Deep Regression Prediction of Rheological Properties of SIS-Modified Asphalt Binders
The engineering properties of asphalt binders depend on the types and amounts of additives. However, measuring engineering properties is time-consuming, requires technical expertise, specialized equipment, and effort. This study develops a deep regression model for predicting the engineering propert...
Gespeichert in:
Veröffentlicht in: | Materials 2020-12, Vol.13 (24), p.5738 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 5738 |
container_title | Materials |
container_volume | 13 |
creator | Ji, Bongjun Lee, Soon-Jae Mazumder, Mithil Lee, Moon-Sup Kim, Hyun Hwan |
description | The engineering properties of asphalt binders depend on the types and amounts of additives. However, measuring engineering properties is time-consuming, requires technical expertise, specialized equipment, and effort. This study develops a deep regression model for predicting the engineering property of asphalt binders based on analysis of atomic force microscopy (AFM) image analysis to test the feasibility of replacing traditional measuring estimate techniques. The base asphalt binder PG 64-22 and styrene-isoprene-styrene (SIS) modifier were blended with four different polymer additive contents (0%, 5%, 10%, and 15%) and then tested with a dynamic shear rheometer (DSR) to evaluate the rheological data, which indicate the rutting properties of the asphalt binders. Different deep regression models are trained for predicting engineering property using AFM images of SIS binders. The mean absolute percentage error is decisive for the selection of the best deep regression architecture. This study's results indicate the deep regression architecture is found to be effective in predicting the G*/sin
value after the training and validation process. The deep regression model can be an alternative way to measure the asphalt binder's engineering property quickly. This study would encourage applying a deep regression model for predicting the engineering properties of the asphalt binder. |
doi_str_mv | 10.3390/ma13245738 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7766958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471583729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-4949b289a50f425fd632db030d3a7f574fe36e19b694d4df69123ab62c522f363</originalsourceid><addsrcrecordid>eNpdkVtLAzEQhYMotqgv_gBZ8EWE1c1ls82LUO-CorT1OWQ3kzay3azJVvDfm2rV6rzMwPk4M8lBaB9nJ5SK7HSuMCUsL-hgA_WxEDzFgrHNtbmH9kJ4yWJRigdEbKMejSUIKfpocgnQJiOYegjBuiZ58qBt1S1HZ5LRDFztprZSdVRcC76zEJbK-G6cPjhtjQWdDEM7U3WXnNtGgw-7aMuoOsDequ-g5-urycVtev94c3cxvE8rlvEuZYKJkgyEyjPDSG40p0SXGc00VYXJC2aAcsCi5IJppg0XmFBVclLlhBjK6Q46-_JtF-UcdAVN51UtW2_nyr9Lp6z8qzR2JqfuTRYF5yIfRIOjlYF3rwsInZzbUEFdqwbcIkjCCsx4_NzlrsN_6Itb-CY-75OKZgURkTr-oirvQvBgfo7BmVzmJX_zivDB-vk_6Hc69ANTx494</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471583729</pqid></control><display><type>article</type><title>Deep Regression Prediction of Rheological Properties of SIS-Modified Asphalt Binders</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ji, Bongjun ; Lee, Soon-Jae ; Mazumder, Mithil ; Lee, Moon-Sup ; Kim, Hyun Hwan</creator><creatorcontrib>Ji, Bongjun ; Lee, Soon-Jae ; Mazumder, Mithil ; Lee, Moon-Sup ; Kim, Hyun Hwan</creatorcontrib><description>The engineering properties of asphalt binders depend on the types and amounts of additives. However, measuring engineering properties is time-consuming, requires technical expertise, specialized equipment, and effort. This study develops a deep regression model for predicting the engineering property of asphalt binders based on analysis of atomic force microscopy (AFM) image analysis to test the feasibility of replacing traditional measuring estimate techniques. The base asphalt binder PG 64-22 and styrene-isoprene-styrene (SIS) modifier were blended with four different polymer additive contents (0%, 5%, 10%, and 15%) and then tested with a dynamic shear rheometer (DSR) to evaluate the rheological data, which indicate the rutting properties of the asphalt binders. Different deep regression models are trained for predicting engineering property using AFM images of SIS binders. The mean absolute percentage error is decisive for the selection of the best deep regression architecture. This study's results indicate the deep regression architecture is found to be effective in predicting the G*/sin
