Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination

Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-12, Vol.59 (51), p.23122-23126
Hauptverfasser: Niehs, Sarah P., Kumpfmüller, Jana, Dose, Benjamin, Little, Rory F., Ishida, Keishi, Flórez, Laura V., Kaltenpoth, Martin, Hertweck, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23126
container_issue 51
container_start_page 23122
container_title Angewandte Chemie International Edition
container_volume 59
creator Niehs, Sarah P.
Kumpfmüller, Jana
Dose, Benjamin
Little, Rory F.
Ishida, Keishi
Flórez, Laura V.
Kaltenpoth, Martin
Hertweck, Christian
description Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously‐overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol‐derived C3 building block. The key role of an A‐factor synthase (AfsA)‐like offloading domain was corroborated by CRISPR‐Cas‐mediated gene editing, which facilitated precise excision within a PKS domain. Genome mining, bioactivity and metabolic profiling revealed a novel polyketide (gladiofungin) that augments the antifungal armory of pest beetles’ protective symbionts. Its non‐canonical multimodular assembly line employs an unprecedented polyketide chain termination reaction to form a butenolide ring, as demonstrated by isotope labeling and CRISPR‐Cas gene editing.
doi_str_mv 10.1002/anie.202005711
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7756420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418126115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6411-6d23e02b4566f36a035e4841bba163c8844a504d3e77b50539a37a94a79826583</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqVw5YgiceGSxd92LkjbVSkrVYVDOVuTZLbr4tglTopW4sBP4DfyS3C0Zfm4cLBszTx-NKO3KJ5TsqCEsNcQHC4YYYRITemD4phKRiuuNX-Y34LzShtJj4onKd1k3hiiHhdHnEljalkfF1_XIWE7_vj2fZlSbB2M2JWn0I44OChzDfvGYzlusVyG0W2mcA2-PJ1GDNG7DstzD52Lc92FstmVlzFk2QpCDK7N6Ifod59wnNHVFjJzhUPvAowuhqfFow34hM_u75Pi49uzq9W76uL9-Xq1vKhaJSitVMc4EtYIqdSGKyBcojCCNg1QxVtjhABJRMdR60YSyWvgGmoBujZMScNPijd77-3U9Ni1GMYBvL0dXA_DzkZw9u9OcFt7He-s1lIJRrLg1b1giJ8nTKPtXWrRewgYp2SZoIYyRanM6Mt_0Js4DSGvlymlVT5inmixp9ohpjTg5jAMJXYO1s7B2kOw-cOLP1c44L-SzEC9B744j7v_6Ozycn32W_4TBU2yeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467646748</pqid></control><display><type>article</type><title>Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Niehs, Sarah P. ; Kumpfmüller, Jana ; Dose, Benjamin ; Little, Rory F. ; Ishida, Keishi ; Flórez, Laura V. ; Kaltenpoth, Martin ; Hertweck, Christian</creator><creatorcontrib>Niehs, Sarah P. ; Kumpfmüller, Jana ; Dose, Benjamin ; Little, Rory F. ; Ishida, Keishi ; Flórez, Laura V. ; Kaltenpoth, Martin ; Hertweck, Christian</creatorcontrib><description>Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously‐overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol‐derived C3 building block. The key role of an A‐factor synthase (AfsA)‐like offloading domain was corroborated by CRISPR‐Cas‐mediated gene editing, which facilitated precise excision within a PKS domain. Genome mining, bioactivity and metabolic profiling revealed a novel polyketide (gladiofungin) that augments the antifungal armory of pest beetles’ protective symbionts. Its non‐canonical multimodular assembly line employs an unprecedented polyketide chain termination reaction to form a butenolide ring, as demonstrated by isotope labeling and CRISPR‐Cas gene editing.