Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes
Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular gastroenterology and hepatology 2021-01, Vol.11 (1), p.309-325.e3 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 325.e3 |
---|---|
container_issue | 1 |
container_start_page | 309 |
container_title | Cellular and molecular gastroenterology and hepatology |
container_volume | 11 |
creator | Saeed, Ali Bartuzi, Paulina Heegsma, Janette Dekker, Daphne Kloosterhuis, Niels de Bruin, Alain Jonker, Johan W. van de Sluis, Bart Faber, Klaas Nico |
description | Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression. Still, little mechanistic details are known about hepatic vitamin A metabolism in NAFLD, which may affect carbohydrate and lipid metabolism, inflammation, oxidative stress and the development of fibrosis and cancer, e.g. all risk factors of NAFLD.
Here, we analyzed vitamin A metabolism in 2 mouse models of NAFLD; mice fed a high-fat, high-cholesterol (HFC) diet and Leptinob mutant (ob/ob) mice.
Hepatic retinol and retinol binding protein 4 (RBP4) levels were significantly reduced in both mouse models of NAFLD. In contrast, hepatic retinyl palmitate levels (the vitamin A storage form) were significantly elevated in these mice. Transcriptome analysis revealed a hyperdynamic state of hepatic vitamin A metabolism, with enhanced retinol storage and metabolism (upregulated Lrat, Dgat1, Pnpla3, Raldh’s and RAR/RXR-target genes) in fatty livers, in conjunction with induced hepatic inflammation (upregulated Cd68, Tnfα, Nos2, Il1β, Il-6) and fibrosis (upregulated Col1a1, Acta2, Tgfβ, Timp1). Autofluorescence analyses revealed prominent vitamin A accumulation in hepatocytes rather than HSC in HFC-fed mice. Palmitic acid exposure increased Lrat mRNA levels in primary rat hepatocytes and promoted retinyl palmitate accumulation when co-treated with retinol, which was not detected for similarly-treated primary rat HSCs.
NAFLD leads to cell type-specific rearrangements in retinol metabolism leading to vitamin A accumulation in hepatocytes. This may promote disease progression and/or affect therapeutic approaches targeting nuclear receptors.
[Display omitted] |
doi_str_mv | 10.1016/j.jcmgh.2020.07.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7768561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352345X20301120</els_id><sourcerecordid>2426535453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-b0c2d4baa93407a5be0a5903d664f32f762fc0b40ca74ac0429711958d7d90343</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi1UBIjyCyqhHHvZdOLPzYFKKygFaYELrXqzHHuyeJXE29hB4t_Xy1K0vfRkW_PMOyM_hHyqoKygkl_W5dr2q6eSAoUSVAkgD8gJZYLOGBe_Puzdj8lZjGsAqLiSCsQROWZU1nPg9IS4235j_IiuuMGNSd4WP30yvR-KRXGHyTSh87Ev8vt-cb28Ku68xWKJxvlhVaSwRy-snfqpyxlh2PKvecG-JIwfyWFruohnb-cp-XH97fHyZrZ8-H57uVjOrFAizRqw1PHGmJpxUEY0CEbUwJyUvGW0VZK2FhoO1ihubN6_VlVVi7lTLmOcnZKvu9zN1PToLA5pNJ3ejL4344sOxut_K4N_0qvwrJWScyGrHPD5LWAMvyeMSfc-Wuw6M2CYoqacSsEEFyyjbIfaMcQ4Yvs-pgK9VaTX-lWR3irSoHRWlLvO9zd87_krJAMXOwDzPz17HHW0HgeLLkuySbvg_zvgDxNxox8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426535453</pqid></control><display><type>article</type><title>Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Saeed, Ali ; Bartuzi, Paulina ; Heegsma, Janette ; Dekker, Daphne ; Kloosterhuis, Niels ; de Bruin, Alain ; Jonker, Johan W. ; van de Sluis, Bart ; Faber, Klaas Nico</creator><creatorcontrib>Saeed, Ali ; Bartuzi, Paulina ; Heegsma, Janette ; Dekker, Daphne ; Kloosterhuis, Niels ; de Bruin, Alain ; Jonker, Johan W. ; van de Sluis, Bart ; Faber, Klaas Nico</creatorcontrib><description>Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression. Still, little mechanistic details are known about hepatic vitamin A metabolism in NAFLD, which may affect carbohydrate and lipid metabolism, inflammation, oxidative stress and the development of fibrosis and cancer, e.g. all risk factors of NAFLD.