value after the training and validation process. The deep regression model can be an alternative way to measure the asphalt binder's engineering property quickly. This study would encourage applying a deep regression model for predicting the engineering properties of the asphalt binder.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13245738</identifier><identifier>PMID: 33339227</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Additives ; Asphalt ; Asphalt pavements ; Atomic force microscopy ; Binders (materials) ; Deep learning ; Image analysis ; Isoprene ; Laboratories ; Nanoparticles ; Polymers ; Properties (attributes) ; Regression analysis ; Regression models ; Rheological properties ; Rheology ; Styrenes ; Topography ; Viscoelasticity</subject><ispartof>Materials, 2020-12, Vol.13 (24), p.5738</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-4949b289a50f425fd632db030d3a7f574fe36e19b694d4df69123ab62c522f363</citedby><cites>FETCH-LOGICAL-c406t-4949b289a50f425fd632db030d3a7f574fe36e19b694d4df69123ab62c522f363</cites><orcidid>0000-0003-4185-6983 ; 0000-0002-2543-6981 ; 0000-0001-5605-003X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766958/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766958/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33339227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Bongjun</creatorcontrib><creatorcontrib>Lee, Soon-Jae</creatorcontrib><creatorcontrib>Mazumder, Mithil</creatorcontrib><creatorcontrib>Lee, Moon-Sup</creatorcontrib><creatorcontrib>Kim, Hyun Hwan</creatorcontrib><title>Deep Regression Prediction of Rheological Properties of SIS-Modified Asphalt Binders</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The engineering properties of asphalt binders depend on the types and amounts of additives. However, measuring engineering properties is time-consuming, requires technical expertise, specialized equipment, and effort. This study develops a deep regression model for predicting the engineering property of asphalt binders based on analysis of atomic force microscopy (AFM) image analysis to test the feasibility of replacing traditional measuring estimate techniques. The base asphalt binder PG 64-22 and styrene-isoprene-styrene (SIS) modifier were blended with four different polymer additive contents (0%, 5%, 10%, and 15%) and then tested with a dynamic shear rheometer (DSR) to evaluate the rheological data, which indicate the rutting properties of the asphalt binders. Different deep regression models are trained for predicting engineering property using AFM images of SIS binders. The mean absolute percentage error is decisive for the selection of the best deep regression architecture. This study's results indicate the deep regression architecture is found to be effective in predicting the G*/sin
value after the training and validation process. The deep regression model can be an alternative way to measure the asphalt binder's engineering property quickly. This study would encourage applying a deep regression model for predicting the engineering properties of the asphalt binder.</description><subject>Additives</subject><subject>Asphalt</subject><subject>Asphalt pavements</subject><subject>Atomic force microscopy</subject><subject>Binders (materials)</subject><subject>Deep learning</subject><subject>Image analysis</subject><subject>Isoprene</subject><subject>Laboratories</subject><subject>Nanoparticles</subject><subject>Polymers</subject><subject>Properties (attributes)</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Styrenes</subject><subject>Topography</subject><subject>Viscoelasticity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVtLAzEQhYMotqgv_gBZ8EWE1c1ls82LUO-CorT1OWQ3kzay3azJVvDfm2rV6rzMwPk4M8lBaB9nJ5SK7HSuMCUsL-hgA_WxEDzFgrHNtbmH9kJ4yWJRigdEbKMejSUIKfpocgnQJiOYegjBuiZ58qBt1S1HZ5LRDFztprZSdVRcC76zEJbK-G6cPjhtjQWdDEM7U3WXnNtGgw-7aMuoOsDequ-g5-urycVtev94c3cxvE8rlvEuZYKJkgyEyjPDSG40p0SXGc00VYXJC2aAcsCi5IJppg0XmFBVclLlhBjK6Q46-_JtF-UcdAVN51UtW2_nyr9Lp6z8qzR2JqfuTRYF5yIfRIOjlYF3rwsInZzbUEFdqwbcIkjCCsx4_NzlrsN_6Itb-CY-75OKZgURkTr-oirvQvBgfo7BmVzmJX_zivDB-vk_6Hc69ANTx494</recordid><startdate>20201216</startdate><enddate>20201216</enddate><creator>Ji, Bongjun</creator><creator>Lee, Soon-Jae</creator><creator>Mazumder, Mithil</creator><creator>Lee, Moon-Sup</creator><creator>Kim, Hyun