LncRNA HCG11/miR‐26b‐5p/QKI5 feedback loop reversed high glucose‐induced proliferation and angiogenesis inhibition of HUVECs

Acute coronary syndrome caused by the rupture of atherosclerotic plaques is one of the primary causes of cerebrovascular and cardiovascular events. Neovascularization within the plaque is closely associated with its stability. Long non‐coding RNA (lncRNA) serves a crucial role in regulating vascular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2020-12, Vol.24 (24), p.14231-14246
Hauptverfasser: Du, Jiao, Han, Ruijuan, Li, Yihua, Liu, Xiaolin, Liu, Shurong, Cai, Zhenyu, Xu, Zhaolong, Li, Ya, Yuan, Xuchun, Guo, Xiuhai, Lu, Bin, Sun, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14246
container_issue 24
container_start_page 14231
container_title Journal of cellular and molecular medicine
container_volume 24
creator Du, Jiao
Han, Ruijuan
Li, Yihua
Liu, Xiaolin
Liu, Shurong
Cai, Zhenyu
Xu, Zhaolong
Li, Ya
Yuan, Xuchun
Guo, Xiuhai
Lu, Bin
Sun, Kai
description Acute coronary syndrome caused by the rupture of atherosclerotic plaques is one of the primary causes of cerebrovascular and cardiovascular events. Neovascularization within the plaque is closely associated with its stability. Long non‐coding RNA (lncRNA) serves a crucial role in regulating vascular endothelial cells (VECs) proliferation and angiogenesis. In this study, we identified lncRNA HCG11, which is highly expressed in patients with vulnerable plaque compared with stable plaque. Then, functional experiments showed that HCG11 reversed high glucose‐induced vascular endothelial injury through increased cell proliferation and tube formation. Meanwhile, vascular‐related RNA‐binding protein QKI5 was greatly activated. Luciferase reporter assays and RNA‐binding protein immunoprecipitation (RIP) assays verified interaction between them. Interestingly, HCG11 can also positively regulated by QKI5. Bioinformatics analysis and luciferase reporter assays showed HCG11 can worked as a competing endogenous RNA by sponging miR‐26b‐5p, and QKI5 was speculated as the target of miR‐26b‐5p. Taken together, our findings revered that the feedback loop of lncRNA HCG11/miR‐26b‐5p/QKI‐5 played a vital role in the physiological function of HUVECs, and this also provide a potential target for therapeutic strategies of As.
doi_str_mv 10.1111/jcmm.16040
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7753996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467799753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4760-ba7d3dfb36dbf855800545aa04e707b591f001327d7e04fc38ca1f477765d9993</originalsourceid><addsrcrecordid>eNp9kt1qFDEUgAdRbK3e-AAy4I0I2yaTv8mNUIbard0qFuttyORnNutMMk12Kr0Tn8Bn9ElMu9uiXjSQnJDz8SWHnKJ4CcE-zONgpYZhH1KAwaNiF5K6mmGO8OPtHtao3imepbQCAFGI-NNiByFY1QjT3eLnwqvzj4flvDnOpsGd__7xq6JtXsl48Pn0hJTWGN1K9a3sQxjLaK5MTEaXS9cty66fVEgm087rSeXjMYbeWRPl2gVfSq_z7FzojDfJpdL5pWvdbS7Ycn7x9ahJz4snVvbJvNjGveLi_dGXZj5bfDo-aQ4XM4UZBbNWMo20bRHVra0JqQEgmEgJsGGAtYRDCwBEFdPMAGwVqpWEFjPGKNGcc7RXvNt4x6kdjFbGr6PsxRjdIOO1CNKJfzPeLUUXrgRjBHFOs-DNVhDD5WTSWgwuKdP30pswJVFhQjEEhIOMvv4PXYUp-lyeQIADSCmgD1IVpoxxnm_O1NsNpWJIKRp7_2QIxE0DiJsGELcNkOFXfxd5j979eAbgBvjuenP9gEp8aM7ONtI_hie8yQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467799753</pqid></control><display><type>article</type><title>LncRNA HCG11/miR‐26b‐5p/QKI5 feedback loop reversed high glucose‐induced proliferation and angiogenesis inhibition of HUVECs</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Du, Jiao ; Han, Ruijuan ; Li, Yihua ; Liu, Xiaolin ; Liu, Shurong ; Cai, Zhenyu ; Xu, Zhaolong ; Li, Ya ; Yuan, Xuchun ; Guo, Xiuhai ; Lu, Bin ; Sun, Kai</creator><creatorcontrib>Du, Jiao ; Han, Ruijuan ; Li, Yihua ; Liu, Xiaolin ; Liu, Shurong ; Cai, Zhenyu ; Xu, Zhaolong ; Li, Ya ; Yuan, Xuchun ; Guo, Xiuhai ; Lu, Bin ; Sun, Kai</creatorcontrib><description>Acute coronary syndrome caused by the rupture of atherosclerotic plaques is one of the primary