Multivascular networks and functional intravascular topologies within biocompatible hydrogels

Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2019-05, Vol.364 (6439), p.458-464
Hauptverfasser: Grigoryan, Bagrat, Paulsen, Samantha J., Corbett, Daniel C., Sazer, Daniel W., Fortin, Chelsea L., Zaita, Alexander J., Greenfield, Paul T., Calafat, Nicholas J., Gounley, John P., Ta, Anderson H., Johansson, Fredrik, Randles, Amanda, Rosenkrantz, Jessica E., Louis-Rosenberg, Jesse D., Galie, Peter A., Stevens, Kelly R., Miller, Jordan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue 6439
container_start_page 458
container_title Science (American Association for the Advancement of Science)
container_volume 364
creator Grigoryan, Bagrat
Paulsen, Samantha J.
Corbett, Daniel C.
Sazer, Daniel W.
Fortin, Chelsea L.
Zaita, Alexander J.
Greenfield, Paul T.
Calafat, Nicholas J.
Gounley, John P.
Ta, Anderson H.
Johansson, Fredrik
Randles, Amanda
Rosenkrantz, Jessica E.
Louis-Rosenberg, Jesse D.
Galie, Peter A.
Stevens, Kelly R.
Miller, Jordan S.
description Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels by using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels, produced in minutes, comprising efficient intravascular 3D fluid mixers and functional bicuspid valves. We further elaborate entangled vascular networks from space-filling mathematical topologies and explore the oxygenation and flow of human red blood cells during tidal ventilation and distension of a proximate airway. In addition, we deploy structured biodegradable hydrogel carriers in a rodent model of chronic liver injury to highlight the potential translational utility of this materials innovation.
doi_str_mv 10.1126/science.aav9750
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7769170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26649379</jstor_id><sourcerecordid>26649379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5340-8f4c9c7fc02458f84a9629ed096f4560eda97617472d9febf2440be5becc4c1c3</originalsourceid><addsrcrecordid>eNpdkTuPEzEUhS0EYsNCTQUaQUOT3WuPH-MGCa14SYtooESWx3MncXDsYHuy2n_PRAkRUN3ifPfcxyHkOYUrSpm8Ls5jdHhl7V4rAQ_IgoIWS82gfUgWAK1cdqDEBXlSygZg1nT7mFy0FHjHO7kgP75Mofq9LW4KNjcR613KP0tj49CMU3TVp2hD42PN9kzVtEshrTyW5s7XtY9N75NL252tvg_YrO-HnFYYylPyaLSh4LNTvSTfP7z_dvNpefv14-ebd7dLJ1oOy27kTjs1OmBcdGPHrZZM4wBajlxIwMFqJaniig16xH5knEOPokfnuKOuvSRvj767qd_i4PCwbjC77Lc235tkvflXiX5tVmlvlJKaKpgNXh0NUqnezF-t6NYuxYiuGiqokFzO0JvTlJx-TViq2friMAQbMU3FMMY048CFmNHX_6GbNOX5kweKamDAJJup6yPlciol43jemII55GtO-ZpTvnPHy78PPfN_Ap2BF0dgU2rKZ51JyXWrdPsbWJKwGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2219020262</pqid></control><display><type>article</type><title>Multivascular networks and functional intravascular topologies within biocompatible hydrogels</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><creator>Grigoryan, Bagrat ; Paulsen, Samantha J. ; Corbett, Daniel C. ; Sazer, Daniel W. ; Fortin, Chelsea L. ; Zaita, Alexander J. ; Greenfield, Paul T. ; Calafat, Nicholas J. ; Gounley, John P. ; Ta, Anderson H. ; Johansson, Fredrik ; Randles, Amanda ; Rosenkrantz, Jessica E. ; Louis-Rosenberg, Jesse D. ; Galie, Peter A. ; Stevens, Kelly R. ; Miller, Jordan S.</creator><creatorcontrib>Grigoryan, Bagrat ; Paulsen, Samantha J. ; Corbett, Daniel C. ; Sazer, Daniel W. ; Fortin, Chelsea L. ; Zaita, Alexander J. ; Greenfield, Paul T. ; Calafat, Nicholas J. ; Gounley, John P. ; Ta, Anderson H. ; Johansson, Fredrik ; Randles, Amanda ; Rosenkrantz, Jessica E. ; Louis-Rosenberg, Jesse D. ; Galie, Peter A. ; Stevens, Kelly R. ; Miller, Jordan S. