Deep Regression Prediction of Rheological Properties of SIS-Modified Asphalt Binders

The engineering properties of asphalt binders depend on the types and amounts of additives. However, measuring engineering properties is time-consuming, requires technical expertise, specialized equipment, and effort. This study develops a deep regression model for predicting the engineering propert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-12, Vol.13 (24), p.5738
Hauptverfasser: Ji, Bongjun, Lee, Soon-Jae, Mazumder, Mithil, Lee, Moon-Sup, Kim, Hyun Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 5738
container_title Materials
container_volume 13
creator Ji, Bongjun
Lee, Soon-Jae
Mazumder, Mithil
Lee, Moon-Sup
Kim, Hyun Hwan
description The engineering properties of asphalt binders depend on the types and amounts of additives. However, measuring engineering properties is time-consuming, requires technical expertise, specialized equipment, and effort. This study develops a deep regression model for predicting the engineering property of asphalt binders based on analysis of atomic force microscopy (AFM) image analysis to test the feasibility of replacing traditional measuring estimate techniques. The base asphalt binder PG 64-22 and styrene-isoprene-styrene (SIS) modifier were blended with four different polymer additive contents (0%, 5%, 10%, and 15%) and then tested with a dynamic shear rheometer (DSR) to evaluate the rheological data, which indicate the rutting properties of the asphalt binders. Different deep regression models are trained for predicting engineering property using AFM images of SIS binders. The mean absolute percentage error is decisive for the selection of the best deep regression architecture. This study's results indicate the deep regression architecture is found to be effective in predicting the G*/sin value after the training and validation process. The deep regression model can be an alternative way to measure the asphalt binder's engineering property quickly. This study would encourage applying a deep regression model for predicting the engineering properties of the asphalt binder.
doi_str_mv 10.3390/ma13245738
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7766958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471583729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-4949b289a50f425fd632db030d3a7f574fe36e19b694d4df69123ab62c522f363</originalsourceid><addsrcrecordid>eNpdkVtLAzEQhYMotqgv_gBZ8EWE1c1ls82LUO-CorT1OWQ3kzay3azJVvDfm2rV6rzMwPk4M8lBaB9nJ5SK7HSuMCUsL-hgA_WxEDzFgrHNtbmH9kJ4yWJRigdEbKMejSUIKfpocgnQJiOYegjBuiZ58qBt1S1HZ5LRDFztprZSdVRcC76zEJbK-G6cPjhtjQWdDEM7U3WXnNtGgw-7aMuoOsDequ-g5-urycVtev94c3cxvE8rlvEuZYKJkgyEyjPDSG40p0SXGc00VYXJC2aAcsCi5IJppg0XmFBVclLlhBjK6Q46-_JtF-UcdAVN51UtW2_nyr9Lp6z8qzR2JqfuTRYF5yIfRIOjlYF3rwsInZzbUEFdqwbcIkjCCsx4_NzlrsN_6Itb-CY-75OKZgURkTr-oirvQvBgfo7BmVzmJX_zivDB-vk_6Hc69ANTx494</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471583729</pqid></control><display><type>article</type><title>Deep Regression Prediction of Rheological Properties of SIS-Modified Asphalt Binders</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ji, Bongjun ; Lee, Soon-Jae ; Mazumder, Mithil ; Lee, Moon-Sup ; Kim, Hyun Hwan</creator><creatorcontrib>Ji, Bongjun ; Lee, Soon-Jae ; Mazumder, Mithil ; Lee, Moon-Sup ; Kim, Hyun Hwan</creatorcontrib><description>The engineering properties of asphalt binders depend on the types and amounts of additives. However, measuring engineering properties is time-consuming, requires technical expertise, specialized equipment, and effort. This study develops a deep regression model for predicting the engineering property of asphalt binders based on analysis of atomic force microscopy (AFM) image analysis to test the feasibility of replacing traditional measuring estimate techniques. The base asphalt binder PG 64-22 and styrene-isoprene-styrene (SIS) modifier were blended with four different polymer additive contents (0%, 5%, 10%, and 15%) and then tested with a dynamic shear rheometer (DSR) to evaluate the rheological data, which indicate the rutting properties of the asphalt binders. Different deep regression models are trained for predicting engineering property using AFM images of SIS binders. The mean absolute percentage error is decisive for the selection of the best deep regression architecture. This study's results indicate the deep regression architecture is found to be effective in predicting the G*/sin value after the training and validation process. The deep regression model can be an alternative way to measure the asphalt binder's engineering property quickly. This study would encourage applying a deep regression model for predicting the engineering properties of the asphalt binder.