Intrapatient functional clonality deconvoluted by coupling intracellular flow cytometry and next-generation sequencing in human leukemia
The interplay between tumor heterogeneity and microenvironmental factors is a critical mechanism for clonal selection in leukemia. Evidence of unique clonal capacities to engraft within patient-derived xenograft (PDX) models suggests that intrapatient genetic architecture may be defined by functiona...
Gespeichert in:
Veröffentlicht in: | Leukemia 2018-02, Vol.32 (2), p.532-538 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 538 |
---|---|
container_issue | 2 |
container_start_page | 532 |
container_title | Leukemia |
container_volume | 32 |
creator | Zhang, Q Ball, M C Zhao, Y Balasis, M Letson, C Vedder, A List, A F Epling-Burnette, P K Komrokji, R S Padron, E |
description | The interplay between tumor heterogeneity and microenvironmental factors is a critical mechanism for clonal selection in leukemia. Evidence of unique clonal capacities to engraft within patient-derived xenograft (PDX) models suggests that intrapatient genetic architecture may be defined by functional differences at the clonal level. However, methods to detect functional differences assigned to genetically defined clones remain limited. Here, we describe a scalable method to directly measure the functional properties of clones within the same leukemia patient by coupling intracellular flow cytometry and next-generation sequencing (NGS). We provide proof of concept utilizing primary chronic myelmonocytic leukemia (CMML) samples and granulocyte–macrophage colony stimulating factor (GM-CSF) to elucidate the interaction between tumor heterogeneity and microenvironmental factors. Mixtures of human leukemia cell lines, with known response to GM-CSF, were used to validate the accuracy of our methodology. Using this approach, we confirm that our method is capable of discriminating GM-CSF sensitive cell lines, identifies somatic variants in primary leukemia samples, and resolves functional clonal architecture in an illustrative patient. Taken together, our data describes a novel method to determine intrapatient functional clonal heterogeneity and provides proof-of-concept for future investigation aimed at elucidating the clinical relevance of functional clonal differences. |
doi_str_mv | 10.1038/leu.2017.184 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7771351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A526535817</galeid><sourcerecordid>A526535817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-18e09ca165650d2799f6d79a1fbbd098761a9fe2b3472c75b60e7aca2597e5113</originalsourceid><addsrcrecordid>eNptkl-L1DAUxYso7rj65rMEBPHBjknbJM3LwrL4Z2HBF30OaXrbyZomY5OuzjfwY5s44zIjSx4Cub97yD3nFsVLgtcE1-17C8u6woSvSds8Klak4ayklJLHxQq3LS-ZqJqz4lkItxjnIntanFUtEw2t2Kr4fe3irLYqGnARDYvT0XinLNI2XybuUA_auztvlwg96nZI-2VrjRuRya0arF2smtFg_U-kd9FPEOcdUq5HDn7FcgQHs8qqKMCPBZze96LNMimH0ve_w2TU8-LJoGyAF4f7vPj28cPXq8_lzZdP11eXN6WmTRtL0gIWWhFGGcV9xYUYWM-FIkPX9Vi0nBElBqi6uuGV5rRjGLjSqqKCAyWkPi8u9rrbpZug15CHsHI7m0nNO-mVkacVZzZy9HeSc05qmgXeHgRmn8YJUU4mZBeUA78ESQThghFa44S-_g-99cucbM2UoFXN678_OlCjsiCNG3y2NYvKy5QRrWlLeKLWD1Dp9Mm9FBAMJr2fNLw5atiAsnETcoopiXAKvtuDevYhzDDcm0GwzCsmU0Yyr5hMK5bwV8cG3sP_dioB5R4IqeRGmI-mfkjwDzrx3co</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1995237311</pqid></control><display><type>article</type><title>Intrapatient functional clonality deconvoluted by coupling intracellular flow cytometry and next-generation sequencing in human leukemia</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Zhang, Q ; Ball, M C ; Zhao, Y ; Balasis, M ; Letson, C ; Vedder, A ; List, A F ; Epling-Burnette, P K ; Komrokji, R S ; Padron, E</creator><creatorcontrib>Zhang, Q ; Ball, M C ; Zhao, Y ; Balasis, M ; Letson, C ; Vedder, A ; List, A F ; Epling-Burnette, P K ; Komrokji, R S ; Padron, E</creatorcontrib><description>The interplay between tumor heterogeneity and microenvironmental factors is a critical mechanism for clonal selection in leukemia. Evidence of unique clonal capacities to engraft within patient-derived xenograft (PDX) models suggests that intrapatient genetic architecture may be defined by functional differences at the clonal level. However, methods to detect functional differences assigned to genetically defined clones remain limited. Here, we describe a scalable method to directly measure the functional properties of clones within the same leukemia patient by coupling intracellular flow cytometry and next-generation