Hydroxyl Groups Induce Bioactivity in Silica/Chitosan Aerogels Designed for Bone Tissue Engineering. In Vitro Model for the Assessment of Osteoblasts Behavior
Silica (SiO )/chitosan (CS) composite aerogels are bioactive when they are submerged in simulated body fluid (SBF), causing the formation of bone-like hydroxyapatite (HAp) layer. Silica-based hybrid aerogels improve the elastic behavior, and the combined CS modifies the network entanglement as a cro...
Gespeichert in:
Veröffentlicht in: | Polymers 2020-11, Vol.12 (12), p.2802 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 2802 |
container_title | Polymers |
container_volume | 12 |
creator | Perez-Moreno, Antonio Reyes-Peces, María de Las Virtudes de Los Santos, Deseada María Pinaglia-Tobaruela, Gonzalo de la Orden, Emilio Vilches-Pérez, José Ignacio Salido, Mercedes Piñero, Manuel de la Rosa-Fox, Nicolás |
description | Silica (SiO
)/chitosan (CS) composite aerogels are bioactive when they are submerged in simulated body fluid (SBF), causing the formation of bone-like hydroxyapatite (HAp) layer. Silica-based hybrid aerogels improve the elastic behavior, and the combined CS modifies the network entanglement as a crosslinking biopolymer. Tetraethoxysilane (TEOS)/CS is used as network precursors by employing a sol-gel method assisted with high power ultrasound (600 W). Upon gelation and aging, gels are dried in supercritical CO
to obtain monoliths. Thermograms provide information about the condensation of the remaining hydroxyl groups (400-700 °C). This step permits the evaluation of the hydroxyl group's content of 2 to 5 OH nm
. The formed Si-OH groups act as the inductor of apatite crystal nucleation in SBF. The N
physisorption isotherms show a hysteresis loop of type H3, characteristic to good interconnected porosity, which facilitates both the bioactivity and the adhesion of osteoblasts cells. After two weeks of immersion in SBF, a layer of HAp microcrystals develops on the surface with a stoichiometric Ca/P molar ratio of 1.67 with spherulite morphology and uniform sizes of 6 μm. This fact asserts the bioactive behavior of these hybrid aerogels. Osteoblasts are cultured on the selected samples and immunolabeled for cytoskeletal and focal adhesion expression related to scaffold nanostructure and composition. The initial osteoconductive response observes points to a great potential of tissue engineering for the designed composite aerogels. |
doi_str_mv | 10.3390/polym12122802 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7760707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465622855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-8502b14cb3ed678a91ed9b7de35bf66904af1bf2163adaa768dc5d634d27dbd83</originalsourceid><addsrcrecordid>eNpVkU9v1DAQxS0EotXSI1dkiXNa_0ns7AVpd1vaSkU9ULhaTjzJusrai8dZkS_DZyWlpWrnMiPNT2-e5hHykbNTKZfsbB-HaccFF6Jm4g05FkzLopSKvX0xH5ETxHs2V1kpxfV7ciSlqJQQ6pj8uZpcir-ngV6mOO6RXgc3tkDXPto2-4PPE_WBfveDb-3ZZutzRBvoClLsYUB6Duj7AI52MdF1DEDvPOII9CL0PgAkH_rTWZT-9DlF-i06GP6xeQt0hQiIOwiZxo7eYobYDBYz0jVs7cHH9IG86-yAcPLUF-TH14u7zVVxc3t5vVndFG3Jq1zUFRMNL9tGglO6tksObtloB7JqOqWWrLQdbzrBlbTOWq1q11ZOydIJ7RpXywX58qi7H5sduHa2lOxg9snvbJpMtN683gS_NX08GK0V0_OnF-Tzk0CKv0bAbO7jmMLs2YhSPTy7rqqZKh6pNkXEBN3zBc7MQ6LmVaIz_-mlrWf6f37yL-lboPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465622855</pqid></control><display><type>article</type><title>Hydroxyl Groups Induce Bioactivity in Silica/Chitosan Aerogels Designed for Bone Tissue Engineering. In Vitro Model for the Assessment of Osteoblasts Behavior</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Perez-Moreno, Antonio ; Reyes-Peces, María de Las Virtudes ; de Los Santos, Deseada María ; Pinaglia-Tobaruela, Gonzalo ; de la Orden, Emilio ; Vilches-Pérez, José Ignacio ; Salido, Mercedes ; Piñero, Manuel ; de la Rosa-Fox, Nicolás</creator><creatorcontrib>Perez-Moreno, Antonio ; Reyes-Peces, María de Las Virtudes ; de Los Santos, Deseada María ; Pinaglia-Tobaruela, Gonzalo ; de la Orden, Emilio ; Vilches-Pérez, José Ignacio ; Salido, Mercedes ; Piñero, Manuel ; de la Rosa-Fox, Nicolás</creatorcontrib><description>Silica (SiO
