons promote host cell resistance to bacterial cytolysins by decreasing cholesterol synthesis and promoting the esterification of cholesterol, which alters the availability of this pool of ‘free’ cholesterol needed for pore formation.</description><subject>631/250/262</subject><subject>631/45/287</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - immunology</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Infections - immunology</subject><subject>Bacterial Proteins - administration &amp; dosage</subject><subject>Bacterial Proteins - immunology</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Toxins - immunology</subject><subject>Bacterial Toxins - metabolism</subject><subject>Biological response modifiers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane Permeability - immunology</subject><subject>Cells, Cultured</subject><subject>Cholesterol</subject><subject>Cytolysins</subject><subject>Disease Models, Animal</subject><subject>Disease Susceptibility - immunology</subject><subject>Esterification</subject><subject>Female</subject><subject>Host Microbial Interactions - immunology</subject><subject>Humans</subject><subject>Hydroxycholesterols - metabolism</subject><subject>Immunology</subject><subject>Infectious Diseases</subject><subject>Interferon</subject><subject>Interferons - isolation &amp; purification</subject><subject>Intravital Microscopy</subject><subject>Leukocytes (neutrophilic)</subject><subject>Lipid metabolism</subject><subject>Macrophages</subject><subject>Male</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Phagocytes</subject><subject>Phagocytes - cytology</subject><subject>Phagocytes - immunology</subject><subject>Phagocytes - metabolism</subject><subject>Physiological aspects</subject><subject>Plasma membranes</subject><subject>Primary Cell Culture</subject><subject>Steroid Hydroxylases - genetics</subject><subject>Steroid Hydroxylases - metabolism</subject><subject>Streptolysins - administration &amp; dosage</subject><subject>Streptolysins - immunology</subject><subject>Streptolysins - metabolism</subject><subject>Toxins</subject><issn>1529-2908</issn><issn>1529-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kt9r1TAUx4sobk7_AF-k4Mt86DxJ86N5Ecbwx4WB4PQ5pO1Jl9Em16Qd87835c47r6gJIeHk8z05J3yL4iWBMwJ18zYxwhVUQPMSilfsUXFMOFUVVUQ83p-hOSqepXQDQJgU7GlxVFNOGAh2XFxt_IzRYgy-mrB3Zsa-jLiNYYhmmpwfymDLCac2Go9ldx1GTFkRxnIOJd6aHsvWdDnizBq6cz49L55YMyZ8cb-fFN8-vP968am6_Pxxc3F-WXVcqbnCRipquekYqxXr2h4sRwuSi15ZCty0opHS2LrnirVMSmSCcGDE9krJpqlPine7vNulzbV36OdoRr2NbjLxhw7G6cMb7671EG61lLIBBjnB6X2CGL4vuS89udThOOZWw5I0ZSQPoI3K6Os_0JuwRJ_by5TkAAqI_D9FBNSCNuKBGsyI2nkbcnXd-rQ-F1TyWkHNMnX2FyrPHifXBY_W5fiB4M2BIDMz3s2DWVLSm6svhyzZsV0MKUW0-18joFdv6Z23dPaWXr2lV82r3797r_hlpgzQHZDylR8wPnT_76w_ASPX1x0</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Zhou, Quan D.</creator><creator>Chi, Xun</creator><creator>Lee, Min Sub</creator><creator>Hsieh, Wei Yuan</creator><creator>Mkrtchyan, Jonathan J.</creator><creator>Feng, An-Chieh</creator><creator>He, Cuiwen</creator><creator>York, Autumn G.</creator><creator>Bui, Viet L.</creator><creator>Kronenberger, Eliza B.</creator><creator>Ferrari, Alessandra</creator><creator>Xiao, Xu</creator><creator>Daly, Allison E.</creator><creator>Tarling, Elizabeth J.</creator><creator>Damoiseaux, Robert</creator><creator>Scumpia, Philip O.</creator><creator>Smale, Stephen T.</creator><creator>Williams, Kevin J.</creator><creator>Tontonoz, Peter</creator><creator>Bensinger, Steven J.