sequencing (NGS). We provide proof of concept utilizing primary chronic myelmonocytic leukemia (CMML) samples and granulocyte–macrophage colony stimulating factor (GM-CSF) to elucidate the interaction between tumor heterogeneity and microenvironmental factors. Mixtures of human leukemia cell lines, with known response to GM-CSF, were used to validate the accuracy of our methodology. Using this approach, we confirm that our method is capable of discriminating GM-CSF sensitive cell lines, identifies somatic variants in primary leukemia samples, and resolves functional clonal architecture in an illustrative patient. Taken together, our data describes a novel method to determine intrapatient functional clonal heterogeneity and provides proof-of-concept for future investigation aimed at elucidating the clinical relevance of functional clonal differences.</description><identifier>ISSN: 0887-6924</identifier><identifier>EISSN: 1476-5551</identifier><identifier>DOI: 10.1038/leu.2017.184</identifier><identifier>PMID: 28694526</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/23 ; 45/77 ; 631/67/68 ; 692/699/67/1990 ; 96/31 ; Architecture ; Biotechnology ; Cancer Research ; Care and treatment ; Chronic myelomonocytic leukemia ; Clonal selection ; Cloning ; Colony-stimulating factor ; Coupling ; Critical Care Medicine ; Cytometry ; Development and progression ; Flow cytometry ; Flow Cytometry - methods ; Genetic aspects ; Genotypes ; Granulocyte-macrophage colony stimulating factor ; Granulocyte-Macrophage Colony-Stimulating Factor - genetics ; Health aspects ; Hematology ; Heterogeneity ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Intensive ; Internal Medicine ; Intracellular ; K562 Cells ; Leukemia ; Leukemia - genetics ; Leukemia - pathology ; Leukocytes (granulocytic) ; Macrophages ; Medicine ; Medicine & Public Health ; Oncology ; original-article ; Tumor cell lines ; Tumor Cells, Cultured ; Xenografts</subject><ispartof>Leukemia, 2018-02, Vol.32 (2), p.532-538</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-18e09ca165650d2799f6d79a1fbbd098761a9fe2b3472c75b60e7aca2597e5113</citedby><cites>FETCH-LOGICAL-c548t-18e09ca165650d2799f6d79a1fbbd098761a9fe2b3472c75b60e7aca2597e5113</cites><orcidid>0000-0003-1664-3222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28694526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Q</creatorcontrib><creatorcontrib>Ball, M C</creatorcontrib><creatorcontrib>Zhao, Y</creatorcontrib><creatorcontrib>Balasis, M</creatorcontrib><creatorcontrib>Letson, C</creatorcontrib><creatorcontrib>Vedder, A</creatorcontrib><creatorcontrib>List, A F</creatorcontrib><creatorcontrib>Epling-Burnette, P K</creatorcontrib><creatorcontrib>Komrokji, R S</creatorcontrib><creatorcontrib>Padron, E</creatorcontrib><title>Intrapatient functional clonality deconvoluted by coupling intracellular flow cytometry and next-generation sequencing in human leukemia</title><title>Leukemia</title><addtitle>Leukemia</addtitle><addtitle>Leukemia</addtitle><description>The interplay between tumor heterogeneity and microenvironmental factors is a critical mechanism for clonal selection in leukemia. Evidence of unique clonal capacities to engraft within patient-derived xenograft (PDX) models suggests that intrapatient genetic architecture may be defined by functional differences at the clonal level. However, methods to detect functional differences assigned to genetically defined clones remain limited. Here, we describe a scalable method to directly measure the functional properties of clones within the same leukemia patient by coupling intracellular flow cytometry and next-generation sequencing (NGS). We provide proof of concept utilizing primary chronic myelmonocytic leukemia (CMML) samples and granulocyte–macrophage colony stimulating factor (GM-CSF) to elucidate the interaction between tumor heterogeneity and microenvironmental factors. Mixtures of human leukemia cell lines, with known response to GM-CSF, were used to validate the accuracy of our methodology. Using this approach, we confirm that our method is capable of discriminating GM-CSF sensitive cell lines, identifies somatic variants in primary leukemia samples, and resolves functional clonal architecture in an illustrative patient. Taken together, our data describes a novel method to determine intrapatient functional clonal heterogeneity and provides proof-of-concept for future investigation aimed at elucidating the clinical relevance of functional clonal differences.