Multivascular networks and functional intravascular topologies within biocompatible hydrogels
Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopol...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2019-05, Vol.364 (6439), p.458-464 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 464 |
---|---|
container_issue | 6439 |
container_start_page | 458 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 364 |
creator | Grigoryan, Bagrat Paulsen, Samantha J. Corbett, Daniel C. Sazer, Daniel W. Fortin, Chelsea L. Zaita, Alexander J. Greenfield, Paul T. Calafat, Nicholas J. Gounley, John P. Ta, Anderson H. Johansson, Fredrik Randles, Amanda Rosenkrantz, Jessica E. Louis-Rosenberg, Jesse D. Galie, Peter A. Stevens, Kelly R. Miller, Jordan S. |
description | Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels by using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels, produced in minutes, comprising efficient intravascular 3D fluid mixers and functional bicuspid valves. We further elaborate entangled vascular networks from space-filling mathematical topologies and explore the oxygenation and flow of human red blood cells during tidal ventilation and distension of a proximate airway. In addition, we deploy structured biodegradable hydrogel carriers in a rodent model of chronic liver injury to highlight the potential translational utility of this materials innovation. |
doi_str_mv | 10.1126/science.aav9750 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7769170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26649379</jstor_id><sourcerecordid>26649379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5340-8f4c9c7fc02458f84a9629ed096f4560eda97617472d9febf2440be5becc4c1c3</originalsourceid><addsrcrecordid>eNpdkTuPEzEUhS0EYsNCTQUaQUOT3WuPH-MGCa14SYtooESWx3MncXDsYHuy2n_PRAkRUN3ifPfcxyHkOYUrSpm8Ls5jdHhl7V4rAQ_IgoIWS82gfUgWAK1cdqDEBXlSygZg1nT7mFy0FHjHO7kgP75Mofq9LW4KNjcR613KP0tj49CMU3TVp2hD42PN9kzVtEshrTyW5s7XtY9N75NL252tvg_YrO-HnFYYylPyaLSh4LNTvSTfP7z_dvNpefv14-ebd7dLJ1oOy27kTjs1OmBcdGPHrZZM4wBajlxIwMFqJaniig16xH5knEOPokfnuKOuvSRvj767qd_i4PCwbjC77Lc235tkvflXiX5tVmlvlJKaKpgNXh0NUqnezF-t6NYuxYiuGiqokFzO0JvTlJx-TViq2friMAQbMU3FMMY048CFmNHX_6GbNOX5kweKamDAJJup6yPlciol43jemII55GtO-ZpTvnPHy78PPfN_Ap2BF0dgU2rKZ51JyXWrdPsbWJKwGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2219020262</pqid></control><display><type>article</type><title>Multivascular networks and functional intravascular topologies within biocompatible hydrogels</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><creator>Grigoryan, Bagrat ; Paulsen, Samantha J. ; Corbett, Daniel C. ; Sazer, Daniel W. ; Fortin, Chelsea L. ; Zaita, Alexander J. ; Greenfield, Paul T. ; Calafat, Nicholas J. ; Gounley, John P. ; Ta, Anderson H. ; Johansson, Fredrik ; Randles, Amanda ; Rosenkrantz, Jessica E. ; Louis-Rosenberg, Jesse D. ; Galie, Peter A. ; Stevens, Kelly R. ; Miller, Jordan S.</creator><creatorcontrib>Grigoryan, Bagrat ; Paulsen, Samantha J. ; Corbett, Daniel C. ; Sazer, Daniel W. ; Fortin, Chelsea L. ; Zaita, Alexander J. ; Greenfield, Paul T. ; Calafat, Nicholas J. ; Gounley, John P. ; Ta, Anderson H. ; Johansson, Fredrik ; Randles, Amanda ; Rosenkrantz, Jessica E. ; Louis-Rosenberg, Jesse D. ; Galie, Peter A. ; Stevens, Kelly R. ; Miller, Jordan S. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels by using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels, produced in minutes, comprising efficient intravascular 3D fluid mixers and functional bicuspid valves. We further elaborate entangled vascular networks from space-filling mathematical topologies and explore the oxygenation and flow of human red blood cells during tidal ventilation and distension of a proximate airway. In addition, we deploy structured biodegradable hydrogel carriers in a rodent model of chronic liver injury to highlight the potential translational utility of this materials innovation.