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels by using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels, produced in minutes, comprising efficient intravascular 3D fluid mixers and functional bicuspid valves. We further elaborate entangled vascular networks from space-filling mathematical topologies and explore the oxygenation and flow of human red blood cells during tidal ventilation and distension of a proximate airway. In addition, we deploy structured biodegradable hydrogel carriers in a rodent model of chronic liver injury to highlight the potential translational utility of this materials innovation.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aav9750</identifier><identifier>PMID: 31048486</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Absorption, Physicochemical ; Additives ; Animals ; BASIC BIOLOGICAL SCIENCES ; Biocompatibility ; Biocompatible Materials - chemistry ; Biodegradability ; Biodegradation ; Biomimetic Materials - chemistry ; Blood Vessels ; Coloring Agents - chemistry ; Computational fluid dynamics ; Disease Models, Animal ; Distension ; Erythrocytes ; Erythrocytes - metabolism ; Food additives ; Food dyes ; Humans ; Hydrogels ; Hydrogels - chemistry ; Light ; Lithography ; Liver ; Lung Injury - therapy ; Mice ; Mice, Nude ; Networks ; Nutrient transport ; Organs ; Oxygenation ; Polymerization - radiation effects ; Respiratory tract ; Stereolithography ; Topology ; Transport ; Valves ; Ventilation ; Vertebrates</subject><ispartof>Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6439), p.458-464</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5340-8f4c9c7fc02458f84a9629ed096f4560eda97617472d9febf2440be5becc4c1c3</citedby><cites>FETCH-LOGICAL-c5340-8f4c9c7fc02458f84a9629ed096f4560eda97617472d9febf2440be5becc4c1c3</cites><orcidid>0000-0002-3280-9360 ; 0000-0002-3082-6175 ; 0000-0002-1057-4353 ; 0000-0002-3114-7422 ; 0000-0002-6931-0862 ; 0000-0002-4024-2990 ; 0000-0003-4525-7697 ; 0000-0003-4567-7173 ; 0000-0001-6318-3885 ; 0000-0002-0483-5721 ; 0000-0003-0433-6946 ; 0000-0001-8424-4982 ; 0000-0001-5161-4924 ; 0000-0002-7931-551X ; 0000000231147422 ; 0000000345257697 ; 0000000151614924 ; 0000000163183885 ; 0000000345677173 ; 0000000304336946 ; 0000000240242990 ; 0000000269310862 ; 000000027931551X ; 0000000210574353 ; 0000000204835721 ; 0000000230826175 ; 0000000232809360 ; 0000000184244982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31048486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1515646$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Grigoryan, Bagrat</creatorcontrib><creatorcontrib>Paulsen, Samantha J.</creatorcontrib><creatorcontrib>Corbett, Daniel C.</creatorcontrib><creatorcontrib>Sazer, Daniel W.</creatorcontrib><creatorcontrib>Fortin, Chelsea L.</creatorcontrib><creatorcontrib>Zaita, Alexander J.</creatorcontrib><creatorcontrib>Greenfield, Paul T.</creatorcontrib><creatorcontrib>Calafat, Nicholas J.</creatorcontrib><creatorcontrib>Gounley, John P.</creatorcontrib><creatorcontrib>Ta, Anderson H.</creatorcontrib><creatorcontrib>Johansson, Fredrik</creatorcontrib><creatorcontrib>Randles, Amanda</creatorcontrib><creatorcontrib>Rosenkrantz, Jessica E.</creatorcontrib><creatorcontrib>Louis-Rosenberg, Jesse D.</creatorcontrib><creatorcontrib>Galie, Peter A.</creatorcontrib><creatorcontrib>Stevens, Kelly R.</creatorcontrib><creatorcontrib>Miller, Jordan S.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Multivascular networks and functional intravascular topologies within biocompatible hydrogels</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels by using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels, produced in minutes, comprising efficient intravascular 3D fluid mixers and functional bicuspid valves. We further elaborate entangled vascular networks from space-filling mathematical topologies and explore the oxygenation and flow of human red blood cells during tidal ventilation and distension of a proximate airway. In addition, we deploy structured biodegradable hydrogel carriers in a rodent model of chronic liver injury to highlight the potential translational utility of this materials innovation.