Multiply robust causal inference with double‐negative control adjustment for categorical unmeasured confounding

Summary Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long‐standing tradition in laboratory sciences and epid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2020-04, Vol.82 (2), p.521-540
Hauptverfasser: Shi, Xu, Miao, Wang, Nelson, Jennifer C., Tchetgen Tchetgen, Eric J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 540
container_issue 2
container_start_page 521
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 82
creator Shi, Xu
Miao, Wang
Nelson, Jennifer C.
Tchetgen Tchetgen, Eric J.
description Summary Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long‐standing tradition in laboratory sciences and epidemiology to rule out non‐causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non‐parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non‐parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non‐parametric model, and we propose multiply robust and locally efficient estimators when non‐parametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post‐licensure surveillance of vaccine safety among children.
doi_str_mv 10.1111/rssb.12361
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7768794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377826748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4811-94ee8b088ae44c3cacd0eed62aebee5b85b9fb1b19b2dfdb4180292bd656cc123</originalsourceid><addsrcrecordid>eNp9kc1qFTEUxwdR7IdufAAZcCPC1MkkNx8bQYtWoUWwug75OHObSya5TSYtd-cj9Bl9kuZ626IuPJsE8ju_nOTfNC9Qf4RqvU056yM0YIoeNfuIUNYJTvnjusdUdIygYa85yHnV16IMP232MMaMEiL2m8uz4me39ps2RV3y3BpVsvKtCyMkCAbaazdftDYW7eHXz5sASzW7K2hNDHOKvlV2VdsmCHM7xlTbZ1jG5Ex1lDCByiWB3dJjLMG6sHzWPBmVz_D8bj1sfnz6-P34c3f69eTL8fvTzhCOUCcIANc95woIMdgoY3sASwcFGmCh-UKLUSONhB7saDVBvB_EoC1dUGPqbxw273beddETWFMnTMrLdXKTShsZlZN_nwR3IZfxSjJGOROkCl7fCVK8LJBnOblswHsVIJYsB8KwqHf2fUVf_YOuYkmhPk8OmDE-UEZ4pd7sKJNizgnGh2FQL7dJym2S8neSFX755_gP6H10FUA74Np52PxHJb-dn3_YSW8BXVavPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377826748</pqid></control><display><type>article</type><title>Multiply robust causal inference with double‐negative control adjustment for categorical unmeasured confounding</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Shi, Xu ; Miao, Wang ; Nelson, Jennifer C. ; Tchetgen Tchetgen, Eric J.</creator><creatorcontrib>Shi, Xu ; Miao, Wang ; Nelson, Jennifer C. ; Tchetgen Tchetgen, Eric J.</creatorcontrib><description>Summary Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long‐standing tradition in laboratory sciences and epidemiology to rule out non‐causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non‐parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non‐parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non‐parametric model, and we propose multiply robust and locally efficient estimators when non‐parametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post‐licensure surveillance of vaccine safety among children.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12361</identifier><identifier>PMID: 33376449</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bias ; Causal inference ; Computer simulation ; Epidemiology ; Inference ; Licensing ; Negative control ; Observational studies ; Parameter estimation ; Popularity ; Regression analysis ; Robustness ; Semiparametric inference ; Simulation ; Statistical methods ; Statistics ; Surveillance ; Unmeasured confounding</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2020-04, Vol.82 (2), p.521-540</ispartof><rights>2020 Royal Statistical Society</rights><rights>Copyright © 2020 The Royal Statistical Society and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4811-94ee8b088ae44c3cacd0eed62aebee5b85b9fb1b19b2dfdb4180292bd656cc123</citedby><cites>FETCH-LOGICAL-c4811-94ee8b088ae44c3cacd0eed62aebee5b85b9fb1b19b2dfdb4180292bd656cc123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frssb.12361$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frssb.12361$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33376449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Xu</creatorcontrib><creatorcontrib>Miao, Wang</creatorcontrib><creatorcontrib>Nelson, Jennifer C.</creatorcontrib><creatorcontrib>Tchetgen Tchetgen, Eric J.</creatorcontrib><title>Multiply robust causal inference with double‐negative control adjustment for categorical unmeasured confounding</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><addtitle>J R Stat Soc Series B Stat Methodol</addtitle><description>Summary Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long‐standing tradition in laboratory sciences and epidemiology to rule out non‐causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non‐parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non‐parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non‐parametric model, and we propose multiply robust and locally efficient estimators when non‐parametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post‐licensure surveillance of vaccine safety among children.