Enhancing statistical power in temporal biomarker discovery through representative shapelet mining

Abstract Motivation Temporal biomarker discovery in longitudinal data is based on detecting reoccurring trajectories, the so-called shapelets. The search for shapelets requires considering all subsequences in the data. While the accompanying issue of multiple testing has been mitigated in previous w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2020-12, Vol.36 (Supplement_2), p.i840-i848
Hauptverfasser: Gumbsch, Thomas, Bock, Christian, Moor, Michael, Rieck, Bastian, Borgwardt, Karsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page i848
container_issue Supplement_2
container_start_page i840
container_title Bioinformatics
container_volume 36
creator Gumbsch, Thomas
Bock, Christian
Moor, Michael
Rieck, Bastian
Borgwardt, Karsten
description Abstract Motivation Temporal biomarker discovery in longitudinal data is based on detecting reoccurring trajectories, the so-called shapelets. The search for shapelets requires considering all subsequences in the data. While the accompanying issue of multiple testing has been mitigated in previous work, the redundancy and overlap of the detected shapelets results in an a priori unbounded number of highly similar and structurally meaningless shapelets. As a consequence, current temporal biomarker discovery methods are impractical and underpowered. Results We find that the pre- or post-processing of shapelets does not sufficiently increase the power and practical utility. Consequently, we present a novel method for temporal biomarker discovery: Statistically Significant Submodular Subset Shapelet Mining (S5M) that retrieves short subsequences that are (i) occurring in the data, (ii) are statistically significantly associated with the phenotype and (iii) are of manageable quantity while maximizing structural diversity. Structural diversity is achieved by pruning non-representative shapelets via submodular optimization. This increases the statistical power and utility of S5M compared to state-of-the-art approaches on simulated and real-world datasets. For patients admitted to the intensive care unit (ICU) showing signs of severe organ failure, we find temporal patterns in the sequential organ failure assessment score that are associated with in-ICU mortality. Availability and implementation S5M is an option in the python package of S3M: github.com/BorgwardtLab/S3M.
doi_str_mv 10.1093/bioinformatics/btaa815
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7773478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa815</oup_id><sourcerecordid>2474465216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-8ce607a4ac6405b22a464e00c419ca59550b875e7d1d0aa9b3a92a0cd427df413</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS0EoqXwF6ocuYTa8dhOLkioKlCpEhc4WxNndmNI7GAni_rvcbXbit44zWj85ptnPcYuBf8geCeveh992MU04-pdvupXxFaoF-xcgOZ1w1X3svRSmxpaLs_Ym5x_cq4EALxmZ1LKVrRCnLP-JowYnA_7Kq-FlQsOp2qJfyhVPlQrzUtMZVIOzph-lengs4sHSvfVOqa47ccq0ZIoU3gAHKjKIy400VrNPhTwW_Zqh1Omd6d6wX58vvl-_bW--_bl9vrTXe1A6bVuHWluENBp4KpvGgQNxLkD0TlUnVK8b40iM4iBI3a9xK5B7gZozLADIS_YxyN32fqZBlf8FON2Sb4Yv7cRvX3-Evxo9_FgjTESTFsA70-AFH9vlFc7l6_SNGGguGXbgAHQqhG6SPVR6lLMOdHu6Yzg9iEg-zwgewqoLF7-a_Jp7TGRIhBHQdyW_4X-BUatqCM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474465216</pqid></control><display><type>article</type><title>Enhancing statistical power in temporal biomarker discovery through representative shapelet mining</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Gumbsch, Thomas ; Bock, Christian ; Moor, Michael ; Rieck, Bastian ; Borgwardt, Karsten</creator><creatorcontrib>Gumbsch, Thomas ; Bock, Christian ; Moor, Michael ; Rieck, Bastian ; Borgwardt, Karsten</creatorcontrib><description>Abstract Motivation Temporal biomarker discovery in longitudinal data is based on detecting reoccurring trajectories, the so-called shapelets. The search for shapelets requires considering all subsequences in the data. While the accompanying issue of multiple testing has been mitigated in previous work, the redundancy and overlap of the detected shapelets results in an a priori unbounded number of highly similar and structurally meaningless shapelets. As a consequence, current temporal biomarker discovery methods are impractical and underpowered. Results We find that