</description><subject>Absorption, Physicochemical</subject><subject>Additives</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biomimetic Materials - chemistry</subject><subject>Blood Vessels</subject><subject>Coloring Agents - chemistry</subject><subject>Computational fluid dynamics</subject><subject>Disease Models, Animal</subject><subject>Distension</subject><subject>Erythrocytes</subject><subject>Erythrocytes - metabolism</subject><subject>Food additives</subject><subject>Food dyes</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Light</subject><subject>Lithography</subject><subject>Liver</subject><subject>Lung Injury - therapy</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Networks</subject><subject>Nutrient transport</subject><subject>Organs</subject><subject>Oxygenation</subject><subject>Polymerization - radiation effects</subject><subject>Respiratory tract</subject><subject>Stereolithography</subject><subject>Topology</subject><subject>Transport</subject><subject>Valves</subject><subject>Ventilation</subject><subject>Vertebrates</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkTuPEzEUhS0EYsNCTQUaQUOT3WuPH-MGCa14SYtooESWx3MncXDsYHuy2n_PRAkRUN3ifPfcxyHkOYUrSpm8Ls5jdHhl7V4rAQ_IgoIWS82gfUgWAK1cdqDEBXlSygZg1nT7mFy0FHjHO7kgP75Mofq9LW4KNjcR613KP0tj49CMU3TVp2hD42PN9kzVtEshrTyW5s7XtY9N75NL252tvg_YrO-HnFYYylPyaLSh4LNTvSTfP7z_dvNpefv14-ebd7dLJ1oOy27kTjs1OmBcdGPHrZZM4wBajlxIwMFqJaniig16xH5knEOPokfnuKOuvSRvj767qd_i4PCwbjC77Lc235tkvflXiX5tVmlvlJKaKpgNXh0NUqnezF-t6NYuxYiuGiqokFzO0JvTlJx-TViq2friMAQbMU3FMMY048CFmNHX_6GbNOX5kweKamDAJJup6yPlciol43jemII55GtO-ZpTvnPHy78PPfN_Ap2BF0dgU2rKZ51JyXWrdPsbWJKwGg</recordid><startdate>20190503</startdate><enddate>20190503</enddate><creator>Grigoryan, Bagrat</creator><creator>Paulsen, Samantha J.</creator><creator>Corbett, Daniel C.</creator><creator>Sazer, Daniel W.</creator><creator>Fortin, Chelsea L.</creator><creator>Zaita, Alexander J.</creator><creator>Greenfield, Paul T.</creator><creator>Calafat, Nicholas J.</creator><creator>Gounley, John P.</creator><creator>Ta, Anderson H.</creator><creator>Johansson, Fredrik</creator><creator>Randles, Amanda</creator><creator>Rosenkrantz, Jessica E.</creator><creator>Louis-Rosenberg, Jesse D.</creator><creator>Galie, Peter A.</creator><creator>Stevens, Kelly R.</creator><creator>Miller, Jordan S.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3280-9360</orcidid><orcidid>https://orcid.org/0000-0002-3082-6175</orcidid><orcidid>https://orcid.org/0000-0002-1057-4353</orcidid><orcidid>https://orcid.org/0000-0002-3114-7422</orcidid><orcidid>https://orcid.org/0000-0002-6931-0862</orcidid><orcidid>https://orcid.org/0000-0002-4024-2990</orcidid><orcidid>https://orcid.org/0000-0003-4525-7697</orcidid><orcidid>https://orcid.org/0000-0003-4567-7173</orcidid><orcidid>https://orcid.org/0000-0001-6318-3885</orcidid><orcidid>https://orcid.org/0000-0002-0483-5721</orcidid><orcidid>https://orcid.org/0000-0003-0433-6946</orcidid><orcidid>https://orcid.org/0000-0001-8424-4982</orcidid><orcidid>https://orcid.org/0000-0001-5161-4924</orcidid><orcidid>https://orcid.org/0000-0002-7931-551X</orcidid><orcidid>https://orcid.org/0000000231147422</orcidid><orcidid>https://orcid.org/0000000345257697</orcidid><orcidid>https://orcid.org/0000000151614924</orcidid><orcidid>https://orcid.org/0000000163183885</orcidid><orcidid>https://orcid.org/0000000345677173</orcidid><orcidid>https://orcid.org/0000000304336946</orcidid><orcidid>https://orcid.org/0000000240242990</orcidid><orcidid>https://orcid.org/0000000269310862</orcidid><orcidid>https://orcid.org/000000027931551X</orcidid><orcidid>https://orcid.org/0000000210574353</orcidid><orcidid>https://orcid.org/0000000204835721</orcidid><orcidid>https://orcid.org/0000000230826175</orcidid><orcidid>https://orcid.org/0000000232809360</orcidid><orcidid>https://orcid.org/0000000184244982</orcidid></search><sort><creationdate>20190503</creationdate><title>Multivascular