</description><subject>Bias</subject><subject>Causal inference</subject><subject>Computer simulation</subject><subject>Epidemiology</subject><subject>Inference</subject><subject>Licensing</subject><subject>Negative control</subject><subject>Observational studies</subject><subject>Parameter estimation</subject><subject>Popularity</subject><subject>Regression analysis</subject><subject>Robustness</subject><subject>Semiparametric inference</subject><subject>Simulation</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Surveillance</subject><subject>Unmeasured confounding</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1qFTEUxwdR7IdufAAZcCPC1MkkNx8bQYtWoUWwug75OHObSya5TSYtd-cj9Bl9kuZ626IuPJsE8ju_nOTfNC9Qf4RqvU056yM0YIoeNfuIUNYJTvnjusdUdIygYa85yHnV16IMP232MMaMEiL2m8uz4me39ps2RV3y3BpVsvKtCyMkCAbaazdftDYW7eHXz5sASzW7K2hNDHOKvlV2VdsmCHM7xlTbZ1jG5Ex1lDCByiWB3dJjLMG6sHzWPBmVz_D8bj1sfnz6-P34c3f69eTL8fvTzhCOUCcIANc95woIMdgoY3sASwcFGmCh-UKLUSONhB7saDVBvB_EoC1dUGPqbxw273beddETWFMnTMrLdXKTShsZlZN_nwR3IZfxSjJGOROkCl7fCVK8LJBnOblswHsVIJYsB8KwqHf2fUVf_YOuYkmhPk8OmDE-UEZ4pd7sKJNizgnGh2FQL7dJym2S8neSFX755_gP6H10FUA74Np52PxHJb-dn3_YSW8BXVavPQ</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Shi, Xu</creator><creator>Miao, Wang</creator><creator>Nelson, Jennifer C.</creator><creator>Tchetgen Tchetgen, Eric J.</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202004</creationdate><title>Multiply robust causal inference with double‐negative control adjustment for categorical unmeasured confounding</title><author>Shi, Xu ; Miao, Wang ; Nelson, Jennifer C. ; Tchetgen Tchetgen, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4811-94ee8b088ae44c3cacd0eed62aebee5b85b9fb1b19b2dfdb4180292bd656cc123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bias</topic><topic>Causal inference</topic><topic>Computer simulation</topic><topic>Epidemiology</topic><topic>Inference</topic><topic>Licensing</topic><topic>Negative control</topic><topic>Observational studies</topic><topic>Parameter estimation</topic><topic>Popularity</topic><topic>Regression analysis</topic><topic>Robustness</topic><topic>Semiparametric inference</topic><topic>Simulation</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Surveillance</topic><topic>Unmeasured confounding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xu</creatorcontrib><creatorcontrib>Miao, Wang</creatorcontrib><creatorcontrib>Nelson, Jennifer C.</creatorcontrib><creatorcontrib>Tchetgen Tchetgen, Eric J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Xu</au><au>Miao, Wang</au><au>Nelson, Jennifer C.</au><au>Tchetgen Tchetgen, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiply robust causal inference with double‐negative control adjustment for categorical unmeasured confounding</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><addtitle>J R Stat Soc Series B Stat Methodol</addtitle><date>2020-04</date><risdate>2020</risdate><volume>82</volume><issue>2</issue><spage>521</spage><epage>540</epage><pages>521-540</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>Summary Unmeasured confounding is a threat to causal inference in observational studies. In recent years, the use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a long‐standing tradition in laboratory sciences and epidemiology to rule out non‐causal explanations, although they have been used primarily for bias detection. Recently, Miao and colleagues have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to identify non‐parametrically the average treatment effect (ATE) from observational data subject to uncontrolled confounding. We establish non‐parametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the non‐parametric model, and we propose multiply robust and locally efficient estimators when non‐parametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the post‐licensure surveillance of vaccine safety among children.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33376449</pmid><doi>10.1111/rssb.12361</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2020-04, Vol.82 (2), p.521-540
issn 1369-7412
1467-9868
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7768794
source EBSCOhost Business Source Complete; Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current)
subjects Bias
Causal inference
Computer simulation
Epidemiology
Inference
Licensing
Negative control
Observational studies
Parameter estimation
Popularity
Regression analysis
Robustness
Semiparametric inference
Simulation
Statistical methods
Statistics
Surveillance
Unmeasured confounding
title Multiply robust causal inference with double‐negative control adjustment for categorical unmeasured confounding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiply%20robust%20causal%20inference%20with%20double%E2%80%90negative%20control%20adjustment%20for%20categorical%20unmeasured%20confounding&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Shi,%20Xu&rft.date=2020-04&rft.volume=82&rft.issue=2&rft.spage=521&rft.epage=540&rft.pages=521-540&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12361&rft_dat=%3Cproquest_pubme%3E2377826748%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377826748&rft_id=info:pmid/33376449&rfr_iscdi=true