the pre- or post-processing of shapelets does not sufficiently increase the power and practical utility. Consequently, we present a novel method for temporal biomarker discovery: Statistically Significant Submodular Subset Shapelet Mining (S5M) that retrieves short subsequences that are (i) occurring in the data, (ii) are statistically significantly associated with the phenotype and (iii) are of manageable quantity while maximizing structural diversity. Structural diversity is achieved by pruning non-representative shapelets via submodular optimization. This increases the statistical power and utility of S5M compared to state-of-the-art approaches on simulated and real-world datasets. For patients admitted to the intensive care unit (ICU) showing signs of severe organ failure, we find temporal patterns in the sequential organ failure assessment score that are associated with in-ICU mortality. Availability and implementation S5M is an option in the python package of S3M: github.com/BorgwardtLab/S3M.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa815</identifier><identifier>PMID: 33381811</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Biomarkers ; Biomedical Research ; Data ; Humans ; Phenotype ; Research Design</subject><ispartof>Bioinformatics, 2020-12, Vol.36 (Supplement_2), p.i840-i848</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-8ce607a4ac6405b22a464e00c419ca59550b875e7d1d0aa9b3a92a0cd427df413</citedby><cites>FETCH-LOGICAL-c456t-8ce607a4ac6405b22a464e00c419ca59550b875e7d1d0aa9b3a92a0cd427df413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773478/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773478/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33381811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gumbsch, Thomas</creatorcontrib><creatorcontrib>Bock, Christian</creatorcontrib><creatorcontrib>Moor, Michael</creatorcontrib><creatorcontrib>Rieck, Bastian</creatorcontrib><creatorcontrib>Borgwardt, Karsten</creatorcontrib><title>Enhancing statistical power in temporal biomarker discovery through representative shapelet mining</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Temporal biomarker discovery in longitudinal data is based on detecting reoccurring trajectories, the so-called shapelets. The search for shapelets requires considering all subsequences in the data. While the accompanying issue of multiple testing has been mitigated in previous work, the redundancy and overlap of the detected shapelets results in an a priori unbounded number of highly similar and structurally meaningless shapelets. As a consequence, current temporal biomarker discovery methods are impractical and underpowered. Results We find that the pre- or post-processing of shapelets does not sufficiently increase the power and practical utility. Consequently, we present a novel method for temporal biomarker discovery: Statistically Significant Submodular Subset Shapelet Mining (S5M) that retrieves short subsequences that are (i) occurring in the data, (ii) are statistically significantly associated with the phenotype and (iii) are of manageable quantity while maximizing structural diversity. Structural diversity is achieved by pruning non-representative shapelets via submodular optimization. This increases the statistical power and utility of S5M compared to state-of-the-art approaches on simulated and real-world datasets. For patients admitted to the intensive care unit (ICU) showing signs of severe organ failure, we find temporal patterns in the sequential organ failure assessment score that are associated with in-ICU mortality. Availability and implementation S5M is an option in the python package of S3M: github.com/BorgwardtLab/S3M.