Exponential node clustering at singularities for rational approximation, quadrature, and PDEs
Rational approximations of functions with singularities can converge at a root-exponential rate if the poles are exponentially clustered. We begin by reviewing this effect in minimax, least-squares, and AAA approximations on intervals and complex domains, conformal mapping, and the numerical solutio...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2021-01, Vol.147 (1), p.227-254 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 1 |
container_start_page | 227 |
container_title | Numerische Mathematik |
container_volume | 147 |
creator | Trefethen, Lloyd N. Nakatsukasa, Yuji Weideman, J. A. C. |
description | Rational approximations of functions with singularities can converge at a root-exponential rate if the poles are exponentially clustered. We begin by reviewing this effect in minimax, least-squares, and AAA approximations on intervals and complex domains, conformal mapping, and the numerical solution of Laplace, Helmholtz, and biharmonic equations by the “lightning” method. Extensive and wide-ranging numerical experiments are involved. We then present further experiments giving evidence that in all of these applications, it is advantageous to use exponential clustering whose density on a logarithmic scale is not uniform but tapers off linearly to zero near the singularity. We propose a theoretical model of the tapering effect based on the Hermite contour integral and potential theory, which suggests that tapering doubles the rate of convergence. Finally we show that related mathematics applies to the relationship between exponential (not tapered) and doubly exponential (tapered) quadrature formulas. Here it is the Gauss–Takahasi–Mori contour integral that comes into play. |
doi_str_mv | 10.1007/s00211-020-01168-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7776296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476847498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-8094bfc49a9eef00d3a5edc326b0d05ff92badb0a0d087c889163b0d72c644a43</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1URMvCH-BQWeqlhwbGH7HjS6VqWVqkSnAAiQuynMRpXWXj1E5Q-ffMdstSeuhpPJpn3pnxS8g7Bu8ZgP6QAThjBXAogDFVFfwFOQAjy0JwWe7hG7gpSmN-7JPXOd8AMK0ke0X2hZBcglAH5OfqboyDH6bgejrE1tOmn_PkUxiuqJtoxjj3LoUp-Ey7mGhyU4gD0m4cU7wL6_v8hN7OrsXanPwJdUNLv35c5TfkZef67N8-xAX5_mn1bXlRXH45_7w8uyyaUsJUVLh03TXSOON9B9AKV_q2EVzV0ELZdYbXrq3BYVbppqoMUwJLmjdKSifFgpxudce5XmMn3pNcb8eE26XfNrpg_68M4dpexV9Wa624UShw_CCQ4u3s82TXITe-793g45wtl1pVUktTIXr0BL2Jc8IP2VCV5IhBiRTfUk2KOSff7ZZhYDfu2a17Ft2z9-5Zjk2Hj8_Ytfy1CwGxBfK4Mcinf7Ofkf0D2h2nSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484284705</pqid></control><display><type>article</type><title>Exponential node clustering at singularities for rational approximation, quadrature, and PDEs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Trefethen, Lloyd N. ; Nakatsukasa, Yuji ; Weideman, J. A. C.</creator><creatorcontrib>Trefethen, Lloyd N. ; Nakatsukasa, Yuji ; Weideman, J. A. C.</creatorcontrib><description>Rational approximations of functions with singularities can converge at a root-exponential rate if the poles are exponentially clustered. We begin by reviewing this effect in minimax, least-squares, and AAA approximations on intervals and complex domains, conformal mapping, and the numerical solution of Laplace, Helmholtz, and biharmonic equations by the “lightning” method. Extensive and wide-ranging numerical experiments are involved. We then present further experiments giving evidence that in all of these applications, it is advantageous to use exponential clustering whose density on a logarithmic scale is not uniform but tapers off linearly to zero near the singularity. We propose a theoretical model of the tapering effect based on the Hermite contour integral and potential theory, which suggests that tapering doubles the rate of convergence. Finally we show that related mathematics applies to the relationship between exponential (not tapered) and doubly exponential (tapered) quadrature formulas. Here it is the Gauss–Takahasi–Mori contour integral that comes into play.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-020-01168-2</identifier><identifier>PMID: 33424036</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Biharmonic equations ; Clustering ; Conformal mapping ; Contours ; Convergence ; Integrals ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Minimax technique ; Numerical Analysis ; Numerical and Computational Physics ; Potential theory ; Quadratures ; Simulation ; Singularity (mathematics) ; Tapering ; Theoretical</subject><ispartof>Numerische Mathematik, 2021-01, Vol.147 (1), p.227-254</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-8094bfc49a9eef00d3a5edc326b0d05ff92badb0a0d087c889163b0d72c644a43</citedby><cites>FETCH-LOGICAL-c540t-8094bfc49a9eef00d3a5edc326b0d05ff92badb0a0d087c889163b0d72c644a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-020-01168-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-020-01168-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33424036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trefethen, Lloyd N.</creatorcontrib><creatorcontrib>Nakatsukasa, Yuji</creatorcontrib><creatorcontrib>Weideman, J. A. C.