Enhancing statistical power in temporal biomarker discovery through representative shapelet mining
Abstract Motivation Temporal biomarker discovery in longitudinal data is based on detecting reoccurring trajectories, the so-called shapelets. The search for shapelets requires considering all subsequences in the data. While the accompanying issue of multiple testing has been mitigated in previous w...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2020-12, Vol.36 (Supplement_2), p.i840-i848 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | i848 |
---|---|
container_issue | Supplement_2 |
container_start_page | i840 |
container_title | Bioinformatics |
container_volume | 36 |
creator | Gumbsch, Thomas Bock, Christian Moor, Michael Rieck, Bastian Borgwardt, Karsten |
description | Abstract
Motivation
Temporal biomarker discovery in longitudinal data is based on detecting reoccurring trajectories, the so-called shapelets. The search for shapelets requires considering all subsequences in the data. While the accompanying issue of multiple testing has been mitigated in previous work, the redundancy and overlap of the detected shapelets results in an a priori unbounded number of highly similar and structurally meaningless shapelets. As a consequence, current temporal biomarker discovery methods are impractical and underpowered.
Results
We find that the pre- or post-processing of shapelets does not sufficiently increase the power and practical utility. Consequently, we present a novel method for temporal biomarker discovery: Statistically Significant Submodular Subset Shapelet Mining (S5M) that retrieves short subsequences that are (i) occurring in the data, (ii) are statistically significantly associated with the phenotype and (iii) are of manageable quantity while maximizing structural diversity. Structural diversity is achieved by pruning non-representative shapelets via submodular optimization. This increases the statistical power and utility of S5M compared to state-of-the-art approaches on simulated and real-world datasets. For patients admitted to the intensive care unit (ICU) showing signs of severe organ failure, we find temporal patterns in the sequential organ failure assessment score that are associated with in-ICU mortality.
Availability and implementation
S5M is an option in the python package of S3M: github.com/BorgwardtLab/S3M. |
doi_str_mv | 10.1093/bioinformatics/btaa815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7773478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa815</oup_id><sourcerecordid>2474465216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-8ce607a4ac6405b22a464e00c419ca59550b875e7d1d0aa9b3a92a0cd427df413</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS0EoqXwF6ocuYTa8dhOLkioKlCpEhc4WxNndmNI7GAni_rvcbXbit44zWj85ptnPcYuBf8geCeveh992MU04-pdvupXxFaoF-xcgOZ1w1X3svRSmxpaLs_Ym5x_cq4EALxmZ1LKVrRCnLP-JowYnA_7Kq-FlQsOp2qJfyhVPlQrzUtMZVIOzph-lengs4sHSvfVOqa47ccq0ZIoU3gAHKjKIy400VrNPhTwW_Zqh1Omd6d6wX58vvl-_bW--_bl9vrTXe1A6bVuHWluENBp4KpvGgQNxLkD0TlUnVK8b40iM4iBI3a9xK5B7gZozLADIS_YxyN32fqZBlf8FON2Sb4Yv7cRvX3-Evxo9_FgjTESTFsA70-AFH9vlFc7l6_SNGGguGXbgAHQqhG6SPVR6lLMOdHu6Yzg9iEg-zwgewqoLF7-a_Jp7TGRIhBHQdyW_4X-BUatqCM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474465216</pqid></control><display><type>article</type><title>Enhancing statistical power in temporal biomarker discovery through representative shapelet mining</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Gumbsch, Thomas ; Bock, Christian ; Moor, Michael ; Rieck, Bastian ; Borgwardt, Karsten</creator><creatorcontrib>Gumbsch, Thomas ; Bock, Christian ; Moor, Michael ; Rieck, Bastian ; Borgwardt, Karsten</creatorcontrib><description>Abstract
Motivation
Temporal biomarker discovery in longitudinal data is based on detecting reoccurring trajectories, the so-called shapelets. The search for shapelets requires considering all subsequences in the data. While the accompanying issue of multiple testing has been mitigated in previous work, the redundancy and overlap of the detected shapelets results in an a priori unbounded number of highly similar and structurally meaningless shapelets. As a consequence, current temporal biomarker discovery methods are impractical and underpowered.