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aav9750</identifier><identifier>PMID: 31048486</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Absorption, Physicochemical ; Additives ; Animals ; BASIC BIOLOGICAL SCIENCES ; Biocompatibility ; Biocompatible Materials - chemistry ; Biodegradability ; Biodegradation ; Biomimetic Materials - chemistry ; Blood Vessels ; Coloring Agents - chemistry ; Computational fluid dynamics ; Disease Models, Animal ; Distension ; Erythrocytes ; Erythrocytes - metabolism ; Food additives ; Food dyes ; Humans ; Hydrogels ; Hydrogels - chemistry ; Light ; Lithography ; Liver ; Lung Injury - therapy ; Mice ; Mice, Nude ; Networks ; Nutrient transport ; Organs ; Oxygenation ; Polymerization - radiation effects ; Respiratory tract ; Stereolithography ; Topology ; Transport ; Valves ; Ventilation ; Vertebrates</subject><ispartof>Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6439), p.458-464</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5340-8f4c9c7fc02458f84a9629ed096f4560eda97617472d9febf2440be5becc4c1c3</citedby><cites>FETCH-LOGICAL-c5340-8f4c9c7fc02458f84a9629ed096f4560eda97617472d9febf2440be5becc4c1c3</cites><orcidid>0000-0002-3280-9360 ; 0000-0002-3082-6175 ; 0000-0002-1057-4353 ; 0000-0002-3114-7422 ; 0000-0002-6931-0862 ; 0000-0002-4024-2990 ; 0000-0003-4525-7697 ; 0000-0003-4567-7173 ; 0000-0001-6318-3885 ; 0000-0002-0483-5721 ; 0000-0003-0433-6946 ; 0000-0001-8424-4982 ; 0000-0001-5161-4924 ; 0000-0002-7931-551X ; 0000000231147422 ; 0000000345257697 ; 0000000151614924 ; 0000000163183885 ; 0000000345677173 ; 0000000304336946 ; 0000000240242990 ; 0000000269310862 ; 000000027931551X ; 0000000210574353 ; 0000000204835721 ; 0000000230826175 ; 0000000232809360 ; 0000000184244982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31048486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1515646$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Grigoryan, Bagrat</creatorcontrib><creatorcontrib>Paulsen, Samantha J.</creatorcontrib><creatorcontrib>Corbett, Daniel C.</creatorcontrib><creatorcontrib>Sazer, Daniel W.</creatorcontrib><creatorcontrib>Fortin, Chelsea L.</creatorcontrib><creatorcontrib>Zaita, Alexander J.</creatorcontrib><creatorcontrib>Greenfield, Paul T.</creatorcontrib><creatorcontrib>Calafat, Nicholas J.</creatorcontrib><creatorcontrib>Gounley, John P.</creatorcontrib><creatorcontrib>Ta, Anderson H.</creatorcontrib><creatorcontrib>Johansson, Fredrik</creatorcontrib><creatorcontrib>Randles, Amanda</creatorcontrib><creatorcontrib>Rosenkrantz, Jessica E.</creatorcontrib><creatorcontrib>Louis-Rosenberg, Jesse D.</creatorcontrib><creatorcontrib>Galie, Peter A.</creatorcontrib><creatorcontrib>Stevens, Kelly R.</creatorcontrib><creatorcontrib>Miller, Jordan S.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Multivascular networks and functional intravascular topologies within biocompatible hydrogels</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels by using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels, produced in minutes, comprising efficient intravascular 3D fluid mixers and functional bicuspid valves. We further elaborate entangled vascular networks from space-filling mathematical topologies and explore the oxygenation and flow of human red blood cells during tidal ventilation and distension of a proximate airway. In addition, we deploy structured biodegradable hydrogel carriers in a rodent model of chronic liver injury to highlight the potential translational utility of this materials innovation.