Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination
Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioas...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-12, Vol.59 (51), p.23122-23126 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23126 |
---|---|
container_issue | 51 |
container_start_page | 23122 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Niehs, Sarah P. Kumpfmüller, Jana Dose, Benjamin Little, Rory F. Ishida, Keishi Flórez, Laura V. Kaltenpoth, Martin Hertweck, Christian |
description | Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously‐overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol‐derived C3 building block. The key role of an A‐factor synthase (AfsA)‐like offloading domain was corroborated by CRISPR‐Cas‐mediated gene editing, which facilitated precise excision within a PKS domain.
Genome mining, bioactivity and metabolic profiling revealed a novel polyketide (gladiofungin) that augments the antifungal armory of pest beetles’ protective symbionts. Its non‐canonical multimodular assembly line employs an unprecedented polyketide chain termination reaction to form a butenolide ring, as demonstrated by isotope labeling and CRISPR‐Cas gene editing. |
doi_str_mv | 10.1002/anie.202005711 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7756420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418126115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6411-6d23e02b4566f36a035e4841bba163c8844a504d3e77b50539a37a94a79826583</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqVw5YgiceGSxd92LkjbVSkrVYVDOVuTZLbr4tglTopW4sBP4DfyS3C0Zfm4cLBszTx-NKO3KJ5TsqCEsNcQHC4YYYRITemD4phKRiuuNX-Y34LzShtJj4onKd1k3hiiHhdHnEljalkfF1_XIWE7_vj2fZlSbB2M2JWn0I44OChzDfvGYzlusVyG0W2mcA2-PJ1GDNG7DstzD52Lc92FstmVlzFk2QpCDK7N6Ifod59wnNHVFjJzhUPvAowuhqfFow34hM_u75Pi49uzq9W76uL9-Xq1vKhaJSitVMc4EtYIqdSGKyBcojCCNg1QxVtjhABJRMdR60YSyWvgGmoBujZMScNPijd77-3U9Ni1GMYBvL0dXA_DzkZw9u9OcFt7He-s1lIJRrLg1b1giJ8nTKPtXWrRewgYp2SZoIYyRanM6Mt_0Js4DSGvlymlVT5inmixp9ohpjTg5jAMJXYO1s7B2kOw-cOLP1c44L-SzEC9B744j7v_6Ozycn32W_4TBU2yeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467646748</pqid></control><display><type>article</type><title>Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Niehs, Sarah P. ; Kumpfmüller, Jana ; Dose, Benjamin ; Little, Rory F. ; Ishida, Keishi ; Flórez, Laura V. ; Kaltenpoth, Martin ; Hertweck, Christian</creator><creatorcontrib>Niehs, Sarah P. ; Kumpfmüller, Jana ; Dose, Benjamin ; Little, Rory F. ; Ishida, Keishi ; Flórez, Laura V. ; Kaltenpoth, Martin ; Hertweck, Christian</creatorcontrib><description>Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously‐overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol‐derived C3 building block. The key role of an A‐factor synthase (AfsA)‐like offloading domain was corroborated by CRISPR‐Cas‐mediated gene editing, which facilitated precise excision within a PKS domain.
Genome mining, bioactivity and metabolic profiling revealed a novel polyketide (gladiofungin) that augments the antifungal armory of pest beetles’ protective symbionts. Its non‐canonical multimodular assembly line employs an unprecedented polyketide chain termination reaction to form a butenolide ring, as demonstrated by isotope labeling and CRISPR‐Cas gene editing.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202005711</identifier><identifier>PMID: 32588959</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>4-Butyrolactone - analogs & derivatives ; 4-Butyrolactone - biosynthesis ; 4-Butyrolactone - chemistry ; 4-Butyrolactone - pharmacology ; Animals ; Antifungal Agents - chemistry ; Antifungal Agents - metabolism ; Antifungal Agents - pharmacology ; antifungal compounds ; Antiinfectives and antibacterials ; Bacteria ; Bioassays ; Biosynthesis ; Burkholderia - chemistry ; Burkholderia - genetics ; Burkholderia - metabolism ; Chains ; Coleoptera ; Communication ; Communications ; Computer applications ; CRISPR ; Cryptic gene ; Deactivation ; Domains ; Entomopathogenic fungi ; Fungicides ; Genetic modification ; genome mining ; Genomes ; Glycerol ; Hypocreales - drug effects ; Inactivation ; Insects ; Microbial Sensitivity Tests ; natural products ; Polyketide synthase ; polyketides ; Polyketides - chemistry ; Polyketides - metabolism ; Polyketides - pharmacology ; Symbionts</subject><ispartof>Angewandte Chemie International Edition, 2020-12, Vol.59 (51), p.23122-23126</ispartof><rights>2020 The Authors. Published by Wiley-VCH GmbH</rights><rights>2020 The Authors. Published by Wiley-VCH GmbH.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6411-6d23e02b4566f36a035e4841bba163c8844a504d3e77b50539a37a94a79826583</citedby><cites>FETCH-LOGICAL-c6411-6d23e02b4566f36a035e4841bba163c8844a504d3e77b50539a37a94a79826583</cites><orcidid>0000-0003-3510-8276 ; 0000-0002-2012-5949 ; 0000-0002-0367-337X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202005711$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202005711$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32588959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niehs, Sarah P.</creatorcontrib><creatorcontrib>Kumpfmüller, Jana</creatorcontrib><creatorcontrib>Dose, Benjamin</creatorcontrib><creatorcontrib>Little, Rory F.</creatorcontrib><creatorcontrib>Ishida, Keishi</creatorcontrib><creatorcontrib>Flórez, Laura V.</creatorcontrib><creatorcontrib>Kaltenpoth, Martin</creatorcontrib><creatorcontrib>Hertweck, Christian</creatorcontrib><title>Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously‐overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol‐derived C3 building block. The key role of an A‐factor synthase (AfsA)‐like offloading domain was corroborated by CRISPR‐Cas‐mediated gene editing, which facilitated precise excision within a PKS domain.
