Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes

Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular gastroenterology and hepatology 2021-01, Vol.11 (1), p.309-325.e3
Hauptverfasser: Saeed, Ali, Bartuzi, Paulina, Heegsma, Janette, Dekker, Daphne, Kloosterhuis, Niels, de Bruin, Alain, Jonker, Johan W., van de Sluis, Bart, Faber, Klaas Nico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 325.e3
container_issue 1
container_start_page 309
container_title Cellular and molecular gastroenterology and hepatology
container_volume 11
creator Saeed, Ali
Bartuzi, Paulina
Heegsma, Janette
Dekker, Daphne
Kloosterhuis, Niels
de Bruin, Alain
Jonker, Johan W.
van de Sluis, Bart
Faber, Klaas Nico
description Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression. Still, little mechanistic details are known about hepatic vitamin A metabolism in NAFLD, which may affect carbohydrate and lipid metabolism, inflammation, oxidative stress and the development of fibrosis and cancer, e.g. all risk factors of NAFLD. Here, we analyzed vitamin A metabolism in 2 mouse models of NAFLD; mice fed a high-fat, high-cholesterol (HFC) diet and Leptinob mutant (ob/ob) mice. Hepatic retinol and retinol binding protein 4 (RBP4) levels were significantly reduced in both mouse models of NAFLD. In contrast, hepatic retinyl palmitate levels (the vitamin A storage form) were significantly elevated in these mice. Transcriptome analysis revealed a hyperdynamic state of hepatic vitamin A metabolism, with enhanced retinol storage and metabolism (upregulated Lrat, Dgat1, Pnpla3, Raldh’s and RAR/RXR-target genes) in fatty livers, in conjunction with induced hepatic inflammation (upregulated Cd68, Tnfα, Nos2, Il1β, Il-6) and fibrosis (upregulated Col1a1, Acta2, Tgfβ, Timp1). Autofluorescence analyses revealed prominent vitamin A accumulation in hepatocytes rather than HSC in HFC-fed mice. Palmitic acid exposure increased Lrat mRNA levels in primary rat hepatocytes and promoted retinyl palmitate accumulation when co-treated with retinol, which was not detected for similarly-treated primary rat HSCs. NAFLD leads to cell type-specific rearrangements in retinol metabolism leading to vitamin A accumulation in hepatocytes. This may promote disease progression and/or affect therapeutic approaches targeting nuclear receptors. [Display omitted]
doi_str_mv 10.1016/j.jcmgh.2020.07.006
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7768561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352345X20301120</els_id><sourcerecordid>2426535453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-b0c2d4baa93407a5be0a5903d664f32f762fc0b40ca74ac0429711958d7d90343</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi1UBIjyCyqhHHvZdOLPzYFKKygFaYELrXqzHHuyeJXE29hB4t_Xy1K0vfRkW_PMOyM_hHyqoKygkl_W5dr2q6eSAoUSVAkgD8gJZYLOGBe_Puzdj8lZjGsAqLiSCsQROWZU1nPg9IS4235j_IiuuMGNSd4WP30yvR-KRXGHyTSh87Ev8vt-cb28Ku68xWKJxvlhVaSwRy-snfqpyxlh2PKvecG-JIwfyWFruohnb-cp-XH97fHyZrZ8-H57uVjOrFAizRqw1PHGmJpxUEY0CEbUwJyUvGW0VZK2FhoO1ihubN6_VlVVi7lTLmOcnZKvu9zN1PToLA5pNJ3ejL4344sOxut_K4N_0qvwrJWScyGrHPD5LWAMvyeMSfc-Wuw6M2CYoqacSsEEFyyjbIfaMcQ4Yvs-pgK9VaTX-lWR3irSoHRWlLvO9zd87_krJAMXOwDzPz17HHW0HgeLLkuySbvg_zvgDxNxox8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426535453</pqid></control><display><type>article</type><title>Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Saeed, Ali ; Bartuzi, Paulina ; Heegsma, Janette ; Dekker, Daphne ; Kloosterhuis, Niels ; de Bruin, Alain ; Jonker, Johan W. ; van de Sluis, Bart ; Faber, Klaas Nico</creator><creatorcontrib>Saeed, Ali ; Bartuzi, Paulina ; Heegsma, Janette ; Dekker, Daphne ; Kloosterhuis, Niels ; de Bruin, Alain ; Jonker, Johan W. ; van de Sluis, Bart ; Faber, Klaas Nico</creatorcontrib><description>Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression. Still, little mechanistic details are known about hepatic vitamin A metabolism in NAFLD, which may affect carbohydrate and lipid metabolism, inflammation, oxidative stress and the development of fibrosis and cancer, e.g. all risk factors of NAFLD. Here, we analyzed vitamin A metabolism in 2 mouse models of NAFLD; mice fed a high-fat, high-cholesterol (HFC) diet and Leptinob mutant (ob/ob) mice. Hepatic retinol and retinol binding protein 4 (RBP4) levels were significantly reduced in both mouse models of NAFLD. In contrast, hepatic retinyl palmitate levels (the vitamin A storage form) were significantly elevated in these mice. Transcriptome analysis revealed a hyperdynamic state of hepatic vitamin A metabolism, with enhanced retinol storage and metabolism (upregulated Lrat, Dgat1, Pnpla3, Raldh’s and RAR/RXR-target genes) in fatty livers, in conjunction with induced hepatic inflammation (upregulated Cd68, Tnfα, Nos2, Il1β, Il-6) and fibrosis (upregulated Col1a1, Acta2, Tgfβ, Timp1). Autofluorescence analyses revealed prominent vitamin A accumulation in hepatocytes rather than HSC in HFC-fed mice. Palmitic acid exposure increased Lrat mRNA levels in primary rat hepatocytes and promoted retinyl palmitate accumulation when co-treated with retinol, which was not detected for similarly-treated primary rat HSCs. NAFLD leads to cell type-specific rearrangements in retinol metabolism leading to vitamin A accumulation in hepatocytes. This may promote disease progression and/or affect therapeutic approaches targeting nuclear receptors. [Display omitted]</description><identifier>ISSN: 2352-345X</identifier><identifier>EISSN: 2352-345X</identifier><identifier>DOI: 10.1016/j.jcmgh.2020.07.006</identifier><identifier>PMID: 32698042</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>17-Hydroxysteroid Dehydrogenases - genetics ; 17-Hydroxysteroid Dehydrogenases - metabolism ; Animals ; Autofluorescence ; Diet, High-Fat - adverse effects ; Disease Models, Animal ; Disease Progression ; Fatty Liver Disease ; Female ; Hepatic Stellate Cells - metabolism ; Hepatocytes - metabolism ; Hepatocytes - pathology ; Humans ; Leptin - genetics ; Lipid Metabolism ; Liver - cytology ; Liver - pathology ; Male ; Mice ; Mice, Transgenic ; Non-alcoholic Fatty Liver Disease - etiology ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - pathology ; Original Research ; Phospholipases A2, Calcium-Independent - genetics ; Phospholipases A2, Calcium-Independent - metabolism ; Retinol-Binding Proteins, Plasma - analysis ; Retinol-Binding Proteins, Plasma - metabolism ; Vitamin A ; Vitamin A - analysis ; Vitamin A - metabolism</subject><ispartof>Cellular and molecular gastroenterology and hepatology, 2021-01, Vol.11 (1), p.309-325.e3</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-b0c2d4baa93407a5be0a5903d664f32f762fc0b40ca74ac0429711958d7d90343</citedby><cites>FETCH-LOGICAL-c575t-b0c2d4baa93407a5be0a5903d664f32f762fc0b40ca74ac0429711958d7d90343</cites><orcidid>0000-0001-6255-4058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768561/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768561/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32698042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saeed, Ali</creatorcontrib><creatorcontrib>Bartuzi, Paulina</creatorcontrib><creatorcontrib>Heegsma, Janette</creatorcontrib><creatorcontrib>Dekker, Daphne</creatorcontrib><creatorcontrib>Kloosterhuis, Niels</creatorcontrib><creatorcontrib>de Bruin, Alain</creatorcontrib><creatorcontrib>Jonker, Johan W.