</description><subject>45/23</subject><subject>45/77</subject><subject>631/67/68</subject><subject>692/699/67/1990</subject><subject>96/31</subject><subject>Architecture</subject><subject>Biotechnology</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>Chronic myelomonocytic leukemia</subject><subject>Clonal selection</subject><subject>Cloning</subject><subject>Colony-stimulating factor</subject><subject>Coupling</subject><subject>Critical Care Medicine</subject><subject>Cytometry</subject><subject>Development and progression</subject><subject>Flow cytometry</subject><subject>Flow Cytometry - methods</subject><subject>Genetic aspects</subject><subject>Genotypes</subject><subject>Granulocyte-macrophage colony stimulating factor</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - genetics</subject><subject>Health aspects</subject><subject>Hematology</subject><subject>Heterogeneity</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Intensive</subject><subject>Internal Medicine</subject><subject>Intracellular</subject><subject>K562 Cells</subject><subject>Leukemia</subject><subject>Leukemia - genetics</subject><subject>Leukemia - pathology</subject><subject>Leukocytes (granulocytic)</subject><subject>Macrophages</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Oncology</subject><subject>original-article</subject><subject>Tumor cell lines</subject><subject>Tumor Cells, Cultured</subject><subject>Xenografts</subject><issn>0887-6924</issn><issn>1476-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkl-L1DAUxYso7rj65rMEBPHBjknbJM3LwrL4Z2HBF30OaXrbyZomY5OuzjfwY5s44zIjSx4Cub97yD3nFsVLgtcE1-17C8u6woSvSds8Klak4ayklJLHxQq3LS-ZqJqz4lkItxjnIntanFUtEw2t2Kr4fe3irLYqGnARDYvT0XinLNI2XybuUA_auztvlwg96nZI-2VrjRuRya0arF2smtFg_U-kd9FPEOcdUq5HDn7FcgQHs8qqKMCPBZze96LNMimH0ve_w2TU8-LJoGyAF4f7vPj28cPXq8_lzZdP11eXN6WmTRtL0gIWWhFGGcV9xYUYWM-FIkPX9Vi0nBElBqi6uuGV5rRjGLjSqqKCAyWkPi8u9rrbpZug15CHsHI7m0nNO-mVkacVZzZy9HeSc05qmgXeHgRmn8YJUU4mZBeUA78ESQThghFa44S-_g-99cucbM2UoFXN678_OlCjsiCNG3y2NYvKy5QRrWlLeKLWD1Dp9Mm9FBAMJr2fNLw5atiAsnETcoopiXAKvtuDevYhzDDcm0GwzCsmU0Yyr5hMK5bwV8cG3sP_dioB5R4IqeRGmI-mfkjwDzrx3co</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Zhang, Q</creator><creator>Ball, M C</creator><creator>Zhao, Y</creator><creator>Balasis, M</creator><creator>Letson, C</creator><creator>Vedder, A</creator><creator>List, A F</creator><creator>Epling-Burnette, P K</creator><creator>Komrokji, R S</creator><creator>Padron, E</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1664-3222</orcidid></search><sort><creationdate>20180201</creationdate><title>Intrapatient functional clonality deconvoluted by coupling intracellular flow cytometry and next-generation sequencing in human leukemia</title><author>Zhang, Q ; Ball, M C ; Zhao, Y ; Balasis, M ; Letson, C ; Vedder, A ; List, A F ; Epling-Burnette, P K ; Komrokji, R S ; Padron, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-18e09ca165650d2799f6d79a1fbbd098761a9fe2b3472c75b60e7aca2597e5113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>45/23</topic><topic>45/77</topic><topic>631/67/68</topic><topic>692/699/67/1990</topic><topic>96/31</topic><topic>Architecture</topic><topic>Biotechnology</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>Chronic myelomonocytic leukemia</topic><topic>Clonal selection</topic><topic>Cloning</topic><topic>Colony-stimulating factor</topic><topic>Coupling</topic><topic>Critical Care Medicine</topic><topic>Cytometry</topic><topic>Development and progression</topic><topic>Flow cytometry</topic><topic>Flow Cytometry - methods</topic><topic>Genetic aspects</topic><topic>Genotypes</topic><topic>Granulocyte-macrophage colony stimulating factor</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - genetics</topic><topic>Health aspects</topic><topic>Hematology</topic><topic>Heterogeneity</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Intensive</topic><topic>Internal Medicine</topic><topic>Intracellular</topic><topic>K562 Cells</topic><topic>Leukemia</topic><topic>Leukemia - genetics</topic><topic>Leukemia - pathology</topic><topic>Leukocytes (granulocytic)</topic><topic>Macrophages</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Oncology</topic><topic>original-article</topic><topic>Tumor cell lines</topic><topic>Tumor Cells, Cultured</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Q</creatorcontrib><creatorcontrib>Ball, M