)/chitosan (CS) composite aerogels are bioactive when they are submerged in simulated body fluid (SBF), causing the formation of bone-like hydroxyapatite (HAp) layer. Silica-based hybrid aerogels improve the elastic behavior, and the combined CS modifies the network entanglement as a crosslinking biopolymer. Tetraethoxysilane (TEOS)/CS is used as network precursors by employing a sol-gel method assisted with high power ultrasound (600 W). Upon gelation and aging, gels are dried in supercritical CO
to obtain monoliths. Thermograms provide information about the condensation of the remaining hydroxyl groups (400-700 °C). This step permits the evaluation of the hydroxyl group's content of 2 to 5 OH nm
. The formed Si-OH groups act as the inductor of apatite crystal nucleation in SBF. The N
physisorption isotherms show a hysteresis loop of type H3, characteristic to good interconnected porosity, which facilitates both the bioactivity and the adhesion of osteoblasts cells. After two weeks of immersion in SBF, a layer of HAp microcrystals develops on the surface with a stoichiometric Ca/P molar ratio of 1.67 with spherulite morphology and uniform sizes of 6 μm. This fact asserts the bioactive behavior of these hybrid aerogels. Osteoblasts are cultured on the selected samples and immunolabeled for cytoskeletal and focal adhesion expression related to scaffold nanostructure and composition. The initial osteoconductive response observes points to a great potential of tissue engineering for the designed composite aerogels.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym12122802</identifier><identifier>PMID: 33256226</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adhesion ; Aerogels ; Apatite ; Biological activity ; Biomedical materials ; Biopolymers ; Body fluids ; Bones ; Chitosan ; Crosslinking ; Elasticity ; Entanglement ; Ethanol ; Experiments ; Fractures ; Gelation ; Hydroxyapatite ; Hydroxyl groups ; Hysteresis loops ; In vitro methods and tests ; Mechanical properties ; Microcrystals ; Molecular weight ; Morphology ; Nucleation ; Osteoblasts ; Porosity ; Scanning electron microscopy ; Silicon dioxide ; Sol-gel processes ; Solvents ; Spectrum analysis ; Submerging ; Tetraethyl orthosilicate ; Tissue engineering ; Ultrasonic imaging</subject><ispartof>Polymers, 2020-11, Vol.12 (12), p.2802</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-8502b14cb3ed678a91ed9b7de35bf66904af1bf2163adaa768dc5d634d27dbd83</citedby><cites>FETCH-LOGICAL-c415t-8502b14cb3ed678a91ed9b7de35bf66904af1bf2163adaa768dc5d634d27dbd83</cites><orcidid>0000-0003-1902-9455 ; 0000-0002-8018-0173 ; 0000-0001-8898-4371 ; 0000-0002-7528-8331 ; 0000-0001-9070-2257 ; 0000-0002-7066-5660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760707/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760707/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33256226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perez-Moreno, Antonio</creatorcontrib><creatorcontrib>Reyes-Peces, María de Las Virtudes</creatorcontrib><creatorcontrib>de Los Santos, Deseada