The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt

Pure polycrystalline cobalt is systematically thermally treated in order to assess the effect of the microstructure on the compression behavior. Isothermal annealing of the as-drawn material leads to recrystallization and grain growth dependent on the annealing temperature (600-1100 ∘C). Consequentl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-12, Vol.13 (24), p.5775
Hauptverfasser: Knapek, Michal, Minárik, Peter, Dobroň, Patrik, Šmilauerová, Jana, Celis, Mayerling Martinez, Hug, Eric, Chmelík, František
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 5775
container_title Materials
container_volume 13
creator Knapek, Michal
Minárik, Peter
Dobroň, Patrik
Šmilauerová, Jana
Celis, Mayerling Martinez
Hug, Eric
Chmelík, František
description Pure polycrystalline cobalt is systematically thermally treated in order to assess the effect of the microstructure on the compression behavior. Isothermal annealing of the as-drawn material leads to recrystallization and grain growth dependent on the annealing temperature (600-1100 ∘C). Consequently, the yield strength decreases and the fracture strain increases as a function of rising grain size; the content of the residual fcc phase is ~6-11%. Subsequent thermal cycling around the transition temperature is applied to further modify the microstructure, especially in terms of the fcc phase content. With the increasing number of cycles, the grain size further increases and the fraction of the fcc phase significantly drops. At the same time, the values of both the yield strength and fracture strain somewhat decrease. An atypical decrease in the fracture strain as a function of grain size is explained in terms of decreasing fcc phase content; the stress-induced fcc→hcp transformation can accommodate a significant amount of plastic strain. Besides controlling basic material parameters (e.g., grain size and texture), adjusting the content of the fcc phase can thus provide an effective means of mechanical performance optimization with respect to particular applications.
doi_str_mv 10.3390/ma13245775
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7766495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2472106019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-9c143dd91653e29ad2123ececa8b0a80220a433e3d7157d2e4b256b452ef59c73</originalsourceid><addsrcrecordid>eNpVkUtOHDEQhi0EAgSz4QBRL6NIQ_zqhzeRyEBIJCSymKytanc148jd7tgepLkAXIAT5iTxaAgPb6pc_uovl35Czhg9F0LRzwMwwWVZ1-UeOWZKVXOmpNx_kx-RWYy_aT5CsIarQ3IkhJBNI-UxeVyusLjqezSp8H1xaXMacExFrocBXLEMCGnYVvxYpAxfOOdT8JM1RW_M34enlZkyBWPsfe5INnMwdsXCD1PAGLf3r7iCe-vDdsRP7zYmbGIC5-yImWvBpVNy0IOLOHuOJ-TXt6vl4vv85vb6x-LiZm6klGmuDJOi6xSrSoFcQccZF2jQQNNSaCjnFKQQKLqalXXHUba8rFpZcuxLZWpxQr7sdKd1O2Bn8mIBnJ6CHSBstAer37-MdqXv_L2u66qSqswCH58Fgv-zxpj0YKNB52BEv46ay5ozWlGmMvpph5rgYwzYv4xhVG_N06_mZfjD24-9oP-tEv8AS7yYjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472106019</pqid></control><display><type>article</type><title>The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Knapek, Michal ; Minárik, Peter ; Dobroň, Patrik ; Šmilauerová, Jana ; Celis, Mayerling Martinez ; Hug, Eric ; Chmelík, František</creator><creatorcontrib>Knapek, Michal ; Minárik, Peter ; Dobroň, Patrik ; Šmilauerová, Jana ; Celis, Mayerling Martinez ; Hug, Eric ; Chmelík, František</creatorcontrib><description>Pure polycrystalline cobalt is systematically thermally treated in order to assess the effect of the microstructure on the compression behavior. Isothermal annealing of the as-drawn material leads to recrystallization and grain growth dependent on the annealing temperature (600-1100 ∘C). Consequently, the yield strength decreases and the fracture strain increases as a function of rising grain size; the content of the residual fcc phase is ~6-11%. Subsequent thermal cycling around the transition temperature is applied to further modify the microstructure, especially in terms of the fcc phase content. With the increasing number of cycles, the grain