</description><subject>Absorption, Physicochemical</subject><subject>Additives</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biomimetic Materials - chemistry</subject><subject>Blood Vessels</subject><subject>Coloring Agents - chemistry</subject><subject>Computational fluid dynamics</subject><subject>Disease Models, Animal</subject><subject>Distension</subject><subject>Erythrocytes</subject><subject>Erythrocytes - metabolism</subject><subject>Food additives</subject><subject>Food dyes</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Light</subject><subject>Lithography</subject><subject>Liver</subject><subject>Lung Injury - therapy</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Networks</subject><subject>Nutrient transport</subject><subject>Organs</subject><subject>Oxygenation</subject><subject>Polymerization - radiation effects</subject><subject>Respiratory tract</subject><subject>Stereolithography</subject><subject>Topology</subject><subject>Transport</subject><subject>Valves</subject><subject>Ventilation</subject><subject>Vertebrates</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkTuPEzEUhS0EYsNCTQUaQUOT3WuPH-MGCa14SYtooESWx3MncXDsYHuy2n_PRAkRUN3ifPfcxyHkOYUrSpm8Ls5jdHhl7V4rAQ_IgoIWS82gfUgWAK1cdqDEBXlSygZg1nT7mFy0FHjHO7kgP75Mofq9LW4KNjcR613KP0tj49CMU3TVp2hD42PN9kzVtEshrTyW5s7XtY9N75NL252tvg_YrO-HnFYYylPyaLSh4LNTvSTfP7z_dvNpefv14-ebd7dLJ1oOy27kTjs1OmBcdGPHrZZM4wBajlxIwMFqJaniig16xH5knEOPokfnuKOuvSRvj767qd_i4PCwbjC77Lc235tkvflXiX5tVmlvlJKaKpgNXh0NUqnezF-t6NYuxYiuGiqokFzO0JvTlJx-TViq2friMAQbMU3FMMY048CFmNHX_6GbNOX5kweKamDAJJup6yPlciol43jemII55GtO-ZpTvnPHy78PPfN_Ap2BF0dgU2rKZ51JyXWrdPsbWJKwGg</recordid><startdate>20190503</startdate><enddate>20190503</enddate><creator>Grigoryan, Bagrat</creator><creator>Paulsen, Samantha J.</creator><creator>Corbett, Daniel C.</creator><creator>Sazer, Daniel W.</creator><creator>Fortin, Chelsea L.</creator><creator>Zaita, Alexander J.</creator><creator>Greenfield, Paul T.</creator><creator>Calafat, Nicholas J.</creator><creator>Gounley, John P.</creator><creator>Ta, Anderson H.</creator><creator>Johansson, Fredrik</creator><creator>Randles, Amanda</creator><creator>Rosenkrantz, Jessica E.</creator><creator>Louis-Rosenberg, Jesse D.</creator><creator>Galie, Peter A.</creator><creator>Stevens, Kelly R.</creator><creator>Miller, Jordan S.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3280-9360</orcidid><orcidid>https://orcid.org/0000-0002-3082-6175</orcidid><orcidid>https://orcid.org/0000-0002-1057-4353</orcidid><orcidid>https://orcid.org/0000-0002-3114-7422</orcidid><orcidid>https://orcid.org/0000-0002-6931-0862</orcidid><orcidid>https://orcid.org/0000-0002-4024-2990</orcidid><orcidid>https://orcid.org/0000-0003-4525-7697</orcidid><orcidid>https://orcid.org/0000-0003-4567-7173</orcidid><orcidid>https://orcid.org/0000-0001-6318-3885</orcidid><orcidid>https://orcid.org/0000-0002-0483-5721</orcidid><orcidid>https://orcid.org/0000-0003-0433-6946</orcidid><orcidid>https://orcid.org/0000-0001-8424-4982</orcidid><orcidid>https://orcid.org/0000-0001-5161-4924</orcidid><orcidid>https://orcid.org/0000-0002-7931-551X</orcidid><orcidid>https://orcid.org/0000000231147422</orcidid><orcidid>https://orcid.org/0000000345257697</orcidid><orcidid>https://orcid.org/0000000151614924</orcidid><orcidid>https://orcid.org/0000000163183885</orcidid><orcidid>https://orcid.org/0000000345677173</orcidid><orcidid>https://orcid.org/0000000304336946</orcidid><orcidid>https://orcid.org/0000000240242990</orcidid><orcidid>https://orcid.org/0000000269310862</orcidid><orcidid>https://orcid.org/000000027931551X</orcidid><orcidid>https://orcid.org/0000000210574353</orcidid><orcidid>https://orcid.org/0000000204835721</orcidid><orcidid>https://orcid.org/0000000230826175</orcidid><orcidid>https://orcid.org/0000000232809360</orcidid><orcidid>https://orcid.org/0000000184244982</orcidid></search><sort><creationdate>20190503</creationdate><title>Multivascular