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9657-4206</orcidid><orcidid>https://orcid.org/0000-0003-1259-0477</orcidid><orcidid>https://orcid.org/0000-0001-5519-6037</orcidid><orcidid>https://orcid.org/0000-0002-0184-4884</orcidid><orcidid>https://orcid.org/0000-0002-7030-8663</orcidid><orcidid>https://orcid.org/0000-0002-0599-0432</orcidid></search><sort><creationdate>20200701</creationdate><title>Interferon-mediated reprogramming of membrane cholesterol to evade bacterial toxins</title><author>Zhou, Quan D. ; Chi, Xun ; Lee, Min Sub ; Hsieh, Wei Yuan ; Mkrtchyan, Jonathan J. ; Feng, An-Chieh ; He, Cuiwen ; York, Autumn G. ; Bui, Viet L. ; Kronenberger, Eliza B. ; Ferrari, Alessandra ; Xiao, Xu ; Daly, Allison E. ; Tarling, Elizabeth J. ; Damoiseaux, Robert ; Scumpia, Philip O. ; Smale, Stephen T. ; Williams, Kevin J. ; Tontonoz, Peter ; Bensinger, Steven J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-e8792f5ac44394cbd0f5ef0756d9f205ab6877af3d594b477e4615041fd997883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/250/262</topic><topic>631/45/287</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - immunology</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Infections - immunology</topic><topic>Bacterial Proteins - administration &amp; dosage</topic><topic>Bacterial Proteins - immunology</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Toxins - immunology</topic><topic>Bacterial Toxins - metabolism</topic><topic>Biological response modifiers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane Permeability - immunology</topic><topic>Cells, Cultured</topic><topic>Cholesterol</topic><topic>Cytolysins</topic><topic>Disease Models, Animal</topic><topic>Disease Susceptibility - immunology</topic><topic>Esterification</topic><topic>Female</topic><topic>Host Microbial Interactions - immunology</topic><topic>Humans</topic><topic>Hydroxycholesterols - metabolism</topic><topic>Immunology</topic><topic>Infectious Diseases</topic><topic>Interferon</topic><topic>Interferons - isolation &amp; purification</topic><topic>Intravital Microscopy</topic><topic>Leukocytes (neutrophilic)</topic><topic>Lipid metabolism</topic><topic>Macrophages</topic><topic>Male</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Phagocytes</topic><topic>Phagocytes - cytology</topic><topic>Phagocytes - immunology</topic><topic>Phagocytes - metabolism</topic><topic>Physiological aspects</topic><topic>Plasma membranes</topic><topic>Primary Cell Culture</topic><topic>Steroid Hydroxylases - genetics</topic><topic>Steroid Hydroxylases - metabolism</topic><topic>Streptolysins - administration &amp; dosage</topic><topic>Streptolysins - immunology</topic><topic>Streptolysins - metabolism</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Quan D.</creatorcontrib><creatorcontrib>Chi, Xun</creatorcontrib><creatorcontrib>Lee, Min Sub</creatorcontrib><creatorcontrib>Hsieh, Wei Yuan</creatorcontrib><creatorcontrib>Mkrtchyan, Jonathan J.</creatorcontrib><creatorcontrib>Feng, An-Chieh</creatorcontrib><creatorcontrib>He, Cuiwen</creatorcontrib><creatorcontrib>York, Autumn G.</creatorcontrib><creatorcontrib>Bui, Viet L.</creatorcontrib><creatorcontrib>Kronenberger, Eliza B.</creatorcontrib><creatorcontrib>Ferrari, Alessandra</creatorcontrib><creatorcontrib>Xiao, Xu</creatorcontrib><creatorcontrib>Daly, Allison E.</creatorcontrib><creatorcontrib>Tarling, Elizabeth J.</creatorcontrib><creatorcontrib>Damoiseaux, Robert</creatorcontrib><creatorcontrib>Scumpia, Philip O.</creatorcontrib><creatorcontrib>Smale, Stephen T.</creatorcontrib><creatorcontrib>Williams, Kevin J.</creatorcontrib><creatorcontrib>Tontonoz, Peter</creatorcontrib><creatorcontrib>Bensinger, Steven J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Quan D.</au><au>Chi, Xun</au><au>Lee, Min Sub</au><au>Hsieh, Wei Yuan</au><au>Mkrtchyan, Jonathan J.</au><au>Feng, An-Chieh</au><au>He, Cuiwen</au><au>York, Autumn G.</au><au>Bui, Viet L.</au><au>Kronenberger, Eliza B.</au><au>Ferrari, Alessandra</au><au>Xiao, Xu</au><au>Daly, Allison E.</au><au>Tarling, Elizabeth J.</au><au>Damoiseaux, Robert</au><au>Scumpia, Philip O.</au><au>Smale, Stephen T.</au><au>Williams, Kevin J.