networks and functional intravascular topologies within biocompatible hydrogels</title><author>Grigoryan, Bagrat ; Paulsen, Samantha J. ; Corbett, Daniel C. ; Sazer, Daniel W. ; Fortin, Chelsea L. ; Zaita, Alexander J. ; Greenfield, Paul T. ; Calafat, Nicholas J. ; Gounley, John P. ; Ta, Anderson H. ; Johansson, Fredrik ; Randles, Amanda ; Rosenkrantz, Jessica E. ; Louis-Rosenberg, Jesse D. ; Galie, Peter A. ; Stevens, Kelly R. ; Miller, Jordan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5340-8f4c9c7fc02458f84a9629ed096f4560eda97617472d9febf2440be5becc4c1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption, Physicochemical</topic><topic>Additives</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biomimetic Materials - chemistry</topic><topic>Blood Vessels</topic><topic>Coloring Agents - chemistry</topic><topic>Computational fluid dynamics</topic><topic>Disease Models, Animal</topic><topic>Distension</topic><topic>Erythrocytes</topic><topic>Erythrocytes - metabolism</topic><topic>Food additives</topic><topic>Food dyes</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Light</topic><topic>Lithography</topic><topic>Liver</topic><topic>Lung Injury - therapy</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Networks</topic><topic>Nutrient transport</topic><topic>Organs</topic><topic>Oxygenation</topic><topic>Polymerization - radiation effects</topic><topic>Respiratory tract</topic><topic>Stereolithography</topic><topic>Topology</topic><topic>Transport</topic><topic>Valves</topic><topic>Ventilation</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigoryan, Bagrat</creatorcontrib><creatorcontrib>Paulsen, Samantha J.</creatorcontrib><creatorcontrib>Corbett, Daniel C.</creatorcontrib><creatorcontrib>Sazer, Daniel W.</creatorcontrib><creatorcontrib>Fortin, Chelsea L.</creatorcontrib><creatorcontrib>Zaita, Alexander J.</creatorcontrib><creatorcontrib>Greenfield, Paul T.</creatorcontrib><creatorcontrib>Calafat, Nicholas J.</creatorcontrib><creatorcontrib>Gounley, John P.</creatorcontrib><creatorcontrib>Ta, Anderson H.</creatorcontrib><creatorcontrib>Johansson, Fredrik</creatorcontrib><creatorcontrib>Randles, Amanda</creatorcontrib><creatorcontrib>Rosenkrantz, Jessica E.</creatorcontrib><creatorcontrib>Louis-Rosenberg, Jesse D.</creatorcontrib><creatorcontrib>Galie, Peter A.</creatorcontrib><creatorcontrib>Stevens, Kelly R.</creatorcontrib><creatorcontrib>Miller, Jordan S.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigoryan, Bagrat</au><au>Paulsen, Samantha J.</au><au>Corbett, Daniel C.</au><au>Sazer, Daniel W.</au><au>Fortin, Chelsea L.</au><au>Zaita, Alexander J.</au><au>Greenfield, Paul T.</au><au>Calafat, Nicholas J.</au><au>Gounley, John P.</au><au>Ta, Anderson H.</au><au>Johansson, Fredrik</au><au>Randles, Amanda</au><au>Rosenkrantz, Jessica E.</au><au>Louis-Rosenberg, Jesse D.</au><au>Galie, Peter A.</au><au>Stevens, Kelly R.</au><au>Miller, Jordan S.