causes of cerebrovascular and cardiovascular events. Neovascularization within the plaque is closely associated with its stability. Long non‐coding RNA (lncRNA) serves a crucial role in regulating vascular endothelial cells (VECs) proliferation and angiogenesis. In this study, we identified lncRNA HCG11, which is highly expressed in patients with vulnerable plaque compared with stable plaque. Then, functional experiments showed that HCG11 reversed high glucose‐induced vascular endothelial injury through increased cell proliferation and tube formation. Meanwhile, vascular‐related RNA‐binding protein QKI5 was greatly activated. Luciferase reporter assays and RNA‐binding protein immunoprecipitation (RIP) assays verified interaction between them. Interestingly, HCG11 can also positively regulated by QKI5. Bioinformatics analysis and luciferase reporter assays showed HCG11 can worked as a competing endogenous RNA by sponging miR‐26b‐5p, and QKI5 was speculated as the target of miR‐26b‐5p. Taken together, our findings revered that the feedback loop of lncRNA HCG11/miR‐26b‐5p/QKI‐5 played a vital role in the physiological function of HUVECs, and this also provide a potential target for therapeutic strategies of As.</description><identifier>ISSN: 1582-1838</identifier><identifier>ISSN: 1582-4934</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.16040</identifier><identifier>PMID: 33128346</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Aged ; Angina pectoris ; Angiogenesis ; Arteriosclerosis ; Atherosclerosis ; Binding sites ; Bioinformatics ; Biomarkers ; Blood vessels ; Calcification ; Cell Line, Tumor ; Cell proliferation ; Cells, Cultured ; Cholesterol ; Diabetic retinopathy ; Disease ; Endothelial cells ; Feedback ; Female ; Gene expression ; Gene Expression Regulation ; Genes, Reporter ; Glucose ; Glucose - metabolism ; Glucose - pharmacology ; Growth factors ; Human Umbilical Vein Endothelial Cells - metabolism ; Humans ; Hybridization ; Immunoprecipitation ; Kinases ; lncRNA HCG11 ; Male ; Medical imaging ; Medical prognosis ; MicroRNAs - genetics ; Middle Aged ; miR‐26b‐5p ; Neovascularization, Physiologic - genetics ; Non-coding RNA ; Original ; Patients ; Plaques ; Proteins ; QKI‐5 ; Ribonucleic acid ; RNA ; RNA Interference ; RNA, Long Noncoding - genetics ; RNA-binding protein ; RNA-Binding Proteins - genetics ; Vascularization</subject><ispartof>Journal of cellular and molecular medicine, 2020-12, Vol.24 (24), p.14231-14246</ispartof><rights>2020 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd</rights><rights>2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4760-ba7d3dfb36dbf855800545aa04e707b591f001327d7e04fc38ca1f477765d9993</citedby><cites>FETCH-LOGICAL-c4760-ba7d3dfb36dbf855800545aa04e707b591f001327d7e04fc38ca1f477765d9993</cites><orcidid>0000-0003-4135-7412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7753996/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7753996/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33128346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Jiao</creatorcontrib><creatorcontrib>Han, Ruijuan</creatorcontrib><creatorcontrib>Li, Yihua</creatorcontrib><creatorcontrib>Liu, Xiaolin</creatorcontrib><creatorcontrib>Liu, Shurong</creatorcontrib><creatorcontrib>Cai, Zhenyu</creatorcontrib><creatorcontrib>Xu, Zhaolong</creatorcontrib><creatorcontrib>Li, Ya</creatorcontrib><creatorcontrib>Yuan, Xuchun</creatorcontrib><creatorcontrib>Guo, Xiuhai</creatorcontrib><creatorcontrib>Lu, Bin</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><title>LncRNA HCG11/miR‐26b‐5p/QKI5 feedback loop reversed high glucose‐induced proliferation and angiogenesis inhibition of HUVECs</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Acute coronary syndrome caused by the rupture of atherosclerotic plaques is one of the primary causes of cerebrovascular and cardiovascular events. Neovascularization within the plaque is