Hwan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4185-6983</orcidid><orcidid>https://orcid.org/0000-0002-2543-6981</orcidid><orcidid>https://orcid.org/0000-0001-5605-003X</orcidid></search><sort><creationdate>20201216</creationdate><title>Deep Regression Prediction of Rheological Properties of SIS-Modified Asphalt Binders</title><author>Ji, Bongjun ; Lee, Soon-Jae ; Mazumder, Mithil ; Lee, Moon-Sup ; Kim, Hyun Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-4949b289a50f425fd632db030d3a7f574fe36e19b694d4df69123ab62c522f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additives</topic><topic>Asphalt</topic><topic>Asphalt pavements</topic><topic>Atomic force microscopy</topic><topic>Binders (materials)</topic><topic>Deep learning</topic><topic>Image analysis</topic><topic>Isoprene</topic><topic>Laboratories</topic><topic>Nanoparticles</topic><topic>Polymers</topic><topic>Properties (attributes)</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Styrenes</topic><topic>Topography</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Bongjun</creatorcontrib><creatorcontrib>Lee, Soon-Jae</creatorcontrib><creatorcontrib>Mazumder, Mithil</creatorcontrib><creatorcontrib>Lee, Moon-Sup</creatorcontrib><creatorcontrib>Kim, Hyun Hwan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Bongjun</au><au>Lee, Soon-Jae</au><au>Mazumder, Mithil</au><au>Lee, Moon-Sup</au><au>Kim, Hyun Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Regression Prediction of Rheological Properties of SIS-Modified Asphalt Binders</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-12-16</date><risdate>2020</risdate><volume>13</volume><issue>24</issue><spage>5738</spage><pages>5738-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The engineering properties of asphalt binders depend on the types and amounts of additives. However, measuring engineering properties is time-consuming, requires technical expertise, specialized equipment, and effort. This study develops a deep regression model for predicting the engineering property of asphalt binders based on analysis of atomic force microscopy (AFM) image analysis to test the feasibility of replacing traditional measuring estimate techniques. The base asphalt binder PG 64-22 and styrene-isoprene-styrene (SIS) modifier were blended with four different polymer additive contents (0%, 5%, 10%, and 15%) and then tested with a dynamic shear rheometer (DSR) to evaluate the rheological data, which indicate the rutting properties of the asphalt binders. Different deep regression models are trained for predicting engineering property using AFM images of SIS binders. The mean absolute percentage error is decisive for the selection of the best deep regression architecture. This study's results indicate the deep regression architecture is found to be effective in predicting the G*/sin
value after the training and validation process. The deep regression model can be an alternative way to measure the asphalt binder's engineering property quickly. This study would encourage applying a deep regression model for predicting the engineering properties of the asphalt binder.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33339227</pmid><doi>10.3390/ma13245738</doi><orcidid>https://orcid.org/0000-0003-4185-6983</orcidid><orcidid>https://orcid.org/0000-0002-2543-6981</orcidid><orcidid>https://orcid.org/0000-0001-5605-003X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2020-12, Vol.13 (24), p.5738 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7766958 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Additives Asphalt Asphalt pavements Atomic force microscopy Binders (materials) Deep learning Image analysis Isoprene Laboratories Nanoparticles Polymers Properties (attributes) Regression analysis Regression models Rheological properties Rheology Styrenes Topography Viscoelasticity |
title | Deep Regression Prediction of Rheological Properties of SIS-Modified Asphalt Binders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Regression%20Prediction%20of%20Rheological%20Properties%20of%20SIS-Modified%20Asphalt%20Binders&rft.jtitle=Materials&rft.au=Ji,%20Bongjun&rft.date=2020-12-16&rft.volume=13&rft.issue=24&rft.spage=5738&rft.pages=5738-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13245738&rft_dat=%3Cproquest_pubme%3E2471583729%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471583729&rft_id=info:pmid/33339227&rfr_iscdi=true |