networks and functional intravascular topologies within biocompatible hydrogels</title><author>Grigoryan, Bagrat ; Paulsen, Samantha J. ; Corbett, Daniel C. ; Sazer, Daniel W. ; Fortin, Chelsea L. ; Zaita, Alexander J. ; Greenfield, Paul T. ; Calafat, Nicholas J. ; Gounley, John P. ; Ta, Anderson H. ; Johansson, Fredrik ; Randles, Amanda ; Rosenkrantz, Jessica E. ; Louis-Rosenberg, Jesse D. ; Galie, Peter A. ; Stevens, Kelly R. ; Miller, Jordan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5340-8f4c9c7fc02458f84a9629ed096f4560eda97617472d9febf2440be5becc4c1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption, Physicochemical</topic><topic>Additives</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biomimetic Materials - chemistry</topic><topic>Blood Vessels</topic><topic>Coloring Agents - chemistry</topic><topic>Computational fluid dynamics</topic><topic>Disease Models, Animal</topic><topic>Distension</topic><topic>Erythrocytes</topic><topic>Erythrocytes - metabolism</topic><topic>Food additives</topic><topic>Food dyes</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Light</topic><topic>Lithography</topic><topic>Liver</topic><topic>Lung Injury - therapy</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Networks</topic><topic>Nutrient transport</topic><topic>Organs</topic><topic>Oxygenation</topic><topic>Polymerization - radiation effects</topic><topic>Respiratory tract</topic><topic>Stereolithography</topic><topic>Topology</topic><topic>Transport</topic><topic>Valves</topic><topic>Ventilation</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigoryan, Bagrat</creatorcontrib><creatorcontrib>Paulsen, Samantha J.</creatorcontrib><creatorcontrib>Corbett, Daniel C.</creatorcontrib><creatorcontrib>Sazer, Daniel W.</creatorcontrib><creatorcontrib>Fortin, Chelsea L.</creatorcontrib><creatorcontrib>Zaita, Alexander J.</creatorcontrib><creatorcontrib>Greenfield, Paul T.</creatorcontrib><creatorcontrib>Calafat, Nicholas J.</creatorcontrib><creatorcontrib>Gounley, John P.</creatorcontrib><creatorcontrib>Ta, Anderson H.</creatorcontrib><creatorcontrib>Johansson, Fredrik</creatorcontrib><creatorcontrib>Randles, Amanda</creatorcontrib><creatorcontrib>Rosenkrantz, Jessica E.</creatorcontrib><creatorcontrib>Louis-Rosenberg, Jesse D.</creatorcontrib><creatorcontrib>Galie, Peter A.</creatorcontrib><creatorcontrib>Stevens, Kelly R.</creatorcontrib><creatorcontrib>Miller, Jordan S.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigoryan, Bagrat</au><au>Paulsen, Samantha J.</au><au>Corbett, Daniel C.</au><au>Sazer, Daniel W.</au><au>Fortin, Chelsea L.</au><au>Zaita, Alexander J.</au><au>Greenfield, Paul T.</au><au>Calafat, Nicholas J.</au><au>Gounley, John P.</au><au>Ta, Anderson H.</au><au>Johansson, Fredrik</au><au>Randles, Amanda</au><au>Rosenkrantz, Jessica E.</au><au>Louis-Rosenberg, Jesse D.</au><au>Galie, Peter A.</au><au>Stevens, Kelly R.</au><au>Miller, Jordan S.