size further increases and the fraction of the fcc phase significantly drops. At the same time, the values of both the yield strength and fracture strain somewhat decrease. An atypical decrease in the fracture strain as a function of grain size is explained in terms of decreasing fcc phase content; the stress-induced fcc→hcp transformation can accommodate a significant amount of plastic strain. Besides controlling basic material parameters (e.g., grain size and texture), adjusting the content of the fcc phase can thus provide an effective means of mechanical performance optimization with respect to particular applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13245775</identifier><identifier>PMID: 33348844</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><ispartof>Materials, 2020-12, Vol.13 (24), p.5775</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-9c143dd91653e29ad2123ececa8b0a80220a433e3d7157d2e4b256b452ef59c73</citedby><cites>FETCH-LOGICAL-c444t-9c143dd91653e29ad2123ececa8b0a80220a433e3d7157d2e4b256b452ef59c73</cites><orcidid>0000-0002-6837-0038 ; 0000-0003-2336-1936 ; 0000-0001-7079-2523 ; 0000-0002-5590-3501 ; 0000-0001-7034-5547 ; 0000-0002-9554-9578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766495/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766495/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33348844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knapek, Michal</creatorcontrib><creatorcontrib>Minárik, Peter</creatorcontrib><creatorcontrib>Dobroň, Patrik</creatorcontrib><creatorcontrib>Šmilauerová, Jana</creatorcontrib><creatorcontrib>Celis, Mayerling Martinez</creatorcontrib><creatorcontrib>Hug, Eric</creatorcontrib><creatorcontrib>Chmelík, František</creatorcontrib><title>The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Pure polycrystalline cobalt is systematically thermally treated in order to assess the effect of the microstructure on the compression behavior. Isothermal annealing of the as-drawn material leads to recrystallization and grain growth dependent on the annealing temperature (600-1100 ∘C). Consequently, the yield strength decreases and the fracture strain increases as a function of rising grain size; the content of the residual fcc phase is ~6-11%. Subsequent thermal cycling around the transition temperature is applied to further modify the microstructure, especially in terms of the fcc phase content. With the increasing number of cycles, the grain size further increases and the fraction of the fcc phase significantly drops. At the same time, the values of both the yield strength and fracture strain somewhat decrease. An atypical decrease in the fracture strain as a function of grain size is explained in terms of decreasing fcc phase content; the stress-induced fcc→hcp transformation can accommodate a significant amount of plastic strain. Besides controlling basic material parameters (e.g., grain size and texture), adjusting the content of the fcc phase can thus provide an effective means of mechanical performance optimization with respect to particular applications.</description><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkUtOHDEQhi0EAgSz4QBRL6NIQ_zqhzeRyEBIJCSymKytanc148jd7tgepLkAXIAT5iTxaAgPb6pc_uovl35Czhg9F0LRzwMwwWVZ1-UeOWZKVXOmpNx_kx-RWYy_aT5CsIarQ3IkhJBNI-UxeVyusLjqezSp8H1xaXMacExFrocBXLEMCGnYVvxYpAxfOOdT8JM1RW_M34enlZkyBWPsfe5INnMwdsXCD1PAGLf3r7iCe-vDdsRP7zYmbGIC5-yImWvBpVNy0IOLOHuOJ-TXt6vl4vv85vb6x-LiZm6klGmuDJOi6xSrSoFcQccZF2jQQNNSaCjnFKQQKLqalXXHUba8rFpZcuxLZWpxQr7sdKd1O2Bn8mIBnJ6CHSBstAer37-MdqXv_L2u66qSqswCH58Fgv-zxpj0YKNB52BEv46ay5ozWlGmMvpph5rgYwzYv4xhVG_N06_mZfjD24-9oP-tEv8AS7yYjQ</recordid><startdate>20201217</startdate><enddate>20201217</enddate><creator>Knapek, Michal</creator><creator>Minárik, Peter</creator><creator>Dobroň, Patrik</creator><creator>Šmilauerová, Jana</creator><creator>Celis, Mayerling