</creatorcontrib><creatorcontrib>van de Sluis, Bart</creatorcontrib><creatorcontrib>Faber, Klaas Nico</creatorcontrib><title>Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes</title><title>Cellular and molecular gastroenterology and hepatology</title><addtitle>Cell Mol Gastroenterol Hepatol</addtitle><description>Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression. Still, little mechanistic details are known about hepatic vitamin A metabolism in NAFLD, which may affect carbohydrate and lipid metabolism, inflammation, oxidative stress and the development of fibrosis and cancer, e.g. all risk factors of NAFLD. Here, we analyzed vitamin A metabolism in 2 mouse models of NAFLD; mice fed a high-fat, high-cholesterol (HFC) diet and Leptinob mutant (ob/ob) mice. Hepatic retinol and retinol binding protein 4 (RBP4) levels were significantly reduced in both mouse models of NAFLD. In contrast, hepatic retinyl palmitate levels (the vitamin A storage form) were significantly elevated in these mice. Transcriptome analysis revealed a hyperdynamic state of hepatic vitamin A metabolism, with enhanced retinol storage and metabolism (upregulated Lrat, Dgat1, Pnpla3, Raldh’s and RAR/RXR-target genes) in fatty livers, in conjunction with induced hepatic inflammation (upregulated Cd68, Tnfα, Nos2, Il1β, Il-6) and fibrosis (upregulated Col1a1, Acta2, Tgfβ, Timp1). Autofluorescence analyses revealed prominent vitamin A accumulation in hepatocytes rather than HSC in HFC-fed mice. Palmitic acid exposure increased Lrat mRNA levels in primary rat hepatocytes and promoted retinyl palmitate accumulation when co-treated with retinol, which was not detected for similarly-treated primary rat HSCs. NAFLD leads to cell type-specific rearrangements in retinol metabolism leading to vitamin A accumulation in hepatocytes. This may promote disease progression and/or affect therapeutic approaches targeting nuclear receptors. [Display omitted]</description><subject>17-Hydroxysteroid Dehydrogenases - genetics</subject><subject>17-Hydroxysteroid Dehydrogenases - metabolism</subject><subject>Animals</subject><subject>Autofluorescence</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>Fatty Liver Disease</subject><subject>Female</subject><subject>Hepatic Stellate Cells - metabolism</subject><subject>Hepatocytes - metabolism</subject><subject>Hepatocytes - pathology</subject><subject>Humans</subject><subject>Leptin - genetics</subject><subject>Lipid Metabolism</subject><subject>Liver - cytology</subject><subject>Liver - pathology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Non-alcoholic Fatty Liver Disease - etiology</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>Original Research</subject><subject>Phospholipases A2, Calcium-Independent - genetics</subject><subject>Phospholipases A2, Calcium-Independent - metabolism</subject><subject>Retinol-Binding Proteins, Plasma - analysis</subject><subject>Retinol-Binding Proteins, Plasma - metabolism</subject><subject>Vitamin A</subject><subject>Vitamin A - analysis</subject><subject>Vitamin A - metabolism</subject><issn>2352-345X</issn><issn>2352-345X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1P3DAQhi1UBIjyCyqhHHvZdOLPzYFKKygFaYELrXqzHHuyeJXE29hB4t_Xy1K0vfRkW_PMOyM_hHyqoKygkl_W5dr2q6eSAoUSVAkgD8gJZYLOGBe_Puzdj8lZjGsAqLiSCsQROWZU1nPg9IS4235j_IiuuMGNSd4WP30yvR-KRXGHyTSh87Ev8vt-cb28Ku68xWKJxvlhVaSwRy-snfqpyxlh2PKvecG-JIwfyWFruohnb-cp-XH97fHyZrZ8-H57uVjOrFAizRqw1PHGmJpxUEY0CEbUwJyUvGW0VZK2FhoO1ihubN6_VlVVi7lTLmOcnZKvu9zN1PToLA5pNJ3ejL4344sOxut_K4N_0qvwrJWScyGrHPD5LWAMvyeMSfc-Wuw6M2CYoqacSsEEFyyjbIfaMcQ4Yvs-pgK9VaTX-lWR3irSoHRWlLvO9zd87_krJAMXOwDzPz17HHW0HgeLLkuySbvg_zvgDxNxox8</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Saeed, Ali</creator><creator>Bartuzi, Paulina</creator><creator>Heegsma, Janette</creator><creator>Dekker, Daphne</creator><creator>Kloosterhuis, Niels</creator><creator>de Bruin, Alain</creator><creator>Jonker, Johan W.</creator><creator>van de Sluis, Bart</creator><creator>Faber, Klaas Nico</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6255-4058</orcidid></search><sort><creationdate>20210101</creationdate><title>Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes</title><author>Saeed, Ali ; Bartuzi, Paulina ; Heegsma, Janette ; Dekker, Daphne ; Kloosterhuis, Niels ; de Bruin, Alain ; Jonker, Johan W. ; van de Sluis, Bart ; Faber, Klaas Nico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-b0c2d4baa93407a5be0a5903d664f32f762fc0b40ca74ac0429711958d7d90343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>17-Hydroxysteroid Dehydrogenases - genetics</topic><topic>17-Hydroxysteroid Dehydrogenases - metabolism</topic><topic>Animals</topic><topic>Autofluorescence</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>Fatty Liver Disease</topic><topic>Female</topic><topic>Hepatic Stellate Cells - metabolism</topic><topic>Hepatocytes - metabolism</topic><topic>Hepatocytes - pathology</topic><topic>Humans</topic><topic>Leptin - genetics</topic><topic>Lipid Metabolism</topic><topic>Liver - cytology</topic><topic>Liver - pathology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Non-alcoholic Fatty Liver Disease - etiology</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>Original Research</topic><topic>Phospholipases A2, Calcium-Independent - genetics</topic><topic>Phospholipases A2, Calcium-Independent - metabolism</topic><topic>Retinol-Binding Proteins, Plasma - analysis</topic><topic>Retinol-Binding Proteins, Plasma - metabolism</topic><topic>Vitamin A</topic><topic>Vitamin A - analysis</topic><topic>Vitamin A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saeed, Ali</creatorcontrib><creatorcontrib>Bartuzi, Paulina</creatorcontrib><creatorcontrib>Heegsma, Janette</creatorcontrib><creatorcontrib>Dekker, Daphne</creatorcontrib><creatorcontrib>Kloosterhuis, Niels</creatorcontrib><creatorcontrib>de Bruin, Alain</creatorcontrib><creatorcontrib>Jonker, Johan W.</creatorcontrib><creatorcontrib>van de Sluis, Bart</creatorcontrib><creatorcontrib>Faber, Klaas Nico</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular gastroenterology and hepatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saeed, Ali</au><au>Bartuzi, Paulina</au><au>Heegsma, Janette</au><au>Dekker, Daphne</au><au>Kloosterhuis, Niels</au><au>de Bruin, Alain</au><au>Jonker, Johan W.