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivascular networks and functional intravascular topologies within biocompatible hydrogels</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-05-03</date><risdate>2019</risdate><volume>364</volume><issue>6439</issue><spage>458</spage><epage>464</epage><pages>458-464</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><abstract>Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels by using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels, produced in minutes, comprising efficient intravascular 3D fluid mixers and functional bicuspid valves. We further elaborate entangled vascular networks from space-filling mathematical topologies and explore the oxygenation and flow of human red blood cells during tidal ventilation and distension of a proximate airway. In addition, we deploy structured biodegradable hydrogel carriers in a rodent model of chronic liver injury to highlight the potential translational utility of this materials innovation.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31048486</pmid><doi>10.1126/science.aav9750</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3280-9360</orcidid><orcidid>https://orcid.org/0000-0002-3082-6175</orcidid><orcidid>https://orcid.org/0000-0002-1057-4353</orcidid><orcidid>https://orcid.org/0000-0002-3114-7422</orcidid><orcidid>https://orcid.org/0000-0002-6931-0862</orcidid><orcidid>https://orcid.org/0000-0002-4024-2990</orcidid><orcidid>https://orcid.org/0000-0003-4525-7697</orcidid><orcidid>https://orcid.org/0000-0003-4567-7173</orcidid><orcidid>https://orcid.org/0000-0001-6318-3885</orcidid><orcidid>https://orcid.org/0000-0002-0483-5721</orcidid><orcidid>https://orcid.org/0000-0003-0433-6946</orcidid><orcidid>https://orcid.org/0000-0001-8424-4982</orcidid><orcidid>https://orcid.org/0000-0001-5161-4924</orcidid><orcidid>https://orcid.org/0000-0002-7931-551X</orcidid><orcidid>https://orcid.org/0000000231147422</orcidid><orcidid>https://orcid.org/0000000345257697</orcidid><orcidid>https://orcid.org/0000000151614924</orcidid><orcidid>https://orcid.org/0000000163183885</orcidid><orcidid>https://orcid.org/0000000345677173</orcidid><orcidid>https://orcid.org/0000000304336946</orcidid><orcidid>https://orcid.org/0000000240242990</orcidid><orcidid>https://orcid.org/0000000269310862</orcidid><orcidid>https://orcid.org/000000027931551X</orcidid><orcidid>https://orcid.org/0000000210574353</orcidid><orcidid>https://orcid.org/0000000204835721</orcidid><orcidid>https://orcid.org/0000000230826175</orcidid><orcidid>https://orcid.org/0000000232809360</orcidid><orcidid>https://orcid.org/0000000184244982</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2019-05, Vol.364 (6439), p.458-464
issn 0036-8075
1095-9203
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7769170
source American Association for the Advancement of Science; MEDLINE
subjects Absorption, Physicochemical
Additives
Animals
BASIC BIOLOGICAL SCIENCES
Biocompatibility
Biocompatible Materials - chemistry
Biodegradability
Biodegradation
Biomimetic Materials - chemistry
Blood Vessels
Coloring Agents - chemistry
Computational fluid dynamics
Disease Models, Animal
Distension
Erythrocytes
Erythrocytes - metabolism
Food additives
Food dyes
Humans
Hydrogels
Hydrogels - chemistry
Light
Lithography
Liver
Lung Injury - therapy
Mice
Mice, Nude
Networks
Nutrient transport
Organs
Oxygenation
Polymerization - radiation effects
Respiratory tract
Stereolithography
Topology
Transport
Valves
Ventilation
Vertebrates
title Multivascular networks and functional intravascular topologies within biocompatible hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivascular%20networks%20and%20functional%20intravascular%20topologies%20within%20biocompatible%20hydrogels&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Grigoryan,%20Bagrat&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-05-03&rft.volume=364&rft.issue=6439&rft.spage=458&rft.epage=464&rft.pages=458-464&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aav9750&rft_dat=%3Cjstor_pubme%3E26649379%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2219020262&rft_id=info:pmid/31048486&rft_jstor_id=26649379&rfr_iscdi=true