</au><au>Tontonoz, Peter</au><au>Bensinger, Steven J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interferon-mediated reprogramming of membrane cholesterol to evade bacterial toxins</atitle><jtitle>Nature immunology</jtitle><stitle>Nat Immunol</stitle><addtitle>Nat Immunol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>21</volume><issue>7</issue><spage>746</spage><epage>755</epage><pages>746-755</pages><issn>1529-2908</issn><eissn>1529-2916</eissn><abstract>Plasma membranes of animal cells are enriched for cholesterol. Cholesterol-dependent cytolysins (CDCs) are pore-forming toxins secreted by bacteria that target membrane cholesterol for their effector function. Phagocytes are essential for clearance of CDC-producing bacteria; however, the mechanisms by which these cells evade the deleterious effects of CDCs are largely unknown. Here, we report that interferon (IFN) signals convey resistance to CDC-induced pores on macrophages and neutrophils. We traced IFN-mediated resistance to CDCs to the rapid modulation of a specific pool of cholesterol in the plasma membrane of macrophages without changes to total cholesterol levels. Resistance to CDC-induced pore formation requires the production of the oxysterol 25-hydroxycholesterol (25HC), inhibition of cholesterol synthesis and redistribution of cholesterol to an esterified cholesterol pool. Accordingly, blocking the ability of IFN to reprogram cholesterol metabolism abrogates cellular protection and renders mice more susceptible to CDC-induced tissue damage. These studies illuminate targeted regulation of membrane cholesterol content as a host defense strategy. Bensinger and colleagues show that interferons promote host cell resistance to bacterial cytolysins by decreasing cholesterol synthesis and promoting the esterification of cholesterol, which alters the availability of this pool of ‘free’ cholesterol needed for pore formation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32514064</pmid><doi>10.1038/s41590-020-0695-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9657-4206</orcidid><orcidid>https://orcid.org/0000-0003-1259-0477</orcidid><orcidid>https://orcid.org/0000-0001-5519-6037</orcidid><orcidid>https://orcid.org/0000-0002-0184-4884</orcidid><orcidid>https://orcid.org/0000-0002-7030-8663</orcidid><orcidid>https://orcid.org/0000-0002-0599-0432</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1529-2908
ispartof Nature immunology, 2020-07, Vol.21 (7), p.746-755
issn 1529-2908
1529-2916
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7778040
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/250/262
631/45/287
Animals
Bacteria
Bacteria - immunology
Bacteria - metabolism
Bacterial Infections - immunology
Bacterial Proteins - administration & dosage
Bacterial Proteins - immunology
Bacterial Proteins - metabolism
Bacterial Toxins - immunology
Bacterial Toxins - metabolism
Biological response modifiers
Biomedical and Life Sciences
Biomedicine
Cell Membrane - metabolism
Cell Membrane Permeability - immunology
Cells, Cultured
Cholesterol
Cytolysins
Disease Models, Animal
Disease Susceptibility - immunology
Esterification
Female
Host Microbial Interactions - immunology
Humans
Hydroxycholesterols - metabolism
Immunology
Infectious Diseases
Interferon
Interferons - isolation & purification
Intravital Microscopy
Leukocytes (neutrophilic)
Lipid metabolism
Macrophages
Male
Membranes
Mice
Mice, Transgenic
Phagocytes
Phagocytes - cytology
Phagocytes - immunology
Phagocytes - metabolism
Physiological aspects
Plasma membranes
Primary Cell Culture
Steroid Hydroxylases - genetics
Steroid Hydroxylases - metabolism
Streptolysins - administration & dosage
Streptolysins - immunology
Streptolysins - metabolism
Toxins
title Interferon-mediated reprogramming of membrane cholesterol to evade bacterial toxins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interferon-mediated%20reprogramming%20of%20membrane%20cholesterol%20to%20evade%20bacterial%20toxins&rft.jtitle=Nature%20immunology&rft.au=Zhou,%20Quan%20D.&rft.date=2020-07-01&rft.volume=21&rft.issue=7&rft.spage=746&rft.epage=755&rft.pages=746-755&rft.issn=1529-2908&rft.eissn=1529-2916&rft_id=info:doi/10.1038/s41590-020-0695-4&rft_dat=%3Cgale_pubme%3EA627539034%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416036286&rft_id=info:pmid/32514064&rft_galeid=A627539034&rfr_iscdi=true