Results
We find that the pre- or post-processing of shapelets does not sufficiently increase the power and practical utility. Consequently, we present a novel method for temporal biomarker discovery: Statistically Significant Submodular Subset Shapelet Mining (S5M) that retrieves short subsequences that are (i) occurring in the data, (ii) are statistically significantly associated with the phenotype and (iii) are of manageable quantity while maximizing structural diversity. Structural diversity is achieved by pruning non-representative shapelets via submodular optimization. This increases the statistical power and utility of S5M compared to state-of-the-art approaches on simulated and real-world datasets. For patients admitted to the intensive care unit (ICU) showing signs of severe organ failure, we find temporal patterns in the sequential organ failure assessment score that are associated with in-ICU mortality.
Availability and implementation
S5M is an option in the python package of S3M: github.com/BorgwardtLab/S3M.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa815</identifier><identifier>PMID: 33381811</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Biomarkers ; Biomedical Research ; Data ; Humans ; Phenotype ; Research Design</subject><ispartof>Bioinformatics, 2020-12, Vol.36 (Supplement_2), p.i840-i848</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-8ce607a4ac6405b22a464e00c419ca59550b875e7d1d0aa9b3a92a0cd427df413</citedby><cites>FETCH-LOGICAL-c456t-8ce607a4ac6405b22a464e00c419ca59550b875e7d1d0aa9b3a92a0cd427df413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773478/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773478/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33381811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gumbsch, Thomas</creatorcontrib><creatorcontrib>Bock, Christian</creatorcontrib><creatorcontrib>Moor, Michael</creatorcontrib><creatorcontrib>Rieck, Bastian</creatorcontrib><creatorcontrib>Borgwardt, Karsten</creatorcontrib><title>Enhancing statistical power in temporal biomarker discovery through representative shapelet mining</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Temporal biomarker discovery in longitudinal data is based on detecting reoccurring trajectories, the so-called shapelets. The search for shapelets requires considering all subsequences in the data. While the accompanying issue of multiple testing has been mitigated in previous work, the redundancy and overlap of the detected shapelets results in an a priori unbounded number of highly similar and structurally meaningless shapelets. As a consequence, current temporal biomarker discovery methods are impractical and underpowered.
Results
We find that the pre- or post-processing of shapelets does not sufficiently increase the power and practical utility. Consequently, we present a novel method for temporal biomarker discovery: Statistically Significant Submodular Subset Shapelet Mining (S5M) that retrieves short subsequences that are (i) occurring in the data, (ii) are statistically significantly associated with the phenotype and (iii) are of manageable quantity while maximizing structural diversity. Structural diversity is achieved by pruning non-representative shapelets via submodular optimization. This increases the statistical power and utility of S5M compared to state-of-the-art approaches on simulated and real-world datasets. For patients admitted to the intensive care unit (ICU) showing signs of severe organ failure, we find temporal patterns in the sequential organ failure assessment score that are associated with in-ICU mortality.