Genome mining, bioactivity and metabolic profiling revealed a novel polyketide (gladiofungin) that augments the antifungal armory of pest beetles’ protective symbionts. Its non‐canonical multimodular assembly line employs an unprecedented polyketide chain termination reaction to form a butenolide ring, as demonstrated by isotope labeling and CRISPR‐Cas gene editing.</description><subject>4-Butyrolactone - analogs & derivatives</subject><subject>4-Butyrolactone - biosynthesis</subject><subject>4-Butyrolactone - chemistry</subject><subject>4-Butyrolactone - pharmacology</subject><subject>Animals</subject><subject>Antifungal Agents - chemistry</subject><subject>Antifungal Agents - metabolism</subject><subject>Antifungal Agents - pharmacology</subject><subject>antifungal compounds</subject><subject>Antiinfectives and antibacterials</subject><subject>Bacteria</subject><subject>Bioassays</subject><subject>Biosynthesis</subject><subject>Burkholderia - chemistry</subject><subject>Burkholderia - genetics</subject><subject>Burkholderia - metabolism</subject><subject>Chains</subject><subject>Coleoptera</subject><subject>Communication</subject><subject>Communications</subject><subject>Computer applications</subject><subject>CRISPR</subject><subject>Cryptic gene</subject><subject>Deactivation</subject><subject>Domains</subject><subject>Entomopathogenic fungi</subject><subject>Fungicides</subject><subject>Genetic modification</subject><subject>genome mining</subject><subject>Genomes</subject><subject>Glycerol</subject><subject>Hypocreales - drug effects</subject><subject>Inactivation</subject><subject>Insects</subject><subject>Microbial Sensitivity Tests</subject><subject>natural products</subject><subject>Polyketide synthase</subject><subject>polyketides</subject><subject>Polyketides - chemistry</subject><subject>Polyketides - metabolism</subject><subject>Polyketides - pharmacology</subject><subject>Symbionts</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEoqVw5YgiceGSxd92LkjbVSkrVYVDOVuTZLbr4tglTopW4sBP4DfyS3C0Zfm4cLBszTx-NKO3KJ5TsqCEsNcQHC4YYYRITemD4phKRiuuNX-Y34LzShtJj4onKd1k3hiiHhdHnEljalkfF1_XIWE7_vj2fZlSbB2M2JWn0I44OChzDfvGYzlusVyG0W2mcA2-PJ1GDNG7DstzD52Lc92FstmVlzFk2QpCDK7N6Ifod59wnNHVFjJzhUPvAowuhqfFow34hM_u75Pi49uzq9W76uL9-Xq1vKhaJSitVMc4EtYIqdSGKyBcojCCNg1QxVtjhABJRMdR60YSyWvgGmoBujZMScNPijd77-3U9Ni1GMYBvL0dXA_DzkZw9u9OcFt7He-s1lIJRrLg1b1giJ8nTKPtXWrRewgYp2SZoIYyRanM6Mt_0Js4DSGvlymlVT5inmixp9ohpjTg5jAMJXYO1s7B2kOw-cOLP1c44L-SzEC9B744j7v_6Ozycn32W_4TBU2yeQ</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Niehs, Sarah P.</creator><creator>Kumpfmüller, Jana</creator><creator>Dose, Benjamin</creator><creator>Little, Rory F.</creator><creator>Ishida, Keishi</creator><creator>Flórez, Laura V.</creator><creator>Kaltenpoth, Martin</creator><creator>Hertweck, Christian</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3510-8276</orcidid><orcidid>https://orcid.org/0000-0002-2012-5949</orcidid><orcidid>https://orcid.org/0000-0002-0367-337X</orcidid></search><sort><creationdate>20201214</creationdate><title>Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination</title><author>Niehs, Sarah P. ; Kumpfmüller, Jana ; Dose, Benjamin ; Little, Rory F. ; Ishida, Keishi ; Flórez, Laura V. ; Kaltenpoth, Martin ; Hertweck, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6411-6d23e02b4566f36a035e4841bba163c8844a504d3e77b50539a37a94a79826583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>4-Butyrolactone - analogs & derivatives</topic><topic>4-Butyrolactone - biosynthesis</topic><topic>4-Butyrolactone - chemistry</topic><topic>4-Butyrolactone - pharmacology</topic><topic>Animals</topic><topic>Antifungal Agents - chemistry</topic><topic>Antifungal Agents - metabolism</topic><topic>Antifungal Agents - pharmacology</topic><topic>antifungal compounds</topic><topic>Antiinfectives and antibacterials</topic><topic>Bacteria</topic><topic>Bioassays</topic><topic>Biosynthesis</topic><topic>Burkholderia - chemistry</topic><topic>Burkholderia - genetics</topic><topic>Burkholderia - metabolism</topic><topic>Chains</topic><topic>Coleoptera</topic><topic>Communication</topic><topic>Communications</topic><topic>Computer