Martinez</creator><creator>Hug, Eric</creator><creator>Chmelík, František</creator><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6837-0038</orcidid><orcidid>https://orcid.org/0000-0003-2336-1936</orcidid><orcidid>https://orcid.org/0000-0001-7079-2523</orcidid><orcidid>https://orcid.org/0000-0002-5590-3501</orcidid><orcidid>https://orcid.org/0000-0001-7034-5547</orcidid><orcidid>https://orcid.org/0000-0002-9554-9578</orcidid></search><sort><creationdate>20201217</creationdate><title>The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt</title><author>Knapek, Michal ; Minárik, Peter ; Dobroň, Patrik ; Šmilauerová, Jana ; Celis, Mayerling Martinez ; Hug, Eric ; Chmelík, František</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-9c143dd91653e29ad2123ececa8b0a80220a433e3d7157d2e4b256b452ef59c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knapek, Michal</creatorcontrib><creatorcontrib>Minárik, Peter</creatorcontrib><creatorcontrib>Dobroň, Patrik</creatorcontrib><creatorcontrib>Šmilauerová, Jana</creatorcontrib><creatorcontrib>Celis, Mayerling Martinez</creatorcontrib><creatorcontrib>Hug, Eric</creatorcontrib><creatorcontrib>Chmelík, František</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knapek, Michal</au><au>Minárik, Peter</au><au>Dobroň, Patrik</au><au>Šmilauerová, Jana</au><au>Celis, Mayerling Martinez</au><au>Hug, Eric</au><au>Chmelík, František</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-12-17</date><risdate>2020</risdate><volume>13</volume><issue>24</issue><spage>5775</spage><pages>5775-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Pure polycrystalline cobalt is systematically thermally treated in order to assess the effect of the microstructure on the compression behavior. Isothermal annealing of the as-drawn material leads to recrystallization and grain growth dependent on the annealing temperature (600-1100 ∘C). Consequently, the yield strength decreases and the fracture strain increases as a function of rising grain size; the content of the residual fcc phase is ~6-11%. Subsequent thermal cycling around the transition temperature is applied to further modify the microstructure, especially in terms of the fcc phase content. With the increasing number of cycles, the grain size further increases and the fraction of the fcc phase significantly drops. At the same time, the values of both the yield strength and fracture strain somewhat decrease. An atypical decrease in the fracture strain as a function of grain size is explained in terms of decreasing fcc phase content; the stress-induced fcc→hcp transformation can accommodate a significant amount of plastic strain. Besides controlling basic material parameters (e.g., grain size and texture), adjusting the content of the fcc phase can thus provide an effective means of mechanical performance optimization with respect to particular applications.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>33348844</pmid><doi>10.3390/ma13245775</doi><orcidid>https://orcid.org/0000-0002-6837-0038</orcidid><orcidid>https://orcid.org/0000-0003-2336-1936</orcidid><orcidid>https://orcid.org/0000-0001-7079-2523</orcidid><orcidid>https://orcid.org/0000-0002-5590-3501</orcidid><orcidid>https://orcid.org/0000-0001-7034-5547</orcidid><orcidid>https://orcid.org/0000-0002-9554-9578</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-12, Vol.13 (24), p.5775
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7766495
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
title The Effect of Different Thermal Treatment on the Allotropic fcc↔hcp Transformation and Compression Behavior of Polycrystalline Cobalt
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Different%20Thermal%20Treatment%20on%20the%20Allotropic%20fcc%E2%86%94hcp%20Transformation%20and%20Compression%20Behavior%20of%20Polycrystalline%20Cobalt&rft.jtitle=Materials&rft.au=Knapek,%20Michal&rft.date=2020-12-17&rft.volume=13&rft.issue=24&rft.spage=5775&rft.pages=5775-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13245775&rft_dat=%3Cproquest_pubme%3E2472106019%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472106019&rft_id=info:pmid/33348844&rfr_iscdi=true