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202005711</identifier><identifier>PMID: 32588959</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>4-Butyrolactone - analogs &amp; derivatives ; 4-Butyrolactone - biosynthesis ; 4-Butyrolactone - chemistry ; 4-Butyrolactone - pharmacology ; Animals ; Antifungal Agents - chemistry ; Antifungal Agents - metabolism ; Antifungal Agents - pharmacology ; antifungal compounds ; Antiinfectives and antibacterials ; Bacteria ; Bioassays ; Biosynthesis ; Burkholderia - chemistry ; Burkholderia - genetics ; Burkholderia - metabolism ; Chains ; Coleoptera ; Communication ; Communications ; Computer applications ; CRISPR ; Cryptic gene ; Deactivation ; Domains ; Entomopathogenic fungi ; Fungicides ; Genetic modification ; genome mining ; Genomes ; Glycerol ; Hypocreales - drug effects ; Inactivation ; Insects ; Microbial Sensitivity Tests ; natural products ; Polyketide synthase ; polyketides ; Polyketides - chemistry ; Polyketides - metabolism ; Polyketides - pharmacology ; Symbionts</subject><ispartof>Angewandte Chemie International Edition, 2020-12, Vol.59 (51), p.23122-23126</ispartof><rights>2020 The Authors. Published by Wiley-VCH GmbH</rights><rights>2020 The Authors. Published by Wiley-VCH GmbH.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6411-6d23e02b4566f36a035e4841bba163c8844a504d3e77b50539a37a94a79826583</citedby><cites>FETCH-LOGICAL-c6411-6d23e02b4566f36a035e4841bba163c8844a504d3e77b50539a37a94a79826583</cites><orcidid>0000-0003-3510-8276 ; 0000-0002-2012-5949 ; 0000-0002-0367-337X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202005711$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202005711$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32588959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niehs, Sarah P.</creatorcontrib><creatorcontrib>Kumpfmüller, Jana</creatorcontrib><creatorcontrib>Dose, Benjamin</creatorcontrib><creatorcontrib>Little, Rory F.</creatorcontrib><creatorcontrib>Ishida, Keishi</creatorcontrib><creatorcontrib>Flórez, Laura V.</creatorcontrib><creatorcontrib>Kaltenpoth, Martin</creatorcontrib><creatorcontrib>Hertweck, Christian</creatorcontrib><title>Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously‐overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol‐derived C3 building block. The key role of an A‐factor synthase (AfsA)‐like offloading domain was corroborated by CRISPR‐Cas‐mediated gene editing, which facilitated precise excision within a PKS domain. Genome mining, bioactivity and metabolic profiling revealed a novel polyketide (gladiofungin) that augments the antifungal armory of pest beetles’ protective symbionts. Its non‐canonical multimodular assembly line employs an unprecedented polyketide chain termination reaction to form a butenolide ring, as demonstrated by isotope labeling and CRISPR‐Cas gene editing.</description><subject>4-Butyrolactone - analogs &amp; derivatives</subject><subject>4-Butyrolactone - biosynthesis</subject><subject>4-Butyrolactone - chemistry</subject><subject>4-Butyrolactone - pharmacology</subject><subject>Animals</subject><subject>Antifungal Agents - chemistry</subject><subject>Antifungal Agents - metabolism</subject><subject>Antifungal Agents - pharmacology</subject><subject>antifungal compounds</subject><subject>Antiinfectives and antibacterials</subject><subject>Bacteria</subject><subject>Bioassays</subject><subject>Biosynthesis</subject><subject>Burkholderia - chemistry</subject><subject>Burkholderia - genetics</subject><subject>Burkholderia - metabolism</subject><subject>Chains</subject><subject>Coleoptera</subject><subject>Communication</subject><subject>Communications</subject><subject>Computer applications</subject><subject>CRISPR</subject><subject>Cryptic