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivascular networks and functional intravascular topologies within biocompatible hydrogels</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-05-03</date><risdate>2019</risdate><volume>364</volume><issue>6439</issue><spage>458</spage><epage>464</epage><pages>458-464</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><abstract>Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels by using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels, produced in minutes, comprising efficient intravascular 3D fluid mixers and functional bicuspid valves. We further elaborate entangled vascular networks from space-filling mathematical topologies and explore the oxygenation and flow of human red blood cells during tidal ventilation and distension of a proximate airway. In addition, we deploy structured biodegradable hydrogel carriers in a rodent model of chronic liver injury to highlight the potential translational utility of this materials innovation.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31048486</pmid><doi>10.1126/science.aav9750</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3280-9360</orcidid><orcidid>https://orcid.org/0000-0002-3082-6175</orcidid><orcidid>https://orcid.org/0000-0002-1057-4353</orcidid><orcidid>https://orcid.org/0000-0002-3114-7422</orcidid><orcidid>https://orcid.org/0000-0002-6931-0862</orcidid><orcidid>https://orcid.org/0000-0002-4024-2990</orcidid><orcidid>https://orcid.org/0000-0003-4525-7697</orcidid><orcidid>https://orcid.org/0000-0003-4567-7173</orcidid><orcidid>https://orcid.org/0000-0001-6318-3885</orcidid><orcidid>https://orcid.org/0000-0002-0483-5721</orcidid><orcidid>https://orcid.org/0000-0003-0433-6946</orcidid><orcidid>https://orcid.org/0000-0001-8424-4982</orcidid><orcidid>https://orcid.org/0000-0001-5161-4924</orcidid><orcidid>https://orcid.org/0000-0002-7931-551X</orcidid><orcidid>https://orcid.org/0000000231147422</orcidid><orcidid>https://orcid.org/0000000345257697</orcidid><orcidid>https://orcid.org/0000000151614924</orcidid><orcidid>https://orcid.org/0000000163183885</orcidid><orcidid>https://orcid.org/0000000345677173</orcidid><orcidid>https://orcid.org/0000000304336946</orcidid><orcidid>https://orcid.org/0000000240242990</orcidid><orcidid>https://orcid.org/0000000269310862</orcidid><orcidid>https://orcid.org/000000027931551X</orcidid><orcidid>https://orcid.org/0000000210574353</orcidid><orcidid>https://orcid.org/0000000204835721</orcidid><orcidid>https://orcid.org/0000000230826175</orcidid><orcidid>https://orcid.org/0000000232809360</orcidid><orcidid>https://orcid.org/0000000184244982</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6439), p.458-464 |
issn | 0036-8075 1095-9203 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7769170 |
source | American Association for the Advancement of Science; MEDLINE |
subjects | Absorption, Physicochemical Additives Animals BASIC BIOLOGICAL SCIENCES Biocompatibility Biocompatible Materials - chemistry Biodegradability Biodegradation Biomimetic Materials - chemistry Blood Vessels Coloring Agents - chemistry Computational fluid dynamics Disease Models, Animal Distension Erythrocytes Erythrocytes - metabolism Food additives Food dyes Humans Hydrogels Hydrogels - chemistry Light Lithography Liver Lung Injury - therapy Mice Mice, Nude Networks Nutrient transport Organs Oxygenation Polymerization - radiation effects Respiratory tract Stereolithography Topology Transport Valves Ventilation Vertebrates |
title | Multivascular networks and functional intravascular topologies within biocompatible hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivascular%20networks%20and%20functional%20intravascular%20topologies%20within%20biocompatible%20hydrogels&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Grigoryan,%20Bagrat&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-05-03&rft.volume=364&rft.issue=6439&rft.spage=458&rft.epage=464&rft.pages=458-464&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aav9750&rft_dat=%3Cjstor_pubme%3E26649379%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2219020262&rft_id=info:pmid/31048486&rft_jstor_id=26649379&rfr_iscdi=true |