María</creatorcontrib><creatorcontrib>Pinaglia-Tobaruela, Gonzalo</creatorcontrib><creatorcontrib>de la Orden, Emilio</creatorcontrib><creatorcontrib>Vilches-Pérez, José Ignacio</creatorcontrib><creatorcontrib>Salido, Mercedes</creatorcontrib><creatorcontrib>Piñero, Manuel</creatorcontrib><creatorcontrib>de la Rosa-Fox, Nicolás</creatorcontrib><title>Hydroxyl Groups Induce Bioactivity in Silica/Chitosan Aerogels Designed for Bone Tissue Engineering. In Vitro Model for the Assessment of Osteoblasts Behavior</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Silica (SiO
)/chitosan (CS) composite aerogels are bioactive when they are submerged in simulated body fluid (SBF), causing the formation of bone-like hydroxyapatite (HAp) layer. Silica-based hybrid aerogels improve the elastic behavior, and the combined CS modifies the network entanglement as a crosslinking biopolymer. Tetraethoxysilane (TEOS)/CS is used as network precursors by employing a sol-gel method assisted with high power ultrasound (600 W). Upon gelation and aging, gels are dried in supercritical CO
to obtain monoliths. Thermograms provide information about the condensation of the remaining hydroxyl groups (400-700 °C). This step permits the evaluation of the hydroxyl group's content of 2 to 5 OH nm
. The formed Si-OH groups act as the inductor of apatite crystal nucleation in SBF. The N
physisorption isotherms show a hysteresis loop of type H3, characteristic to good interconnected porosity, which facilitates both the bioactivity and the adhesion of osteoblasts cells. After two weeks of immersion in SBF, a layer of HAp microcrystals develops on the surface with a stoichiometric Ca/P molar ratio of 1.67 with spherulite morphology and uniform sizes of 6 μm. This fact asserts the bioactive behavior of these hybrid aerogels. Osteoblasts are cultured on the selected samples and immunolabeled for cytoskeletal and focal adhesion expression related to scaffold nanostructure and composition. The initial osteoconductive response observes points to a great potential of tissue engineering for the designed composite aerogels.</description><subject>Adhesion</subject><subject>Aerogels</subject><subject>Apatite</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Biopolymers</subject><subject>Body fluids</subject><subject>Bones</subject><subject>Chitosan</subject><subject>Crosslinking</subject><subject>Elasticity</subject><subject>Entanglement</subject><subject>Ethanol</subject><subject>Experiments</subject><subject>Fractures</subject><subject>Gelation</subject><subject>Hydroxyapatite</subject><subject>Hydroxyl groups</subject><subject>Hysteresis loops</subject><subject>In vitro methods and tests</subject><subject>Mechanical properties</subject><subject>Microcrystals</subject><subject>Molecular weight</subject><subject>Morphology</subject><subject>Nucleation</subject><subject>Osteoblasts</subject><subject>Porosity</subject><subject>Scanning electron microscopy</subject><subject>Silicon dioxide</subject><subject>Sol-gel processes</subject><subject>Solvents</subject><subject>Spectrum analysis</subject><subject>Submerging</subject><subject>Tetraethyl orthosilicate</subject><subject>Tissue engineering</subject><subject>Ultrasonic imaging</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkU9v1DAQxS0EotXSI1dkiXNa_0ns7AVpd1vaSkU9ULhaTjzJusrai8dZkS_DZyWlpWrnMiPNT2-e5hHykbNTKZfsbB-HaccFF6Jm4g05FkzLopSKvX0xH5ETxHs2V1kpxfV7ciSlqJQQ6pj8uZpcir-ngV6mOO6RXgc3tkDXPto2-4PPE_WBfveDb-3ZZutzRBvoClLsYUB6Duj7AI52MdF1DEDvPOII9CL0PgAkH_rTWZT-9DlF-i06GP6xeQt0hQiIOwiZxo7eYobYDBYz0jVs7cHH9IG86-yAcPLUF-TH14u7zVVxc3t5vVndFG3Jq1zUFRMNL9tGglO6tksObtloB7JqOqWWrLQdbzrBlbTOWq1q11ZOydIJ7RpXywX58qi7H5sduHa2lOxg9snvbJpMtN683gS_NX08GK0V0_OnF-Tzk0CKv0bAbO7jmMLs2YhSPTy7rqqZKh6pNkXEBN3zBc7MQ6LmVaIz_-mlrWf6f37yL-lboPA</recordid><startdate>20201126</startdate><enddate>20201126</enddate><creator>Perez-Moreno, Antonio</creator><creator>Reyes-Peces, María