gene</subject><subject>Deactivation</subject><subject>Domains</subject><subject>Entomopathogenic fungi</subject><subject>Fungicides</subject><subject>Genetic modification</subject><subject>genome mining</subject><subject>Genomes</subject><subject>Glycerol</subject><subject>Hypocreales - drug effects</subject><subject>Inactivation</subject><subject>Insects</subject><subject>Microbial Sensitivity Tests</subject><subject>natural products</subject><subject>Polyketide synthase</subject><subject>polyketides</subject><subject>Polyketides - chemistry</subject><subject>Polyketides - metabolism</subject><subject>Polyketides - pharmacology</subject><subject>Symbionts</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEoqVw5YgiceGSxd92LkjbVSkrVYVDOVuTZLbr4tglTopW4sBP4DfyS3C0Zfm4cLBszTx-NKO3KJ5TsqCEsNcQHC4YYYRITemD4phKRiuuNX-Y34LzShtJj4onKd1k3hiiHhdHnEljalkfF1_XIWE7_vj2fZlSbB2M2JWn0I44OChzDfvGYzlusVyG0W2mcA2-PJ1GDNG7DstzD52Lc92FstmVlzFk2QpCDK7N6Ifod59wnNHVFjJzhUPvAowuhqfFow34hM_u75Pi49uzq9W76uL9-Xq1vKhaJSitVMc4EtYIqdSGKyBcojCCNg1QxVtjhABJRMdR60YSyWvgGmoBujZMScNPijd77-3U9Ni1GMYBvL0dXA_DzkZw9u9OcFt7He-s1lIJRrLg1b1giJ8nTKPtXWrRewgYp2SZoIYyRanM6Mt_0Js4DSGvlymlVT5inmixp9ohpjTg5jAMJXYO1s7B2kOw-cOLP1c44L-SzEC9B744j7v_6Ozycn32W_4TBU2yeQ</recordid><startdate>20201214</startdate><enddate>20201214</enddate><creator>Niehs, Sarah P.</creator><creator>Kumpfmüller, Jana</creator><creator>Dose, Benjamin</creator><creator>Little, Rory F.</creator><creator>Ishida, Keishi</creator><creator>Flórez, Laura V.</creator><creator>Kaltenpoth, Martin</creator><creator>Hertweck, Christian</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3510-8276</orcidid><orcidid>https://orcid.org/0000-0002-2012-5949</orcidid><orcidid>https://orcid.org/0000-0002-0367-337X</orcidid></search><sort><creationdate>20201214</creationdate><title>Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination</title><author>Niehs, Sarah P. ; Kumpfmüller, Jana ; Dose, Benjamin ; Little, Rory F. ; Ishida, Keishi ; Flórez, Laura V. ; Kaltenpoth, Martin ; Hertweck, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6411-6d23e02b4566f36a035e4841bba163c8844a504d3e77b50539a37a94a79826583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>4-Butyrolactone - analogs &amp; derivatives</topic><topic>4-Butyrolactone - biosynthesis</topic><topic>4-Butyrolactone - chemistry</topic><topic>4-Butyrolactone - pharmacology</topic><topic>Animals</topic><topic>Antifungal Agents - chemistry</topic><topic>Antifungal Agents - metabolism</topic><topic>Antifungal Agents - pharmacology</topic><topic>antifungal compounds</topic><topic>Antiinfectives and antibacterials</topic><topic>Bacteria</topic><topic>Bioassays</topic><topic>Biosynthesis</topic><topic>Burkholderia - chemistry</topic><topic>Burkholderia - genetics</topic><topic>Burkholderia - metabolism</topic><topic>Chains</topic><topic>Coleoptera</topic><topic>Communication</topic><topic>Communications</topic><topic>Computer applications</topic><topic>CRISPR</topic><topic>Cryptic gene</topic><topic>Deactivation</topic><topic>Domains</topic><topic>Entomopathogenic fungi</topic><topic>Fungicides</topic><topic>Genetic modification</topic><topic>genome mining</topic><topic>Genomes</topic><topic>Glycerol</topic><topic>Hypocreales - drug effects</topic><topic>Inactivation</topic><topic>Insects</topic><topic>Microbial Sensitivity Tests</topic><topic>natural products</topic><topic>Polyketide synthase</topic><topic>polyketides</topic><topic>Polyketides - chemistry</topic><topic>Polyketides - metabolism</topic><topic>Polyketides - pharmacology</topic><topic>Symbionts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niehs, Sarah P.