Here, we analyzed vitamin A metabolism in 2 mouse models of NAFLD; mice fed a high-fat, high-cholesterol (HFC) diet and Leptinob mutant (ob/ob) mice.
Hepatic retinol and retinol binding protein 4 (RBP4) levels were significantly reduced in both mouse models of NAFLD. In contrast, hepatic retinyl palmitate levels (the vitamin A storage form) were significantly elevated in these mice. Transcriptome analysis revealed a hyperdynamic state of hepatic vitamin A metabolism, with enhanced retinol storage and metabolism (upregulated Lrat, Dgat1, Pnpla3, Raldh’s and RAR/RXR-target genes) in fatty livers, in conjunction with induced hepatic inflammation (upregulated Cd68, Tnfα, Nos2, Il1β, Il-6) and fibrosis (upregulated Col1a1, Acta2, Tgfβ, Timp1). Autofluorescence analyses revealed prominent vitamin A accumulation in hepatocytes rather than HSC in HFC-fed mice. Palmitic acid exposure increased Lrat mRNA levels in primary rat hepatocytes and promoted retinyl palmitate accumulation when co-treated with retinol, which was not detected for similarly-treated primary rat HSCs.
NAFLD leads to cell type-specific rearrangements in retinol metabolism leading to vitamin A accumulation in hepatocytes. This may promote disease progression and/or affect therapeutic approaches targeting nuclear receptors.
[Display omitted]</description><identifier>ISSN: 2352-345X</identifier><identifier>EISSN: 2352-345X</identifier><identifier>DOI: 10.1016/j.jcmgh.2020.07.006</identifier><identifier>PMID: 32698042</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>17-Hydroxysteroid Dehydrogenases - genetics ; 17-Hydroxysteroid Dehydrogenases - metabolism ; Animals ; Autofluorescence ; Diet, High-Fat - adverse effects ; Disease Models, Animal ; Disease Progression ; Fatty Liver Disease ; Female ; Hepatic Stellate Cells - metabolism ; Hepatocytes - metabolism ; Hepatocytes - pathology ; Humans ; Leptin - genetics ; Lipid Metabolism ; Liver - cytology ; Liver - pathology ; Male ; Mice ; Mice, Transgenic ; Non-alcoholic Fatty Liver Disease - etiology ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - pathology ; Original Research ; Phospholipases A2, Calcium-Independent - genetics ; Phospholipases A2, Calcium-Independent - metabolism ; Retinol-Binding Proteins, Plasma - analysis ; Retinol-Binding Proteins, Plasma - metabolism ; Vitamin A ; Vitamin A - analysis ; Vitamin A - metabolism</subject><ispartof>Cellular and molecular gastroenterology and hepatology, 2021-01, Vol.11 (1), p.309-325.e3</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-b0c2d4baa93407a5be0a5903d664f32f762fc0b40ca74ac0429711958d7d90343</citedby><cites>FETCH-LOGICAL-c575t-b0c2d4baa93407a5be0a5903d664f32f762fc0b40ca74ac0429711958d7d90343</cites><orcidid>0000-0001-6255-4058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768561/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768561/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32698042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saeed, Ali</creatorcontrib><creatorcontrib>Bartuzi, Paulina</creatorcontrib><creatorcontrib>Heegsma, Janette</creatorcontrib><creatorcontrib>Dekker, Daphne</creatorcontrib><creatorcontrib>Kloosterhuis, Niels</creatorcontrib><creatorcontrib>de Bruin, Alain</creatorcontrib><creatorcontrib>Jonker, Johan W.</creatorcontrib><creatorcontrib>van de Sluis, Bart</creatorcontrib><creatorcontrib>Faber, Klaas Nico</creatorcontrib><title>Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes</title><title>Cellular and molecular gastroenterology and hepatology</title><addtitle>Cell Mol Gastroenterol Hepatol</addtitle><description>Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression. Still, little mechanistic details are known about hepatic vitamin A metabolism in NAFLD, which may affect carbohydrate and lipid metabolism, inflammation, oxidative stress and the development of fibrosis and cancer, e.g. all risk factors of NAFLD.
