Intrapatient functional clonality deconvoluted by coupling intracellular flow cytometry and next-generation sequencing in human leukemia

The interplay between tumor heterogeneity and microenvironmental factors is a critical mechanism for clonal selection in leukemia. Evidence of unique clonal capacities to engraft within patient-derived xenograft (PDX) models suggests that intrapatient genetic architecture may be defined by functiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Leukemia 2018-02, Vol.32 (2), p.532-538
Hauptverfasser: Zhang, Q, Ball, M C, Zhao, Y, Balasis, M, Letson, C, Vedder, A, List, A F, Epling-Burnette, P K, Komrokji, R S, Padron, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 538
container_issue 2
container_start_page 532
container_title Leukemia
container_volume 32
creator Zhang, Q
Ball, M C
Zhao, Y
Balasis, M
Letson, C
Vedder, A
List, A F
Epling-Burnette, P K
Komrokji, R S
Padron, E
description The interplay between tumor heterogeneity and microenvironmental factors is a critical mechanism for clonal selection in leukemia. Evidence of unique clonal capacities to engraft within patient-derived xenograft (PDX) models suggests that intrapatient genetic architecture may be defined by functional differences at the clonal level. However, methods to detect functional differences assigned to genetically defined clones remain limited. Here, we describe a scalable method to directly measure the functional properties of clones within the same leukemia patient by coupling intracellular flow cytometry and next-generation sequencing (NGS). We provide proof of concept utilizing primary chronic myelmonocytic leukemia (CMML) samples and granulocyte–macrophage colony stimulating factor (GM-CSF) to elucidate the interaction between tumor heterogeneity and microenvironmental factors. Mixtures of human leukemia cell lines, with known response to GM-CSF, were used to validate the accuracy of our methodology. Using this approach, we confirm that our method is capable of discriminating GM-CSF sensitive cell lines, identifies somatic variants in primary leukemia samples, and resolves functional clonal architecture in an illustrative patient. Taken together, our data describes a novel method to determine intrapatient functional clonal heterogeneity and provides proof-of-concept for future investigation aimed at elucidating the clinical relevance of functional clonal differences.
doi_str_mv 10.1038/leu.2017.184
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7771351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A526535817</galeid><sourcerecordid>A526535817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-18e09ca165650d2799f6d79a1fbbd098761a9fe2b3472c75b60e7aca2597e5113</originalsourceid><addsrcrecordid>eNptkl-L1DAUxYso7rj65rMEBPHBjknbJM3LwrL4Z2HBF30OaXrbyZomY5OuzjfwY5s44zIjSx4Cub97yD3nFsVLgtcE1-17C8u6woSvSds8Klak4ayklJLHxQq3LS-ZqJqz4lkItxjnIntanFUtEw2t2Kr4fe3irLYqGnARDYvT0XinLNI2XybuUA_auztvlwg96nZI-2VrjRuRya0arF2smtFg_U-kd9FPEOcdUq5HDn7FcgQHs8qqKMCPBZze96LNMimH0ve_w2TU8-LJoGyAF4f7vPj28cPXq8_lzZdP11eXN6WmTRtL0gIWWhFGGcV9xYUYWM-FIkPX9Vi0nBElBqi6uuGV5rRjGLjSqqKCAyWkPi8u9rrbpZug15CHsHI7m0nNO-mVkacVZzZy9HeSc05qmgXeHgRmn8YJUU4mZBeUA78ESQThghFa44S-_g-99cucbM2UoFXN678_OlCjsiCNG3y2NYvKy5QRrWlLeKLWD1Dp9Mm9FBAMJr2fNLw5atiAsnETcoopiXAKvtuDevYhzDDcm0GwzCsmU0Yyr5hMK5bwV8cG3sP_dioB5R4IqeRGmI-mfkjwDzrx3co</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1995237311</pqid></control><display><type>article</type><title>Intrapatient functional clonality deconvoluted by coupling intracellular flow cytometry and next-generation sequencing in human leukemia</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Zhang, Q ; Ball, M C ; Zhao, Y ; Balasis, M ; Letson, C ; Vedder, A ; List, A F ; Epling-Burnette, P K ; Komrokji, R S ; Padron, E</creator><creatorcontrib>Zhang, Q ; Ball, M C ; Zhao, Y ; Balasis, M ; Letson, C ; Vedder, A ; List, A F ; Epling-Burnette, P K ; Komrokji, R S ; Padron, E</creatorcontrib><description>The interplay between tumor heterogeneity and microenvironmental factors is a critical mechanism for clonal selection in leukemia. Evidence of unique clonal capacities to engraft within patient-derived xenograft (PDX) models suggests that intrapatient genetic architecture may be defined by functional differences at the clonal level. However, methods to detect functional differences assigned to genetically