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13245738</identifier><identifier>PMID: 33339227</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Additives ; Asphalt ; Asphalt pavements ; Atomic force microscopy ; Binders (materials) ; Deep learning ; Image analysis ; Isoprene ; Laboratories ; Nanoparticles ; Polymers ; Properties (attributes) ; Regression analysis ; Regression models ; Rheological properties ; Rheology ; Styrenes ; Topography ; Viscoelasticity</subject><ispartof>Materials, 2020-12, Vol.13 (24), p.5738</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-4949b289a50f425fd632db030d3a7f574fe36e19b694d4df69123ab62c522f363</citedby><cites>FETCH-LOGICAL-c406t-4949b289a50f425fd632db030d3a7f574fe36e19b694d4df69123ab62c522f363</cites><orcidid>0000-0003-4185-6983 ; 0000-0002-2543-6981 ; 0000-0001-5605-003X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766958/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766958/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33339227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Bongjun</creatorcontrib><creatorcontrib>Lee, Soon-Jae</creatorcontrib><creatorcontrib>Mazumder, Mithil</creatorcontrib><creatorcontrib>Lee, Moon-Sup</creatorcontrib><creatorcontrib>Kim, Hyun Hwan</creatorcontrib><title>Deep Regression Prediction of Rheological Properties of SIS-Modified Asphalt Binders</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The engineering properties of asphalt binders depend on the types and amounts of additives. However, measuring engineering properties is time-consuming, requires technical expertise, specialized equipment, and effort. This study develops a deep regression model for predicting the engineering property of asphalt binders based on analysis of atomic force microscopy (AFM) image analysis to test the feasibility of replacing traditional measuring estimate techniques. The base asphalt binder PG 64-22 and styrene-isoprene-styrene (SIS) modifier were blended with four different polymer additive contents (0%, 5%, 10%, and 15%) and then tested with a dynamic shear rheometer (DSR) to evaluate the rheological data, which indicate the rutting properties of the asphalt binders. Different deep regression models are trained for predicting engineering property using AFM images of SIS binders. The mean absolute percentage error is decisive for the selection of the best deep regression architecture. This study's results indicate the deep regression architecture is found to be effective in predicting the G*/sin value after the training and validation process. The deep regression model can be an alternative way to measure the asphalt binder's engineering property quickly. This study would encourage applying a deep regression model for predicting the engineering properties of the asphalt binder.</description><subject>Additives</subject><subject>Asphalt</subject><subject>Asphalt pavements</subject><subject>Atomic force microscopy</subject><subject>Binders (materials)</subject><subject>Deep learning</subject><subject>Image analysis</subject><subject>Isoprene</subject><subject>Laboratories</subject><subject>Nanoparticles</subject><subject>Polymers</subject><subject>Properties (attributes)</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Styrenes</subject><subject>Topography</subject><subject>Viscoelasticity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVtLAzEQhYMotqgv_gBZ8EWE1c1ls82LUO-CorT1OWQ3kzay3azJVvDfm2rV6rzMwPk4M8lBaB9nJ5SK7HSuMCUsL-hgA_WxEDzFgrHNtbmH9kJ4yWJRigdEbKMejSUIKfpocgnQJiOYegjBuiZ58qBt1S1HZ5LRDFztprZSdVRcC76zEJbK-G6cPjhtjQWdDEM7U3WXnNtGgw-7aMuoOsDequ-g5-urycVtev94c3cxvE8rlvEuZYKJkgyEyjPDSG40p0SXGc00VYXJC2aAcsCi5IJppg0XmFBVclLlhBjK6Q46-_JtF-UcdAVN51UtW2_nyr9Lp6z8qzR2JqfuTRYF5yIfRIOjlYF3rwsInZzbUEFdqwbcIkjCCsx4_NzlrsN_6Itb-CY-75OKZgURkTr-oirvQvBgfo7BmVzmJX_zivDB-vk_6Hc69ANTx494</recordid><startdate>20201216</startdate><enddate>20201216</enddate><creator>Ji, Bongjun</creator><creator>Lee, Soon-Jae</creator><creator>Mazumder, Mithil</creator><creator>Lee, Moon-Sup</creator><creator>Kim, Hyun