</creatorcontrib><title>Exponential node clustering at singularities for rational approximation, quadrature, and PDEs</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><addtitle>Numer Math (Heidelb)</addtitle><description>Rational approximations of functions with singularities can converge at a root-exponential rate if the poles are exponentially clustered. We begin by reviewing this effect in minimax, least-squares, and AAA approximations on intervals and complex domains, conformal mapping, and the numerical solution of Laplace, Helmholtz, and biharmonic equations by the “lightning” method. Extensive and wide-ranging numerical experiments are involved. We then present further experiments giving evidence that in all of these applications, it is advantageous to use exponential clustering whose density on a logarithmic scale is not uniform but tapers off linearly to zero near the singularity. We propose a theoretical model of the tapering effect based on the Hermite contour integral and potential theory, which suggests that tapering doubles the rate of convergence. Finally we show that related mathematics applies to the relationship between exponential (not tapered) and doubly exponential (tapered) quadrature formulas. Here it is the Gauss–Takahasi–Mori contour integral that comes into play.</description><subject>Approximation</subject><subject>Biharmonic equations</subject><subject>Clustering</subject><subject>Conformal mapping</subject><subject>Contours</subject><subject>Convergence</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minimax technique</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Potential theory</subject><subject>Quadratures</subject><subject>Simulation</subject><subject>Singularity (mathematics)</subject><subject>Tapering</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi1URMvCH-BQWeqlhwbGH7HjS6VqWVqkSnAAiQuynMRpXWXj1E5Q-ffMdstSeuhpPJpn3pnxS8g7Bu8ZgP6QAThjBXAogDFVFfwFOQAjy0JwWe7hG7gpSmN-7JPXOd8AMK0ke0X2hZBcglAH5OfqboyDH6bgejrE1tOmn_PkUxiuqJtoxjj3LoUp-Ey7mGhyU4gD0m4cU7wL6_v8hN7OrsXanPwJdUNLv35c5TfkZef67N8-xAX5_mn1bXlRXH45_7w8uyyaUsJUVLh03TXSOON9B9AKV_q2EVzV0ELZdYbXrq3BYVbppqoMUwJLmjdKSifFgpxudce5XmMn3pNcb8eE26XfNrpg_68M4dpexV9Wa624UShw_CCQ4u3s82TXITe-793g45wtl1pVUktTIXr0BL2Jc8IP2VCV5IhBiRTfUk2KOSff7ZZhYDfu2a17Ft2z9-5Zjk2Hj8_Ytfy1CwGxBfK4Mcinf7Ofkf0D2h2nSQ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Trefethen, Lloyd N.</creator><creator>Nakatsukasa, Yuji</creator><creator>Weideman, J. A. C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210101</creationdate><title>Exponential node clustering at singularities for rational approximation, quadrature, and PDEs</title><author>Trefethen, Lloyd N. ; Nakatsukasa, Yuji ; Weideman, J. A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-8094bfc49a9eef00d3a5edc326b0d05ff92badb0a0d087c889163b0d72c644a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Biharmonic equations</topic><topic>Clustering</topic><topic>Conformal mapping</topic><topic>Contours</topic><topic>Convergence</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minimax technique</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Potential theory</topic><topic>Quadratures</topic><topic>Simulation</topic><topic>Singularity (mathematics)</topic><topic>Tapering</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trefethen, Lloyd N.</creatorcontrib><creatorcontrib>Nakatsukasa, Yuji</creatorcontrib><creatorcontrib>Weideman, J. A. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trefethen, Lloyd N.</au><au>Nakatsukasa, Yuji</au><au>Weideman, J. A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential node clustering at singularities for rational approximation, quadrature, and PDEs</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><addtitle>Numer Math (Heidelb)</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>147</volume><issue>1</issue><spage>227</spage><epage>254</epage><pages>227-254</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>Rational approximations of functions with singularities can converge at a root-exponential rate if the poles are exponentially clustered. We begin by reviewing this effect in minimax, least-squares, and AAA approximations on intervals and complex domains, conformal mapping, and the numerical solution of Laplace, Helmholtz, and biharmonic equations by the “lightning” method. Extensive and wide-ranging numerical experiments are involved. We then present further experiments giving evidence that in all of these applications, it is advantageous to use exponential clustering whose density on a logarithmic scale is not uniform but tapers off linearly to zero near the singularity. We propose a theoretical model of the tapering effect based on the Hermite contour integral and potential theory, which suggests that tapering doubles the rate of convergence. Finally we show that related mathematics applies to the relationship between exponential (not tapered) and doubly exponential (tapered) quadrature formulas. Here it is the Gauss–Takahasi–Mori contour integral that comes into play.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33424036</pmid><doi>10.1007/s00211-020-01168-2</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-599X |
ispartof | Numerische Mathematik, 2021-01, Vol.147 (1), p.227-254 |
issn | 0029-599X 0945-3245 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7776296 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Biharmonic equations Clustering Conformal mapping Contours Convergence Integrals Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Minimax technique Numerical Analysis Numerical and Computational Physics Potential theory Quadratures Simulation Singularity (mathematics) Tapering Theoretical |
title | Exponential node clustering at singularities for rational approximation, quadrature, and PDEs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20node%20clustering%20at%20singularities%20for%20rational%20approximation,%20quadrature,%20and%20PDEs&rft.jtitle=Numerische%20Mathematik&rft.au=Trefethen,%20Lloyd%20N.&rft.date=2021-01-01&rft.volume=147&rft.issue=1&rft.spage=227&rft.epage=254&rft.pages=227-254&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-020-01168-2&rft_dat=%3Cproquest_pubme%3E2476847498%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484284705&rft_id=info:pmid/33424036&rfr_iscdi=true |