Here, we analyzed vitamin A metabolism in 2 mouse models of NAFLD; mice fed a high-fat, high-cholesterol (HFC) diet and Leptinob mutant (ob/ob) mice.
Hepatic retinol and retinol binding protein 4 (RBP4) levels were significantly reduced in both mouse models of NAFLD. In contrast, hepatic retinyl palmitate levels (the vitamin A storage form) were significantly elevated in these mice. Transcriptome analysis revealed a hyperdynamic state of hepatic vitamin A metabolism, with enhanced retinol storage and metabolism (upregulated Lrat, Dgat1, Pnpla3, Raldh’s and RAR/RXR-target genes) in fatty livers, in conjunction with induced hepatic inflammation (upregulated Cd68, Tnfα, Nos2, Il1β, Il-6) and fibrosis (upregulated Col1a1, Acta2, Tgfβ, Timp1). Autofluorescence analyses revealed prominent vitamin A accumulation in hepatocytes rather than HSC in HFC-fed mice. Palmitic acid exposure increased Lrat mRNA levels in primary rat hepatocytes and promoted retinyl palmitate accumulation when co-treated with retinol, which was not detected for similarly-treated primary rat HSCs.
NAFLD leads to cell type-specific rearrangements in retinol metabolism leading to vitamin A accumulation in hepatocytes. This may promote disease progression and/or affect therapeutic approaches targeting nuclear receptors.
[Display omitted]</description><subject>17-Hydroxysteroid Dehydrogenases - genetics</subject><subject>17-Hydroxysteroid Dehydrogenases - metabolism</subject><subject>Animals</subject><subject>Autofluorescence</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>Fatty Liver Disease</subject><subject>Female</subject><subject>Hepatic Stellate Cells - metabolism</subject><subject>Hepatocytes - metabolism</subject><subject>Hepatocytes - pathology</subject><subject>Humans</subject><subject>Leptin - genetics</subject><subject>Lipid Metabolism</subject><subject>Liver - cytology</subject><subject>Liver - pathology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Non-alcoholic Fatty Liver Disease - etiology</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>Original Research</subject><subject>Phospholipases A2, Calcium-Independent - genetics</subject><subject>Phospholipases A2, Calcium-Independent - metabolism</subject><subject>Retinol-Binding Proteins, Plasma - analysis</subject><subject>Retinol-Binding Proteins, Plasma - metabolism</subject><subject>Vitamin A</subject><subject>Vitamin A - analysis</subject><subject>Vitamin A - metabolism</subject><issn>2352-345X</issn><issn>2352-345X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1P3DAQhi1UBIjyCyqhHHvZdOLPzYFKKygFaYELrXqzHHuyeJXE29hB4t_Xy1K0vfRkW_PMOyM_hHyqoKygkl_W5dr2q6eSAoUSVAkgD8gJZYLOGBe_Puzdj8lZjGsAqLiSCsQROWZU1nPg9IS4235j_IiuuMGNSd4WP30yvR-KRXGHyTSh87Ev8vt-cb28Ku68xWKJxvlhVaSwRy-snfqpyxlh2PKvecG-JIwfyWFruohnb-cp-XH97fHyZrZ8-H57uVjOrFAizRqw1PHGmJpxUEY0CEbUwJyUvGW0VZK2FhoO1ihubN6_VlVVi7lTLmOcnZKvu9zN1PToLA5pNJ3ejL4344sOxut_K4N_0qvwrJWScyGrHPD5LWAMvyeMSfc-Wuw6M2CYoqacSsEEFyyjbIfaMcQ4Yvs-pgK9VaTX-lWR3irSoHRWlLvO9zd87_krJAMXOwDzPz17HHW0HgeLLkuySbvg_zvgDxNxox8</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Saeed, Ali</creator><creator>Bartuzi, Paulina</creator><creator>Heegsma, Janette</creator><creator>Dekker, Daphne</creator><creator>Kloosterhuis, Niels</creator><creator>de Bruin, Alain</creator><creator>Jonker, Johan W.