Hwan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4185-6983</orcidid><orcidid>https://orcid.org/0000-0002-2543-6981</orcidid><orcidid>https://orcid.org/0000-0001-5605-003X</orcidid></search><sort><creationdate>20201216</creationdate><title>Deep Regression Prediction of Rheological Properties of SIS-Modified Asphalt Binders</title><author>Ji, Bongjun ; Lee, Soon-Jae ; Mazumder, Mithil ; Lee, Moon-Sup ; Kim, Hyun Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-4949b289a50f425fd632db030d3a7f574fe36e19b694d4df69123ab62c522f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additives</topic><topic>Asphalt</topic><topic>Asphalt pavements</topic><topic>Atomic force microscopy</topic><topic>Binders (materials)</topic><topic>Deep learning</topic><topic>Image analysis</topic><topic>Isoprene</topic><topic>Laboratories</topic><topic>Nanoparticles</topic><topic>Polymers</topic><topic>Properties (attributes)</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Styrenes</topic><topic>Topography</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Bongjun</creatorcontrib><creatorcontrib>Lee, Soon-Jae</creatorcontrib><creatorcontrib>Mazumder, Mithil</creatorcontrib><creatorcontrib>Lee, Moon-Sup</creatorcontrib><creatorcontrib>Kim, Hyun Hwan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Bongjun</au><au>Lee, Soon-Jae</au><au>Mazumder, Mithil</au><au>Lee, Moon-Sup</au><au>Kim, Hyun Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Regression Prediction of Rheological Properties of SIS-Modified Asphalt Binders</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-12-16</date><risdate>2020</risdate><volume>13</volume><issue>24</issue><spage>5738</spage><pages>5738-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The engineering properties of asphalt binders depend on the types and amounts of additives. However, measuring engineering properties is time-consuming, requires technical expertise, specialized equipment, and effort. This study develops a deep regression model for predicting the engineering property of asphalt binders based on analysis of atomic force microscopy (AFM) image analysis to test the feasibility of replacing traditional measuring estimate techniques. The base asphalt binder PG 64-22 and styrene-isoprene-styrene (SIS) modifier were blended with four different polymer additive contents (0%, 5%, 10%, and 15%) and then tested with a dynamic shear rheometer (DSR) to evaluate the rheological data, which indicate the rutting properties of the asphalt binders. Different deep regression models are trained for predicting engineering property using AFM images of SIS binders. The mean absolute percentage error is decisive for the selection of the best deep regression architecture. This study's results indicate the deep regression architecture is found to be effective in predicting the G*/sin value after the training and validation process. The deep regression model can be an alternative way to measure the asphalt binder's engineering property quickly. This study would encourage applying a deep regression model for predicting the engineering properties of the asphalt binder.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33339227</pmid><doi>10.3390/ma13245738</doi><orcidid>https://orcid.org/0000-0003-4185-6983</orcidid><orcidid>https://orcid.org/0000-0002-2543-6981</orcidid><orcidid>https://orcid.org/0000-0001-5605-003X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-12, Vol.13 (24), p.5738
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7766958
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Additives
Asphalt
Asphalt pavements
Atomic force microscopy
Binders (materials)
Deep learning
Image analysis
Isoprene
Laboratories
Nanoparticles
Polymers
Properties (attributes)
Regression analysis
Regression models
Rheological properties
Rheology
Styrenes
Topography
Viscoelasticity
title Deep Regression Prediction of Rheological Properties of SIS-Modified Asphalt Binders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Regression%20Prediction%20of%20Rheological%20Properties%20of%20SIS-Modified%20Asphalt%20Binders&rft.jtitle=Materials&rft.au=Ji,%20Bongjun&rft.date=2020-12-16&rft.volume=13&rft.issue=24&rft.spage=5738&rft.pages=5738-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13245738&rft_dat=%3Cproquest_pubme%3E2471583729%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471583729&rft_id=info:pmid/33339227&rfr_iscdi=true