Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex

Ribonucleotide reductases (RNRs) are a diverse family of enzymes that are alone capable of generating 2'-deoxynucleotides de novo and are thus critical in DNA biosynthesis and repair. The nucleotide reduction reaction in all RNRs requires the generation of a transient active site thiyl radical,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-04, Vol.368 (6489), p.424-427
Hauptverfasser: Kang, Gyunghoon, Taguchi, Alexander T, Stubbe, JoAnne, Drennan, Catherine L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 6489
container_start_page 424
container_title Science (American Association for the Advancement of Science)
container_volume 368
creator Kang, Gyunghoon
Taguchi, Alexander T
Stubbe, JoAnne
Drennan, Catherine L
description Ribonucleotide reductases (RNRs) are a diverse family of enzymes that are alone capable of generating 2'-deoxynucleotides de novo and are thus critical in DNA biosynthesis and repair. The nucleotide reduction reaction in all RNRs requires the generation of a transient active site thiyl radical, and in class I RNRs, this process involves a long-range radical transfer between two subunits, α and β. Because of the transient subunit association, an atomic resolution structure of an active α2β2 RNR complex has been elusive. We used a doubly substituted β2, E52Q/(2,3,5)-trifluorotyrosine122-β2, to trap wild-type α2 in a long-lived α2β2 complex. We report the structure of this complex by means of cryo-electron microscopy to 3.6-angstrom resolution, allowing for structural visualization of a 32-angstrom-long radical transfer pathway that affords RNR activity.
doi_str_mv 10.1126/science.aba6794
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7774503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384199775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-6558c726d34e00129f684966d6dcdabe98d96e318655962ce5e23eda26a988c33</originalsourceid><addsrcrecordid>eNpdkUlLBDEQhYMoOi5nb9LgxUtrlu4sF0EGNxA8qEcJmaTaifR02qTb5d-bwVHUU1HUV4969RDaJ_iYEMpPkvXQWTg2M8OFqtbQhGBVl4pito4mGDNeSizqLbSd0jPGeabYJtpilBIhKjVBj3dDHO0wRihCU5hiiKbvwRXROG9Nu-y71EAsejPM38xH8eaHue8yGf0sdKNtIQzeQRHBZR2ToJiHNtiw6Ft430UbjWkT7K3qDnq4OL-fXpU3t5fX07Ob0lZSDCWva2kF5Y5VgDGhquGyUpw77qwzM1DSKQ6MyAwqTi3UQBk4Q7lRUlrGdtDpl24_zhbgLHT57lb30S9M_NDBeP130vm5fgqvWuQv1HgpcLQSiOFlhDTohU8W2tZ0EMakKZMVUUqIOqOH_9DnMMYu21tSjNeSKZypky_KxpBShObnGIL1Mjq9ik6vossbB789_PDfWbFPXQiZOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383658390</pqid></control><display><type>article</type><title>Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><creator>Kang, Gyunghoon ; Taguchi, Alexander T ; Stubbe, JoAnne ; Drennan, Catherine L</creator><creatorcontrib>Kang, Gyunghoon ; Taguchi, Alexander T ; Stubbe, JoAnne ; Drennan, Catherine L</creatorcontrib><description>Ribonucleotide reductases (RNRs) are a diverse family of enzymes that are alone capable of generating 2'-deoxynucleotides de novo and are thus critical in DNA biosynthesis and repair. The nucleotide reduction reaction in all RNRs requires the generation of a transient active site thiyl radical, and in class I RNRs, this process involves a long-range radical transfer between two subunits, α and β. Because of the transient subunit association, an atomic resolution structure of an active α2β2 RNR complex has been elusive. We used a doubly substituted β2, E52Q/(2,3,5)-trifluorotyrosine122-β2, to trap wild-type α2 in a long-lived α2β2 complex. We report the structure of this complex by means of cryo-electron microscopy to 3.6-angstrom resolution, allowing for structural visualization of a 32-angstrom-long radical transfer pathway that affords RNR activity.