applications</topic><topic>CRISPR</topic><topic>Cryptic gene</topic><topic>Deactivation</topic><topic>Domains</topic><topic>Entomopathogenic fungi</topic><topic>Fungicides</topic><topic>Genetic modification</topic><topic>genome mining</topic><topic>Genomes</topic><topic>Glycerol</topic><topic>Hypocreales - drug effects</topic><topic>Inactivation</topic><topic>Insects</topic><topic>Microbial Sensitivity Tests</topic><topic>natural products</topic><topic>Polyketide synthase</topic><topic>polyketides</topic><topic>Polyketides - chemistry</topic><topic>Polyketides - metabolism</topic><topic>Polyketides - pharmacology</topic><topic>Symbionts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niehs, Sarah P.</creatorcontrib><creatorcontrib>Kumpfmüller, Jana</creatorcontrib><creatorcontrib>Dose, Benjamin</creatorcontrib><creatorcontrib>Little, Rory F.</creatorcontrib><creatorcontrib>Ishida, Keishi</creatorcontrib><creatorcontrib>Flórez, Laura V.</creatorcontrib><creatorcontrib>Kaltenpoth, Martin</creatorcontrib><creatorcontrib>Hertweck, Christian</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niehs, Sarah P.</au><au>Kumpfmüller, Jana</au><au>Dose, Benjamin</au><au>Little, Rory F.</au><au>Ishida, Keishi</au><au>Flórez, Laura V.</au><au>Kaltenpoth, Martin</au><au>Hertweck, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-12-14</date><risdate>2020</risdate><volume>59</volume><issue>51</issue><spage>23122</spage><epage>23126</epage><pages>23122-23126</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously‐overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol‐derived C3 building block. The key role of an A‐factor synthase (AfsA)‐like offloading domain was corroborated by CRISPR‐Cas‐mediated gene editing, which facilitated precise excision within a PKS domain.
Genome mining, bioactivity and metabolic profiling revealed a novel polyketide (gladiofungin) that augments the antifungal armory of pest beetles’ protective symbionts. Its non‐canonical multimodular assembly line employs an unprecedented polyketide chain termination reaction to form a butenolide ring, as demonstrated by isotope labeling and CRISPR‐Cas gene editing.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32588959</pmid><doi>10.1002/anie.202005711</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-3510-8276</orcidid><orcidid>https://orcid.org/0000-0002-2012-5949</orcidid><orcidid>https://orcid.org/0000-0002-0367-337X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-12, Vol.59 (51), p.23122-23126 |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7756420 |
source | MEDLINE; Access via Wiley Online Library |
subjects | 4-Butyrolactone - analogs & derivatives 4-Butyrolactone - biosynthesis 4-Butyrolactone - chemistry 4-Butyrolactone - pharmacology Animals Antifungal Agents - chemistry Antifungal Agents - metabolism Antifungal Agents - pharmacology antifungal compounds Antiinfectives and antibacterials Bacteria Bioassays Biosynthesis Burkholderia - chemistry Burkholderia - genetics Burkholderia - metabolism Chains Coleoptera Communication Communications Computer applications CRISPR Cryptic gene Deactivation Domains Entomopathogenic fungi Fungicides Genetic modification genome mining Genomes Glycerol Hypocreales - drug effects Inactivation Insects Microbial Sensitivity Tests natural products Polyketide synthase polyketides Polyketides - chemistry Polyketides - metabolism Polyketides - pharmacology Symbionts |
title | Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insect%E2%80%90Associated%20Bacteria%20Assemble%20the%20Antifungal%20Butenolide%20Gladiofungin%20by%20Non%E2%80%90Canonical%20Polyketide%20Chain%20Termination&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Niehs,%20Sarah%20P.&rft.date=2020-12-14&rft.volume=59&rft.issue=51&rft.spage=23122&rft.epage=23126&rft.pages=23122-23126&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202005711&rft_dat=%3Cproquest_pubme%3E2418126115%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467646748&rft_id=info:pmid/32588959&rfr_iscdi=true |