de Las Virtudes</creator><creator>de Los Santos, Deseada María</creator><creator>Pinaglia-Tobaruela, Gonzalo</creator><creator>de la Orden, Emilio</creator><creator>Vilches-Pérez, José Ignacio</creator><creator>Salido, Mercedes</creator><creator>Piñero, Manuel</creator><creator>de la Rosa-Fox, Nicolás</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1902-9455</orcidid><orcidid>https://orcid.org/0000-0002-8018-0173</orcidid><orcidid>https://orcid.org/0000-0001-8898-4371</orcidid><orcidid>https://orcid.org/0000-0002-7528-8331</orcidid><orcidid>https://orcid.org/0000-0001-9070-2257</orcidid><orcidid>https://orcid.org/0000-0002-7066-5660</orcidid></search><sort><creationdate>20201126</creationdate><title>Hydroxyl Groups Induce Bioactivity in Silica/Chitosan Aerogels Designed for Bone Tissue Engineering. In Vitro Model for the Assessment of Osteoblasts Behavior</title><author>Perez-Moreno, Antonio ; Reyes-Peces, María de Las Virtudes ; de Los Santos, Deseada María ; Pinaglia-Tobaruela, Gonzalo ; de la Orden, Emilio ; Vilches-Pérez, José Ignacio ; Salido, Mercedes ; Piñero, Manuel ; de la Rosa-Fox, Nicolás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-8502b14cb3ed678a91ed9b7de35bf66904af1bf2163adaa768dc5d634d27dbd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adhesion</topic><topic>Aerogels</topic><topic>Apatite</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Biopolymers</topic><topic>Body fluids</topic><topic>Bones</topic><topic>Chitosan</topic><topic>Crosslinking</topic><topic>Elasticity</topic><topic>Entanglement</topic><topic>Ethanol</topic><topic>Experiments</topic><topic>Fractures</topic><topic>Gelation</topic><topic>Hydroxyapatite</topic><topic>Hydroxyl groups</topic><topic>Hysteresis loops</topic><topic>In vitro methods and tests</topic><topic>Mechanical properties</topic><topic>Microcrystals</topic><topic>Molecular weight</topic><topic>Morphology</topic><topic>Nucleation</topic><topic>Osteoblasts</topic><topic>Porosity</topic><topic>Scanning electron microscopy</topic><topic>Silicon dioxide</topic><topic>Sol-gel processes</topic><topic>Solvents</topic><topic>Spectrum analysis</topic><topic>Submerging</topic><topic>Tetraethyl orthosilicate</topic><topic>Tissue engineering</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez-Moreno, Antonio</creatorcontrib><creatorcontrib>Reyes-Peces, María de Las Virtudes</creatorcontrib><creatorcontrib>de Los Santos, Deseada María</creatorcontrib><creatorcontrib>Pinaglia-Tobaruela, Gonzalo</creatorcontrib><creatorcontrib>de la Orden, Emilio</creatorcontrib><creatorcontrib>Vilches-Pérez, José Ignacio</creatorcontrib><creatorcontrib>Salido, Mercedes</creatorcontrib><creatorcontrib>Piñero, Manuel</creatorcontrib><creatorcontrib>de la Rosa-Fox, Nicolás</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez-Moreno, Antonio</au><au>Reyes-Peces, María de Las Virtudes</au><au>de Los Santos, Deseada María</au><au>Pinaglia-Tobaruela, Gonzalo</au><au>de la Orden, Emilio</au><au>Vilches-Pérez, José Ignacio</au><au>Salido, Mercedes</au><au>Piñero, Manuel</au><au>de la Rosa-Fox, Nicolás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxyl Groups Induce Bioactivity in Silica/Chitosan Aerogels Designed for Bone Tissue Engineering. In Vitro Model for the Assessment of Osteoblasts Behavior</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2020-11-26</date><risdate>2020</risdate><volume>12</volume><issue>12</issue><spage>2802</spage><pages>2802-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Silica (SiO