defined clones remain limited. Here, we describe a scalable method to directly measure the functional properties of clones within the same leukemia patient by coupling intracellular flow cytometry and next-generation sequencing (NGS). We provide proof of concept utilizing primary chronic myelmonocytic leukemia (CMML) samples and granulocyte–macrophage colony stimulating factor (GM-CSF) to elucidate the interaction between tumor heterogeneity and microenvironmental factors. Mixtures of human leukemia cell lines, with known response to GM-CSF, were used to validate the accuracy of our methodology. Using this approach, we confirm that our method is capable of discriminating GM-CSF sensitive cell lines, identifies somatic variants in primary leukemia samples, and resolves functional clonal architecture in an illustrative patient. Taken together, our data describes a novel method to determine intrapatient functional clonal heterogeneity and provides proof-of-concept for future investigation aimed at elucidating the clinical relevance of functional clonal differences.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/leu.2017.184</identifier><identifier>PMID: 28694526</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/23 ; 45/77 ; 631/67/68 ; 692/699/67/1990 ; 96/31 ; Architecture ; Biotechnology ; Cancer Research ; Care and treatment ; Chronic myelomonocytic leukemia ; Clonal selection ; Cloning ; Colony-stimulating factor ; Coupling ; Critical Care Medicine ; Cytometry ; Development and progression ; Flow cytometry ; Flow Cytometry - methods ; Genetic aspects ; Genotypes ; Granulocyte-macrophage colony stimulating factor ; Granulocyte-Macrophage Colony-Stimulating Factor - genetics ; Health aspects ; Hematology ; Heterogeneity ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Intensive ; Internal Medicine ; Intracellular ; K562 Cells ; Leukemia ; Leukemia - genetics ; Leukemia - pathology ; Leukocytes (granulocytic) ; Macrophages ; Medicine ; Medicine &amp; Public Health ; Oncology ; original-article ; Tumor cell lines ; Tumor Cells, Cultured ; Xenografts</subject><ispartof>Leukemia, 2018-02, Vol.32 (2), p.532-538</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-18e09ca165650d2799f6d79a1fbbd098761a9fe2b3472c75b60e7aca2597e5113</citedby><cites>FETCH-LOGICAL-c548t-18e09ca165650d2799f6d79a1fbbd098761a9fe2b3472c75b60e7aca2597e5113</cites><orcidid>0000-0003-1664-3222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28694526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Q</creatorcontrib><creatorcontrib>Ball, M C</creatorcontrib><creatorcontrib>Zhao, Y</creatorcontrib><creatorcontrib>Balasis, M</creatorcontrib><creatorcontrib>Letson, C</creatorcontrib><creatorcontrib>Vedder, A</creatorcontrib><creatorcontrib>List, A F</creatorcontrib><creatorcontrib>Epling-Burnette, P K</creatorcontrib><creatorcontrib>Komrokji, R S</creatorcontrib><creatorcontrib>Padron, E</creatorcontrib><title>Intrapatient functional clonality deconvoluted by coupling intracellular flow cytometry and next-generation sequencing in human leukemia</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>The interplay between tumor heterogeneity and microenvironmental factors is a critical mechanism for clonal selection in leukemia. Evidence of unique clonal capacities to engraft within patient-derived xenograft (PDX) models suggests that intrapatient genetic architecture may be defined by functional differences at the clonal level. However, methods to detect functional differences assigned to genetically defined clones remain limited. Here, we describe a scalable method to directly measure the functional properties of clones within the same leukemia patient by coupling intracellular flow cytometry and next-generation sequencing (NGS). We provide proof of concept utilizing primary chronic myelmonocytic leukemia (CMML) samples and granulocyte–macrophage colony stimulating factor (GM-CSF) to elucidate the interaction between tumor heterogeneity and microenvironmental factors. Mixtures of human leukemia cell lines, with known response to GM-CSF, were used to validate the accuracy of our methodology. Using this approach, we confirm that our method is capable of discriminating GM-CSF sensitive cell lines, identifies somatic variants in primary leukemia samples, and resolves functional clonal architecture in an illustrative patient. Taken together, our data describes a novel method to determine intrapatient functional clonal heterogeneity and provides proof-of-concept for future investigation aimed at elucidating the clinical relevance of functional clonal differences.