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aba6794</identifier><identifier>PMID: 32217749</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Biocatalysis ; Biosynthesis ; Catalytic Domain ; Cryoelectron Microscopy ; Deoxyribonucleic acid ; DNA ; Electron microscopy ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Holoenzymes - chemistry ; Holoenzymes - genetics ; Microscopy ; Protein Conformation ; Reductase ; Reductases ; Ribonucleotide reductase ; Ribonucleotide Reductases - chemistry ; Ribonucleotide Reductases - genetics ; Tyrosine - chemistry ; Visualization</subject><ispartof>Science (American Association for the Advancement of Science), 2020-04, Vol.368 (6489), p.424-427</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-6558c726d34e00129f684966d6dcdabe98d96e318655962ce5e23eda26a988c33</citedby><cites>FETCH-LOGICAL-c487t-6558c726d34e00129f684966d6dcdabe98d96e318655962ce5e23eda26a988c33</cites><orcidid>0000-0003-2117-3528 ; 0000-0002-5940-5948 ; 0000-0001-5486-2755 ; 0000-0001-8076-4489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,2873,2874,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32217749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Gyunghoon</creatorcontrib><creatorcontrib>Taguchi, Alexander T</creatorcontrib><creatorcontrib>Stubbe, JoAnne</creatorcontrib><creatorcontrib>Drennan, Catherine L</creatorcontrib><title>Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Ribonucleotide reductases (RNRs) are a diverse family of enzymes that are alone capable of generating 2'-deoxynucleotides de novo and are thus critical in DNA biosynthesis and repair. The nucleotide reduction reaction in all RNRs requires the generation of a transient active site thiyl radical, and in class I RNRs, this process involves a long-range radical transfer between two subunits, α and β. Because of the transient subunit association, an atomic resolution structure of an active α2β2 RNR complex has been elusive. We used a doubly substituted β2, E52Q/(2,3,5)-trifluorotyrosine122-β2, to trap wild-type α2 in a long-lived α2β2 complex. We report the structure of this complex by means of cryo-electron microscopy to 3.6-angstrom resolution, allowing for structural visualization of a 32-angstrom-long radical transfer pathway that affords RNR activity.</description><subject>Biocatalysis</subject><subject>Biosynthesis</subject><subject>Catalytic Domain</subject><subject>Cryoelectron Microscopy</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electron microscopy</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Holoenzymes - chemistry</subject><subject>Holoenzymes - genetics</subject><subject>Microscopy</subject><subject>Protein Conformation</subject><subject>Reductase</subject><subject>Reductases</subject><subject>Ribonucleotide reductase</subject><subject>Ribonucleotide Reductases - chemistry</subject><subject>Ribonucleotide Reductases - genetics</subject><subject>Tyrosine - chemistry</subject><subject>Visualization</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUlLBDEQhYMoOi5nb9LgxUtrlu4sF0EGNxA8qEcJmaTaifR02qTb5d-bwVHUU1HUV4969RDaJ_iYEMpPkvXQWTg2M8OFqtbQhGBVl4pito4mGDNeSizqLbSd0jPGeabYJtpilBIhKjVBj3dDHO0wRihCU5hiiKbvwRXROG9Nu-y71EAsejPM38xH8eaHue8yGf0sdKNtIQzeQRHBZR2ToJiHNtiw6Ft430UbjWkT7K3qDnq4OL-fXpU3t5fX07Ob0lZSDCWva2kF5Y5VgDGhquGyUpw77qwzM1DSKQ6MyAwqTi3UQBk4Q7lRUlrGdtDpl24_zhbgLHT57lb30S9M_NDBeP130vm5fgqvWuQv1HgpcLQSiOFlhDTohU8W2tZ0EMakKZMVUUqIOqOH_9DnMMYu21tSjNeSKZypky_KxpBShObnGIL1Mjq9ik6vossbB789_PDfWbFPXQiZOg</recordid><startdate>20200424</startdate><enddate>20200424</enddate><creator>Kang, Gyunghoon</creator><creator>Taguchi, Alexander T</creator><creator>Stubbe, JoAnne</creator><creator>Drennan, Catherine L</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2117-3528</orcidid><orcidid>https://orcid.org/0000-0002-5940-5948</orcidid><orcidid>https://orcid.org/0000-0001-5486-2755</orcidid><orcidid>https://orcid.org/0000-0001-8076-4489</orcidid></search><sort><creationdate>20200424</creationdate><title>Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex</title><author>Kang, Gyunghoon ; Taguchi, Alexander T ; Stubbe, JoAnne ; Drennan, Catherine L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-6558c726d34e00129f684966d6dcdabe98d96e318655962ce5e23eda26a988c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocatalysis</topic><topic>Biosynthesis</topic><topic>Catalytic Domain</topic><topic>Cryoelectron Microscopy</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electron microscopy</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Holoenzymes - chemistry</topic><topic>Holoenzymes - genetics</topic><topic>Microscopy</topic><topic>Protein Conformation</topic><topic>Reductase</topic><topic>Reductases</topic><topic>Ribonucleotide reductase</topic><topic>Ribonucleotide Reductases - chemistry</topic><topic>Ribonucleotide Reductases - genetics</topic><topic>Tyrosine - chemistry</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Gyunghoon</creatorcontrib><creatorcontrib>Taguchi, Alexander T</creatorcontrib><creatorcontrib>Stubbe, JoAnne</creatorcontrib><creatorcontrib>Drennan, Catherine L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Gyunghoon</au><au>Taguchi, Alexander T</au><au>Stubbe, JoAnne</au><au>Drennan, Catherine L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-04-24</date><risdate>2020</risdate><volume>368</volume><issue>6489</issue><spage>424</spage><epage>427</epage><pages>424-427</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Ribonucleotide reductases (RNRs) are a diverse family of enzymes that are alone capable of generating 2'-deoxynucleotides de novo and are thus critical in DNA biosynthesis and repair. The nucleotide reduction reaction in all RNRs requires the generation of a transient active site thiyl radical, and in class I RNRs, this process involves a long-range radical transfer between two subunits, α and β. Because of the transient subunit association, an atomic resolution structure of an active α2β2 RNR complex has been elusive. We used a doubly substituted β2, E52Q/(2,3,5)-trifluorotyrosine122-β2, to trap wild-type α2 in a long-lived α2β2 complex. We report the structure of this complex by means of cryo-electron microscopy to 3.6-angstrom resolution, allowing for structural visualization of a 32-angstrom-long radical transfer pathway that affords RNR activity.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>32217749</pmid><doi>10.1126/science.aba6794</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2117-3528</orcidid><orcidid>https://orcid.org/0000-0002-5940-5948</orcidid><orcidid>https://orcid.org/0000-0001-5486-2755</orcidid><orcidid>https://orcid.org/0000-0001-8076-4489</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-04, Vol.368 (6489), p.424-427
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7774503
source MEDLINE; American Association for the Advancement of Science
subjects Biocatalysis
Biosynthesis
Catalytic Domain
Cryoelectron Microscopy
Deoxyribonucleic acid
DNA
Electron microscopy
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Holoenzymes - chemistry
Holoenzymes - genetics
Microscopy
Protein Conformation
Reductase
Reductases
Ribonucleotide reductase
Ribonucleotide Reductases - chemistry
Ribonucleotide Reductases - genetics
Tyrosine - chemistry
Visualization
title Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20a%20trapped%20radical%20transfer%20pathway%20within%20a%20ribonucleotide%20reductase%20holocomplex&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kang,%20Gyunghoon&rft.date=2020-04-24&rft.volume=368&rft.issue=6489&rft.spage=424&rft.epage=427&rft.pages=424-427&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aba6794&rft_dat=%3Cproquest_pubme%3E2384199775%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383658390&rft_id=info:pmid/32217749&rfr_iscdi=true