)/chitosan (CS) composite aerogels are bioactive when they are submerged in simulated body fluid (SBF), causing the formation of bone-like hydroxyapatite (HAp) layer. Silica-based hybrid aerogels improve the elastic behavior, and the combined CS modifies the network entanglement as a crosslinking biopolymer. Tetraethoxysilane (TEOS)/CS is used as network precursors by employing a sol-gel method assisted with high power ultrasound (600 W). Upon gelation and aging, gels are dried in supercritical CO
to obtain monoliths. Thermograms provide information about the condensation of the remaining hydroxyl groups (400-700 °C). This step permits the evaluation of the hydroxyl group's content of 2 to 5 OH nm
. The formed Si-OH groups act as the inductor of apatite crystal nucleation in SBF. The N
physisorption isotherms show a hysteresis loop of type H3, characteristic to good interconnected porosity, which facilitates both the bioactivity and the adhesion of osteoblasts cells. After two weeks of immersion in SBF, a layer of HAp microcrystals develops on the surface with a stoichiometric Ca/P molar ratio of 1.67 with spherulite morphology and uniform sizes of 6 μm. This fact asserts the bioactive behavior of these hybrid aerogels. Osteoblasts are cultured on the selected samples and immunolabeled for cytoskeletal and focal adhesion expression related to scaffold nanostructure and composition. The initial osteoconductive response observes points to a great potential of tissue engineering for the designed composite aerogels.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33256226</pmid><doi>10.3390/polym12122802</doi><orcidid>https://orcid.org/0000-0003-1902-9455</orcidid><orcidid>https://orcid.org/0000-0002-8018-0173</orcidid><orcidid>https://orcid.org/0000-0001-8898-4371</orcidid><orcidid>https://orcid.org/0000-0002-7528-8331</orcidid><orcidid>https://orcid.org/0000-0001-9070-2257</orcidid><orcidid>https://orcid.org/0000-0002-7066-5660</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2020-11, Vol.12 (12), p.2802 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7760707 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adhesion Aerogels Apatite Biological activity Biomedical materials Biopolymers Body fluids Bones Chitosan Crosslinking Elasticity Entanglement Ethanol Experiments Fractures Gelation Hydroxyapatite Hydroxyl groups Hysteresis loops In vitro methods and tests Mechanical properties Microcrystals Molecular weight Morphology Nucleation Osteoblasts Porosity Scanning electron microscopy Silicon dioxide Sol-gel processes Solvents Spectrum analysis Submerging Tetraethyl orthosilicate Tissue engineering Ultrasonic imaging |
title | Hydroxyl Groups Induce Bioactivity in Silica/Chitosan Aerogels Designed for Bone Tissue Engineering. In Vitro Model for the Assessment of Osteoblasts Behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxyl%20Groups%20Induce%20Bioactivity%20in%20Silica/Chitosan%20Aerogels%20Designed%20for%20Bone%20Tissue%20Engineering.%20In%20Vitro%20Model%20for%20the%20Assessment%20of%20Osteoblasts%20Behavior&rft.jtitle=Polymers&rft.au=Perez-Moreno,%20Antonio&rft.date=2020-11-26&rft.volume=12&rft.issue=12&rft.spage=2802&rft.pages=2802-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym12122802&rft_dat=%3Cproquest_pubme%3E2465622855%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465622855&rft_id=info:pmid/33256226&rfr_iscdi=true |