Availability and implementation
S5M is an option in the python package of S3M: github.com/BorgwardtLab/S3M.</description><subject>Biomarkers</subject><subject>Biomedical Research</subject><subject>Data</subject><subject>Humans</subject><subject>Phenotype</subject><subject>Research Design</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUFv1DAQhS0EoqXwF6ocuYTa8dhOLkioKlCpEhc4WxNndmNI7GAni_rvcbXbit44zWj85ptnPcYuBf8geCeveh992MU04-pdvupXxFaoF-xcgOZ1w1X3svRSmxpaLs_Ym5x_cq4EALxmZ1LKVrRCnLP-JowYnA_7Kq-FlQsOp2qJfyhVPlQrzUtMZVIOzph-lengs4sHSvfVOqa47ccq0ZIoU3gAHKjKIy400VrNPhTwW_Zqh1Omd6d6wX58vvl-_bW--_bl9vrTXe1A6bVuHWluENBp4KpvGgQNxLkD0TlUnVK8b40iM4iBI3a9xK5B7gZozLADIS_YxyN32fqZBlf8FON2Sb4Yv7cRvX3-Evxo9_FgjTESTFsA70-AFH9vlFc7l6_SNGGguGXbgAHQqhG6SPVR6lLMOdHu6Yzg9iEg-zwgewqoLF7-a_Jp7TGRIhBHQdyW_4X-BUatqCM</recordid><startdate>20201230</startdate><enddate>20201230</enddate><creator>Gumbsch, Thomas</creator><creator>Bock, Christian</creator><creator>Moor, Michael</creator><creator>Rieck, Bastian</creator><creator>Borgwardt, Karsten</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201230</creationdate><title>Enhancing statistical power in temporal biomarker discovery through representative shapelet mining</title><author>Gumbsch, Thomas ; Bock, Christian ; Moor, Michael ; Rieck, Bastian ; Borgwardt, Karsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-8ce607a4ac6405b22a464e00c419ca59550b875e7d1d0aa9b3a92a0cd427df413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomarkers</topic><topic>Biomedical Research</topic><topic>Data</topic><topic>Humans</topic><topic>Phenotype</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gumbsch, Thomas</creatorcontrib><creatorcontrib>Bock, Christian</creatorcontrib><creatorcontrib>Moor, Michael</creatorcontrib><creatorcontrib>Rieck, Bastian</creatorcontrib><creatorcontrib>Borgwardt, Karsten</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gumbsch, Thomas</au><au>Bock, Christian</au><au>Moor, Michael</au><au>Rieck, Bastian</au><au>Borgwardt, Karsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing statistical power in temporal biomarker discovery through representative shapelet mining</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-12-30</date><risdate>2020</risdate><volume>36</volume><issue>Supplement_2</issue><spage>i840</spage><epage>i848</epage><pages>i840-i848</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Temporal biomarker discovery in longitudinal data is based on detecting reoccurring trajectories, the so-called shapelets. The search for shapelets requires considering all subsequences in the data. While the accompanying issue of multiple testing has been mitigated in previous work, the redundancy and overlap of the detected shapelets results in an a priori unbounded number of highly similar and structurally meaningless shapelets. As a consequence, current temporal biomarker discovery methods are impractical and underpowered.
Results
We find that the pre- or post-processing of shapelets does not sufficiently increase the power and practical utility. Consequently, we present a novel method for temporal biomarker discovery: Statistically Significant Submodular Subset Shapelet Mining (S5M) that retrieves short subsequences that are (i) occurring in the data, (ii) are statistically significantly associated with the phenotype and (iii) are of manageable quantity while maximizing structural diversity. Structural diversity is achieved by pruning non-representative shapelets via submodular optimization. This increases the statistical power and utility of S5M compared to state-of-the-art approaches on simulated and real-world datasets. For patients admitted to the intensive care unit (ICU) showing signs of severe organ failure, we find temporal patterns in the sequential organ failure assessment score that are associated with in-ICU mortality.
Availability and implementation
S5M is an option in the python package of S3M: github.com/BorgwardtLab/S3M.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33381811</pmid><doi>10.1093/bioinformatics/btaa815</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2020-12, Vol.36 (Supplement_2), p.i840-i848 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7773478 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection |
subjects | Biomarkers Biomedical Research Data Humans Phenotype Research Design |
title | Enhancing statistical power in temporal biomarker discovery through representative shapelet mining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20statistical%20power%20in%20temporal%20biomarker%20discovery%20through%20representative%20shapelet%20mining&rft.jtitle=Bioinformatics&rft.au=Gumbsch,%20Thomas&rft.date=2020-12-30&rft.volume=36&rft.issue=Supplement_2&rft.spage=i840&rft.epage=i848&rft.pages=i840-i848&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btaa815&rft_dat=%3Cproquest_pubme%3E2474465216%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474465216&rft_id=info:pmid/33381811&rft_oup_id=10.1093/bioinformatics/btaa815&rfr_iscdi=true |