C</creatorcontrib><creatorcontrib>Zhao, Y</creatorcontrib><creatorcontrib>Balasis, M</creatorcontrib><creatorcontrib>Letson, C</creatorcontrib><creatorcontrib>Vedder, A</creatorcontrib><creatorcontrib>List, A F</creatorcontrib><creatorcontrib>Epling-Burnette, P K</creatorcontrib><creatorcontrib>Komrokji, R S</creatorcontrib><creatorcontrib>Padron, E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing & Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Leukemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Q</au><au>Ball, M C</au><au>Zhao, Y</au><au>Balasis, M</au><au>Letson, C</au><au>Vedder, A</au><au>List, A F</au><au>Epling-Burnette, P K</au><au>Komrokji, R S</au><au>Padron, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrapatient functional clonality deconvoluted by coupling intracellular flow cytometry and next-generation sequencing in human leukemia</atitle><jtitle>Leukemia</jtitle><stitle>Leukemia</stitle><addtitle>Leukemia</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>32</volume><issue>2</issue><spage>532</spage><epage>538</epage><pages>532-538</pages><issn>0887-6924</issn><eissn>1476-5551</eissn><abstract>The interplay between tumor heterogeneity and microenvironmental factors is a critical mechanism for clonal selection in leukemia. Evidence of unique clonal capacities to engraft within patient-derived xenograft (PDX) models suggests that intrapatient genetic architecture may be defined by functional differences at the clonal level. However, methods to detect functional differences assigned to genetically defined clones remain limited. Here, we describe a scalable method to directly measure the functional properties of clones within the same leukemia patient by coupling intracellular flow cytometry and next-generation sequencing (NGS). We provide proof of concept utilizing primary chronic myelmonocytic leukemia (CMML) samples and granulocyte–macrophage colony stimulating factor (GM-CSF) to elucidate the interaction between tumor heterogeneity and microenvironmental factors. Mixtures of human leukemia cell lines, with known response to GM-CSF, were used to validate the accuracy of our methodology. Using this approach, we confirm that our method is capable of discriminating GM-CSF sensitive cell lines, identifies somatic variants in primary leukemia samples, and resolves functional clonal architecture in an illustrative patient. Taken together, our data describes a novel method to determine intrapatient functional clonal heterogeneity and provides proof-of-concept for future investigation aimed at elucidating the clinical relevance of functional clonal differences.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28694526</pmid><doi>10.1038/leu.2017.184</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1664-3222</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-6924 |
ispartof | Leukemia, 2018-02, Vol.32 (2), p.532-538 |
issn | 0887-6924 1476-5551 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7771351 |
source | MEDLINE; Nature Journals Online; Alma/SFX Local Collection |
subjects | 45/23 45/77 631/67/68 692/699/67/1990 96/31 Architecture Biotechnology Cancer Research Care and treatment Chronic myelomonocytic leukemia Clonal selection Cloning Colony-stimulating factor Coupling Critical Care Medicine Cytometry Development and progression Flow cytometry Flow Cytometry - methods Genetic aspects Genotypes Granulocyte-macrophage colony stimulating factor Granulocyte-Macrophage Colony-Stimulating Factor - genetics Health aspects Hematology Heterogeneity High-Throughput Nucleotide Sequencing - methods Humans Intensive Internal Medicine Intracellular K562 Cells Leukemia Leukemia - genetics Leukemia - pathology Leukocytes (granulocytic) Macrophages Medicine Medicine & Public Health Oncology original-article Tumor cell lines Tumor Cells, Cultured Xenografts |
title | Intrapatient functional clonality deconvoluted by coupling intracellular flow cytometry and next-generation sequencing in human leukemia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrapatient%20functional%20clonality%20deconvoluted%20by%20coupling%20intracellular%20flow%20cytometry%20and%20next-generation%20sequencing%20in%20human%20leukemia&rft.jtitle=Leukemia&rft.au=Zhang,%20Q&rft.date=2018-02-01&rft.volume=32&rft.issue=2&rft.spage=532&rft.epage=538&rft.pages=532-538&rft.issn=0887-6924&rft.eissn=1476-5551&rft_id=info:doi/10.1038/leu.2017.184&rft_dat=%3Cgale_pubme%3EA526535817%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1995237311&rft_id=info:pmid/28694526&rft_galeid=A526535817&rfr_iscdi=true |