</description><subject>Biomarkers</subject><subject>Biomedical Research</subject><subject>Data</subject><subject>Humans</subject><subject>Phenotype</subject><subject>Research Design</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUFv1DAQhS0EoqXwF6ocuYTa8dhOLkioKlCpEhc4WxNndmNI7GAni_rvcbXbit44zWj85ptnPcYuBf8geCeveh992MU04-pdvupXxFaoF-xcgOZ1w1X3svRSmxpaLs_Ym5x_cq4EALxmZ1LKVrRCnLP-JowYnA_7Kq-FlQsOp2qJfyhVPlQrzUtMZVIOzph-lengs4sHSvfVOqa47ccq0ZIoU3gAHKjKIy400VrNPhTwW_Zqh1Omd6d6wX58vvl-_bW--_bl9vrTXe1A6bVuHWluENBp4KpvGgQNxLkD0TlUnVK8b40iM4iBI3a9xK5B7gZozLADIS_YxyN32fqZBlf8FON2Sb4Yv7cRvX3-Evxo9_FgjTESTFsA70-AFH9vlFc7l6_SNGGguGXbgAHQqhG6SPVR6lLMOdHu6Yzg9iEg-zwgewqoLF7-a_Jp7TGRIhBHQdyW_4X-BUatqCM</recordid><startdate>20201230</startdate><enddate>20201230</enddate><creator>Gumbsch, Thomas</creator><creator>Bock, Christian</creator><creator>Moor, Michael</creator><creator>Rieck, Bastian</creator><creator>Borgwardt, Karsten</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201230</creationdate><title>Enhancing statistical power in temporal biomarker discovery through representative shapelet mining</title><author>Gumbsch, Thomas ; Bock, Christian ; Moor, Michael ; Rieck, Bastian ; Borgwardt, Karsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-8ce607a4ac6405b22a464e00c419ca59550b875e7d1d0aa9b3a92a0cd427df413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomarkers</topic><topic>Biomedical Research</topic><topic>Data</topic><topic>Humans</topic><topic>Phenotype</topic><topic>Research Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gumbsch, Thomas</creatorcontrib><creatorcontrib>Bock, Christian</creatorcontrib><creatorcontrib>Moor, Michael</creatorcontrib><creatorcontrib>Rieck, Bastian</creatorcontrib><creatorcontrib>Borgwardt, Karsten</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gumbsch, Thomas</au><au>Bock, Christian</au><au>Moor, Michael</au><au>Rieck, Bastian</au><au>Borgwardt, Karsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing statistical power in temporal biomarker discovery through representative shapelet mining</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2020-12-30</date><risdate>2020</risdate><volume>36</volume><issue>Supplement_2</issue><spage>i840</spage><epage>i848</epage><pages>i840-i848</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Temporal biomarker discovery in longitudinal data is based on detecting reoccurring trajectories, the so-called shapelets. The search for shapelets requires considering all subsequences in the data. While the accompanying issue of multiple testing has been mitigated in previous work, the redundancy and overlap of the detected shapelets results in an a priori unbounded number of highly similar and structurally meaningless shapelets. As a consequence, current temporal biomarker discovery methods are impractical and underpowered. Results We find that the pre- or post-processing of shapelets does not sufficiently increase the power and practical utility. Consequently, we present a novel method for temporal biomarker discovery: Statistically Significant Submodular Subset Shapelet Mining (S5M) that retrieves short subsequences that are (i) occurring in the data, (ii) are statistically significantly associated with the phenotype and (iii) are of manageable quantity while maximizing structural diversity. Structural diversity is achieved by pruning non-representative shapelets via submodular optimization. This increases the statistical power and utility of S5M compared to state-of-the-art approaches on simulated and real-world datasets. For patients admitted to the intensive care unit (ICU) showing signs of severe organ failure, we find temporal patterns in the sequential organ failure assessment score that are associated with in-ICU mortality. Availability and implementation S5M is an option in the python package of S3M: github.com/BorgwardtLab/S3M.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33381811</pmid><doi>10.1093/bioinformatics/btaa815</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2020-12, Vol.36 (Supplement_2), p.i840-i848
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7773478
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection
subjects Biomarkers
Biomedical Research
Data
Humans
Phenotype
Research Design
title Enhancing statistical power in temporal biomarker discovery through representative shapelet mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20statistical%20power%20in%20temporal%20biomarker%20discovery%20through%20representative%20shapelet%20mining&rft.jtitle=Bioinformatics&rft.au=Gumbsch,%20Thomas&rft.date=2020-12-30&rft.volume=36&rft.issue=Supplement_2&rft.spage=i840&rft.epage=i848&rft.pages=i840-i848&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btaa815&rft_dat=%3Cproquest_pubme%3E2474465216%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474465216&rft_id=info:pmid/33381811&rft_oup_id=10.1093/bioinformatics/btaa815&rfr_iscdi=true