</creator><creator>van de Sluis, Bart</creator><creator>Faber, Klaas Nico</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6255-4058</orcidid></search><sort><creationdate>20210101</creationdate><title>Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes</title><author>Saeed, Ali ; Bartuzi, Paulina ; Heegsma, Janette ; Dekker, Daphne ; Kloosterhuis, Niels ; de Bruin, Alain ; Jonker, Johan W. ; van de Sluis, Bart ; Faber, Klaas Nico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-b0c2d4baa93407a5be0a5903d664f32f762fc0b40ca74ac0429711958d7d90343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>17-Hydroxysteroid Dehydrogenases - genetics</topic><topic>17-Hydroxysteroid Dehydrogenases - metabolism</topic><topic>Animals</topic><topic>Autofluorescence</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>Fatty Liver Disease</topic><topic>Female</topic><topic>Hepatic Stellate Cells - metabolism</topic><topic>Hepatocytes - metabolism</topic><topic>Hepatocytes - pathology</topic><topic>Humans</topic><topic>Leptin - genetics</topic><topic>Lipid Metabolism</topic><topic>Liver - cytology</topic><topic>Liver - pathology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Non-alcoholic Fatty Liver Disease - etiology</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>Original Research</topic><topic>Phospholipases A2, Calcium-Independent - genetics</topic><topic>Phospholipases A2, Calcium-Independent - metabolism</topic><topic>Retinol-Binding Proteins, Plasma - analysis</topic><topic>Retinol-Binding Proteins, Plasma - metabolism</topic><topic>Vitamin A</topic><topic>Vitamin A - analysis</topic><topic>Vitamin A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saeed, Ali</creatorcontrib><creatorcontrib>Bartuzi, Paulina</creatorcontrib><creatorcontrib>Heegsma, Janette</creatorcontrib><creatorcontrib>Dekker, Daphne</creatorcontrib><creatorcontrib>Kloosterhuis, Niels</creatorcontrib><creatorcontrib>de Bruin, Alain</creatorcontrib><creatorcontrib>Jonker, Johan W.</creatorcontrib><creatorcontrib>van de Sluis, Bart</creatorcontrib><creatorcontrib>Faber, Klaas Nico</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular gastroenterology and hepatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saeed, Ali</au><au>Bartuzi, Paulina</au><au>Heegsma, Janette</au><au>Dekker, Daphne</au><au>Kloosterhuis, Niels</au><au>de Bruin, Alain</au><au>Jonker, Johan W.</au><au>van de Sluis, Bart</au><au>Faber, Klaas Nico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes</atitle><jtitle>Cellular and molecular gastroenterology and hepatology</jtitle><addtitle>Cell Mol Gastroenterol Hepatol</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>309</spage><epage>325.e3</epage><pages>309-325.e3</pages><issn>2352-345X</issn><eissn>2352-345X</eissn><abstract>Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression. Still, little mechanistic details are known about hepatic vitamin A metabolism in NAFLD, which may affect carbohydrate and lipid metabolism, inflammation, oxidative stress and the development of fibrosis and cancer, e.g. all risk factors of NAFLD.