</au><au>van de Sluis, Bart</au><au>Faber, Klaas Nico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes</atitle><jtitle>Cellular and molecular gastroenterology and hepatology</jtitle><addtitle>Cell Mol Gastroenterol Hepatol</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>309</spage><epage>325.e3</epage><pages>309-325.e3</pages><issn>2352-345X</issn><eissn>2352-345X</eissn><abstract>Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression. Still, little mechanistic details are known about hepatic vitamin A metabolism in NAFLD, which may affect carbohydrate and lipid metabolism, inflammation, oxidative stress and the development of fibrosis and cancer, e.g. all risk factors of NAFLD. Here, we analyzed vitamin A metabolism in 2 mouse models of NAFLD; mice fed a high-fat, high-cholesterol (HFC) diet and Leptinob mutant (ob/ob) mice. Hepatic retinol and retinol binding protein 4 (RBP4) levels were significantly reduced in both mouse models of NAFLD. In contrast, hepatic retinyl palmitate levels (the vitamin A storage form) were significantly elevated in these mice. Transcriptome analysis revealed a hyperdynamic state of hepatic vitamin A metabolism, with enhanced retinol storage and metabolism (upregulated Lrat, Dgat1, Pnpla3, Raldh’s and RAR/RXR-target genes) in fatty livers, in conjunction with induced hepatic inflammation (upregulated Cd68, Tnfα, Nos2, Il1β, Il-6) and fibrosis (upregulated Col1a1, Acta2, Tgfβ, Timp1). Autofluorescence analyses revealed prominent vitamin A accumulation in hepatocytes rather than HSC in HFC-fed mice. Palmitic acid exposure increased Lrat mRNA levels in primary rat hepatocytes and promoted retinyl palmitate accumulation when co-treated with retinol, which was not detected for similarly-treated primary rat HSCs. NAFLD leads to cell type-specific rearrangements in retinol metabolism leading to vitamin A accumulation in hepatocytes. This may promote disease progression and/or affect therapeutic approaches targeting nuclear receptors. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32698042</pmid><doi>10.1016/j.jcmgh.2020.07.006</doi><orcidid>https://orcid.org/0000-0001-6255-4058</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-345X
ispartof Cellular and molecular gastroenterology and hepatology, 2021-01, Vol.11 (1), p.309-325.e3
issn 2352-345X
2352-345X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7768561
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 17-Hydroxysteroid Dehydrogenases - genetics
17-Hydroxysteroid Dehydrogenases - metabolism
Animals
Autofluorescence
Diet, High-Fat - adverse effects
Disease Models, Animal
Disease Progression
Fatty Liver Disease
Female
Hepatic Stellate Cells - metabolism
Hepatocytes - metabolism
Hepatocytes - pathology
Humans
Leptin - genetics
Lipid Metabolism
Liver - cytology
Liver - pathology
Male
Mice
Mice, Transgenic
Non-alcoholic Fatty Liver Disease - etiology
Non-alcoholic Fatty Liver Disease - metabolism
Non-alcoholic Fatty Liver Disease - pathology
Original Research
Phospholipases A2, Calcium-Independent - genetics
Phospholipases A2, Calcium-Independent - metabolism
Retinol-Binding Proteins, Plasma - analysis
Retinol-Binding Proteins, Plasma - metabolism
Vitamin A
Vitamin A - analysis
Vitamin A - metabolism
title Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impaired%20Hepatic%20Vitamin%20A%20Metabolism%20in%20NAFLD%20Mice%20Leading%20to%20Vitamin%20A%20Accumulation%20in%20Hepatocytes&rft.jtitle=Cellular%20and%20molecular%20gastroenterology%20and%20hepatology&rft.au=Saeed,%20Ali&rft.date=2021-01-01&rft.volume=11&rft.issue=1&rft.spage=309&rft.epage=325.e3&rft.pages=309-325.e3&rft.issn=2352-345X&rft.eissn=2352-345X&rft_id=info:doi/10.1016/j.jcmgh.2020.07.006&rft_dat=%3Cproquest_pubme%3E2426535453%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426535453&rft_id=info:pmid/32698042&rft_els_id=S2352345X20301120&rfr_iscdi=true