</creatorcontrib><creatorcontrib>Kumpfmüller, Jana</creatorcontrib><creatorcontrib>Dose, Benjamin</creatorcontrib><creatorcontrib>Little, Rory F.</creatorcontrib><creatorcontrib>Ishida, Keishi</creatorcontrib><creatorcontrib>Flórez, Laura V.</creatorcontrib><creatorcontrib>Kaltenpoth, Martin</creatorcontrib><creatorcontrib>Hertweck, Christian</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niehs, Sarah P.</au><au>Kumpfmüller, Jana</au><au>Dose, Benjamin</au><au>Little, Rory F.</au><au>Ishida, Keishi</au><au>Flórez, Laura V.</au><au>Kaltenpoth, Martin</au><au>Hertweck, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-12-14</date><risdate>2020</risdate><volume>59</volume><issue>51</issue><spage>23122</spage><epage>23126</epage><pages>23122-23126</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously‐overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol‐derived C3 building block. The key role of an A‐factor synthase (AfsA)‐like offloading domain was corroborated by CRISPR‐Cas‐mediated gene editing, which facilitated precise excision within a PKS domain. Genome mining, bioactivity and metabolic profiling revealed a novel polyketide (gladiofungin) that augments the antifungal armory of pest beetles’ protective symbionts. Its non‐canonical multimodular assembly line employs an unprecedented polyketide chain termination reaction to form a butenolide ring, as demonstrated by isotope labeling and CRISPR‐Cas gene editing.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32588959</pmid><doi>10.1002/anie.202005711</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-3510-8276</orcidid><orcidid>https://orcid.org/0000-0002-2012-5949</orcidid><orcidid>https://orcid.org/0000-0002-0367-337X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-12, Vol.59 (51), p.23122-23126
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7756420
source MEDLINE; Access via Wiley Online Library
subjects 4-Butyrolactone - analogs & derivatives
4-Butyrolactone - biosynthesis
4-Butyrolactone - chemistry
4-Butyrolactone - pharmacology
Animals
Antifungal Agents - chemistry
Antifungal Agents - metabolism
Antifungal Agents - pharmacology
antifungal compounds
Antiinfectives and antibacterials
Bacteria
Bioassays
Biosynthesis
Burkholderia - chemistry
Burkholderia - genetics
Burkholderia - metabolism
Chains
Coleoptera
Communication
Communications
Computer applications
CRISPR
Cryptic gene
Deactivation
Domains
Entomopathogenic fungi
Fungicides
Genetic modification
genome mining
Genomes
Glycerol
Hypocreales - drug effects
Inactivation
Insects
Microbial Sensitivity Tests
natural products
Polyketide synthase
polyketides
Polyketides - chemistry
Polyketides - metabolism
Polyketides - pharmacology
Symbionts
title Insect‐Associated Bacteria Assemble the Antifungal Butenolide Gladiofungin by Non‐Canonical Polyketide Chain Termination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insect%E2%80%90Associated%20Bacteria%20Assemble%20the%20Antifungal%20Butenolide%20Gladiofungin%20by%20Non%E2%80%90Canonical%20Polyketide%20Chain%20Termination&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Niehs,%20Sarah%20P.&rft.date=2020-12-14&rft.volume=59&rft.issue=51&rft.spage=23122&rft.epage=23126&rft.pages=23122-23126&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202005711&rft_dat=%3Cproquest_pubme%3E2418126115%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467646748&rft_id=info:pmid/32588959&rfr_iscdi=true