</description><subject>45/23</subject><subject>45/77</subject><subject>631/67/68</subject><subject>692/699/67/1990</subject><subject>96/31</subject><subject>Architecture</subject><subject>Biotechnology</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>Chronic myelomonocytic leukemia</subject><subject>Clonal selection</subject><subject>Cloning</subject><subject>Colony-stimulating factor</subject><subject>Coupling</subject><subject>Critical Care Medicine</subject><subject>Cytometry</subject><subject>Development and progression</subject><subject>Flow cytometry</subject><subject>Flow Cytometry - methods</subject><subject>Genetic aspects</subject><subject>Genotypes</subject><subject>Granulocyte-macrophage colony stimulating factor</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - genetics</subject><subject>Health aspects</subject><subject>Hematology</subject><subject>Heterogeneity</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Intracellular</subject><subject>K562 Cells</subject><subject>Leukemia</subject><subject>Leukemia - genetics</subject><subject>Leukemia - pathology</subject><subject>Leukocytes (granulocytic)</subject><subject>Macrophages</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Oncology</subject><subject>original-article</subject><subject>Tumor cell lines</subject><subject>Tumor Cells, Cultured</subject><subject>Xenografts</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkl-L1DAUxYso7rj65rMEBPHBjknbJM3LwrL4Z2HBF30OaXrbyZomY5OuzjfwY5s44zIjSx4Cub97yD3nFsVLgtcE1-17C8u6woSvSds8Klak4ayklJLHxQq3LS-ZqJqz4lkItxjnIntanFUtEw2t2Kr4fe3irLYqGnARDYvT0XinLNI2XybuUA_auztvlwg96nZI-2VrjRuRya0arF2smtFg_U-kd9FPEOcdUq5HDn7FcgQHs8qqKMCPBZze96LNMimH0ve_w2TU8-LJoGyAF4f7vPj28cPXq8_lzZdP11eXN6WmTRtL0gIWWhFGGcV9xYUYWM-FIkPX9Vi0nBElBqi6uuGV5rRjGLjSqqKCAyWkPi8u9rrbpZug15CHsHI7m0nNO-mVkacVZzZy9HeSc05qmgXeHgRmn8YJUU4mZBeUA78ESQThghFa44S-_g-99cucbM2UoFXN678_OlCjsiCNG3y2NYvKy5QRrWlLeKLWD1Dp9Mm9FBAMJr2fNLw5atiAsnETcoopiXAKvtuDevYhzDDcm0GwzCsmU0Yyr5hMK5bwV8cG3sP_dioB5R4IqeRGmI-mfkjwDzrx3co</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Zhang, Q</creator><creator>Ball, M C</creator><creator>Zhao, Y</creator><creator>Balasis, M</creator><creator>Letson, C</creator><creator>Vedder, A</creator><creator>List, A F</creator><creator>Epling-Burnette, P K</creator><creator>Komrokji, R S</creator><creator>Padron, E</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1664-3222</orcidid></search><sort><creationdate>20180201</creationdate><title>Intrapatient functional clonality deconvoluted by coupling intracellular flow cytometry and next-generation sequencing in human leukemia</title><author>Zhang, Q ; Ball, M C ; Zhao, Y ; Balasis, M ; Letson, C ; Vedder, A ; List, A F ; Epling-Burnette, P K ; Komrokji, R S ; Padron, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-18e09ca165650d2799f6d79a1fbbd098761a9fe2b3472c75b60e7aca2597e5113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>45/23</topic><topic>45/77</topic><topic>631/67/68</topic><topic>692/699/67/1990</topic><topic>96/31</topic><topic>Architecture</topic><topic>Biotechnology</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>Chronic myelomonocytic leukemia</topic><topic>Clonal selection</topic><topic>Cloning</topic><topic>Colony-stimulating factor</topic><topic>Coupling</topic><topic>Critical Care Medicine</topic><topic>Cytometry</topic><topic>Development and progression</topic><topic>Flow cytometry</topic><topic>Flow Cytometry - methods</topic><topic>Genetic aspects</topic><topic>Genotypes</topic><topic>Granulocyte-macrophage colony stimulating factor</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - genetics</topic><topic>Health aspects</topic><topic>Hematology</topic><topic>Heterogeneity</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Intracellular</topic><topic>K562 Cells</topic><topic>Leukemia</topic><topic>Leukemia - genetics</topic><topic>Leukemia - pathology</topic><topic>Leukocytes (granulocytic)</topic><topic>Macrophages</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Oncology</topic><topic>original-article</topic><topic>Tumor cell lines</topic><topic>Tumor Cells, Cultured</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Q</creatorcontrib><creatorcontrib>Ball, M