Here, we analyzed vitamin A metabolism in 2 mouse models of NAFLD; mice fed a high-fat, high-cholesterol (HFC) diet and Leptinob mutant (ob/ob) mice.
Hepatic retinol and retinol binding protein 4 (RBP4) levels were significantly reduced in both mouse models of NAFLD. In contrast, hepatic retinyl palmitate levels (the vitamin A storage form) were significantly elevated in these mice. Transcriptome analysis revealed a hyperdynamic state of hepatic vitamin A metabolism, with enhanced retinol storage and metabolism (upregulated Lrat, Dgat1, Pnpla3, Raldh’s and RAR/RXR-target genes) in fatty livers, in conjunction with induced hepatic inflammation (upregulated Cd68, Tnfα, Nos2, Il1β, Il-6) and fibrosis (upregulated Col1a1, Acta2, Tgfβ, Timp1). Autofluorescence analyses revealed prominent vitamin A accumulation in hepatocytes rather than HSC in HFC-fed mice. Palmitic acid exposure increased Lrat mRNA levels in primary rat hepatocytes and promoted retinyl palmitate accumulation when co-treated with retinol, which was not detected for similarly-treated primary rat HSCs.
NAFLD leads to cell type-specific rearrangements in retinol metabolism leading to vitamin A accumulation in hepatocytes. This may promote disease progression and/or affect therapeutic approaches targeting nuclear receptors.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32698042</pmid><doi>10.1016/j.jcmgh.2020.07.006</doi><orcidid>https://orcid.org/0000-0001-6255-4058</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-345X |
ispartof | Cellular and molecular gastroenterology and hepatology, 2021-01, Vol.11 (1), p.309-325.e3 |
issn | 2352-345X 2352-345X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7768561 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 17-Hydroxysteroid Dehydrogenases - genetics 17-Hydroxysteroid Dehydrogenases - metabolism Animals Autofluorescence Diet, High-Fat - adverse effects Disease Models, Animal Disease Progression Fatty Liver Disease Female Hepatic Stellate Cells - metabolism Hepatocytes - metabolism Hepatocytes - pathology Humans Leptin - genetics Lipid Metabolism Liver - cytology Liver - pathology Male Mice Mice, Transgenic Non-alcoholic Fatty Liver Disease - etiology Non-alcoholic Fatty Liver Disease - metabolism Non-alcoholic Fatty Liver Disease - pathology Original Research Phospholipases A2, Calcium-Independent - genetics Phospholipases A2, Calcium-Independent - metabolism Retinol-Binding Proteins, Plasma - analysis Retinol-Binding Proteins, Plasma - metabolism Vitamin A Vitamin A - analysis Vitamin A - metabolism |
title | Impaired Hepatic Vitamin A Metabolism in NAFLD Mice Leading to Vitamin A Accumulation in Hepatocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impaired%20Hepatic%20Vitamin%20A%20Metabolism%20in%20NAFLD%20Mice%20Leading%20to%20Vitamin%20A%20Accumulation%20in%20Hepatocytes&rft.jtitle=Cellular%20and%20molecular%20gastroenterology%20and%20hepatology&rft.au=Saeed,%20Ali&rft.date=2021-01-01&rft.volume=11&rft.issue=1&rft.spage=309&rft.epage=325.e3&rft.pages=309-325.e3&rft.issn=2352-345X&rft.eissn=2352-345X&rft_id=info:doi/10.1016/j.jcmgh.2020.07.006&rft_dat=%3Cproquest_pubme%3E2426535453%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426535453&rft_id=info:pmid/32698042&rft_els_id=S2352345X20301120&rfr_iscdi=true |