C</creatorcontrib><creatorcontrib>Zhao, Y</creatorcontrib><creatorcontrib>Balasis, M</creatorcontrib><creatorcontrib>Letson, C</creatorcontrib><creatorcontrib>Vedder, A</creatorcontrib><creatorcontrib>List, A F</creatorcontrib><creatorcontrib>Epling-Burnette, P K</creatorcontrib><creatorcontrib>Komrokji, R S</creatorcontrib><creatorcontrib>Padron, E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Q</au><au>Ball, M C</au><au>Zhao, Y</au><au>Balasis, M</au><au>Letson, C</au><au>Vedder, A</au><au>List, A F</au><au>Epling-Burnette, P K</au><au>Komrokji, R S</au><au>Padron, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrapatient functional clonality deconvoluted by coupling intracellular flow cytometry and next-generation sequencing in human leukemia</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>32</volume><issue>2</issue><spage>532</spage><epage>538</epage><pages>532-538</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>The interplay between tumor heterogeneity and microenvironmental factors is a critical mechanism for clonal selection in leukemia. Evidence of unique clonal capacities to engraft within patient-derived xenograft (PDX) models suggests that intrapatient genetic architecture may be defined by functional differences at the clonal level. However, methods to detect functional differences assigned to genetically defined clones remain limited. Here, we describe a scalable method to directly measure the functional properties of clones within the same leukemia patient by coupling intracellular flow cytometry and next-generation sequencing (NGS). We provide proof of concept utilizing primary chronic myelmonocytic leukemia (CMML) samples and granulocyte–macrophage colony stimulating factor (GM-CSF) to elucidate the interaction between tumor heterogeneity and microenvironmental factors. Mixtures of human leukemia cell lines, with known response to GM-CSF, were used to validate the accuracy of our methodology. Using this approach, we confirm that our method is capable of discriminating GM-CSF sensitive cell lines, identifies somatic variants in primary leukemia samples, and resolves functional clonal architecture in an illustrative patient. Taken together, our data describes a novel method to determine intrapatient functional clonal heterogeneity and provides proof-of-concept for future investigation aimed at elucidating the clinical relevance of functional clonal differences.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28694526</pmid><doi>10.1038/leu.2017.184</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1664-3222</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-6924
ispartof Leukemia, 2018-02, Vol.32 (2), p.532-538
issn 0887-6924
1476-5551
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7771351
source MEDLINE; Nature Journals Online; Alma/SFX Local Collection
subjects 45/23
45/77
631/67/68
692/699/67/1990
96/31
Architecture
Biotechnology
Cancer Research
Care and treatment
Chronic myelomonocytic leukemia
Clonal selection
Cloning
Colony-stimulating factor
Coupling
Critical Care Medicine
Cytometry
Development and progression
Flow cytometry
Flow Cytometry - methods
Genetic aspects
Genotypes
Granulocyte-macrophage colony stimulating factor
Granulocyte-Macrophage Colony-Stimulating Factor - genetics
Health aspects
Hematology
Heterogeneity
High-Throughput Nucleotide Sequencing - methods
Humans
Intensive
Internal Medicine
Intracellular
K562 Cells
Leukemia
Leukemia - genetics
Leukemia - pathology
Leukocytes (granulocytic)
Macrophages
Medicine
Medicine & Public Health
Oncology
original-article
Tumor cell lines
Tumor Cells, Cultured
Xenografts
title Intrapatient functional clonality deconvoluted by coupling intracellular flow cytometry and next-generation sequencing in human leukemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrapatient%20functional%20clonality%20deconvoluted%20by%20coupling%20intracellular%20flow%20cytometry%20and%20next-generation%20sequencing%20in%20human%20leukemia&rft.jtitle=Leukemia&rft.au=Zhang,%20Q&rft.date=2018-02-01&rft.volume=32&rft.issue=2&rft.spage=532&rft.epage=538&rft.pages=532-538&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/leu.2017.184&rft_dat=%3Cgale_pubme%3EA526535817%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1995237311&rft_id=info:pmid/28694526&rft_galeid=A526535817&rfr_iscdi=true