closely associated with its stability. Long non‐coding RNA (lncRNA) serves a crucial role in regulating vascular endothelial cells (VECs) proliferation and angiogenesis. In this study, we identified lncRNA HCG11, which is highly expressed in patients with vulnerable plaque compared with stable plaque. Then, functional experiments showed that HCG11 reversed high glucose‐induced vascular endothelial injury through increased cell proliferation and tube formation. Meanwhile, vascular‐related RNA‐binding protein QKI5 was greatly activated. Luciferase reporter assays and RNA‐binding protein immunoprecipitation (RIP) assays verified interaction between them. Interestingly, HCG11 can also positively regulated by QKI5. Bioinformatics analysis and luciferase reporter assays showed HCG11 can worked as a competing endogenous RNA by sponging miR‐26b‐5p, and QKI5 was speculated as the target of miR‐26b‐5p. Taken together, our findings revered that the feedback loop of lncRNA HCG11/miR‐26b‐5p/QKI‐5 played a vital role in the physiological function of HUVECs, and this also provide a potential target for therapeutic strategies of As.</description><subject>Aged</subject><subject>Angina pectoris</subject><subject>Angiogenesis</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Biomarkers</subject><subject>Blood vessels</subject><subject>Calcification</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Cells, Cultured</subject><subject>Cholesterol</subject><subject>Diabetic retinopathy</subject><subject>Disease</subject><subject>Endothelial cells</subject><subject>Feedback</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genes, Reporter</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose - pharmacology</subject><subject>Growth factors</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Humans</subject><subject>Hybridization</subject><subject>Immunoprecipitation</subject><subject>Kinases</subject><subject>lncRNA HCG11</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical prognosis</subject><subject>MicroRNAs - genetics</subject><subject>Middle Aged</subject><subject>miR‐26b‐5p</subject><subject>Neovascularization, Physiologic - genetics</subject><subject>Non-coding RNA</subject><subject>Original</subject><subject>Patients</subject><subject>Plaques</subject><subject>Proteins</subject><subject>QKI‐5</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA-binding protein</subject><subject>RNA-Binding Proteins - genetics</subject><subject>Vascularization</subject><issn>1582-1838</issn><issn>1582-4934</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kt1qFDEUgAdRbK3e-AAy4I0I2yaTv8mNUIbard0qFuttyORnNutMMk12Kr0Tn8Bn9ElMu9uiXjSQnJDz8SWHnKJ4CcE-zONgpYZhH1KAwaNiF5K6mmGO8OPtHtao3imepbQCAFGI-NNiByFY1QjT3eLnwqvzj4flvDnOpsGd__7xq6JtXsl48Pn0hJTWGN1K9a3sQxjLaK5MTEaXS9cty66fVEgm087rSeXjMYbeWRPl2gVfSq_z7FzojDfJpdL5pWvdbS7Ycn7x9ahJz4snVvbJvNjGveLi_dGXZj5bfDo-aQ4XM4UZBbNWMo20bRHVra0JqQEgmEgJsGGAtYRDCwBEFdPMAGwVqpWEFjPGKNGcc7RXvNt4x6kdjFbGr6PsxRjdIOO1CNKJfzPeLUUXrgRjBHFOs-DNVhDD5WTSWgwuKdP30pswJVFhQjEEhIOMvv4PXYUp-lyeQIADSCmgD1IVpoxxnm_O1NsNpWJIKRp7_2QIxE0DiJsGELcNkOFXfxd5j979eAbgBvjuenP9gEp8aM7ONtI_hie8yQ</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Du, Jiao</creator><creator>Han, Ruijuan</creator><creator>Li, Yihua</creator><creator>Liu, Xiaolin</creator><creator>Liu, Shurong</creator><creator>Cai, Zhenyu</creator><creator>Xu, Zhaolong</creator><creator>Li, Ya</creator><creator>Yuan, Xuchun</creator><creator>Guo, Xiuhai</creator><creator>Lu, Bin</creator><creator>Sun, Kai</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4135-7412</orcidid></search><sort><creationdate>202012</creationdate><title>LncRNA HCG11/miR‐26b‐5p/QKI5 feedback loop reversed high glucose‐induced proliferation and angiogenesis inhibition of HUVECs</title><author>Du, Jiao ; Han, Ruijuan ; Li, Yihua ; Liu, Xiaolin ; Liu, Shurong ; Cai, Zhenyu ; Xu, Zhaolong ; Li, Ya ; Yuan, Xuchun ; Guo, Xiuhai ; Lu, Bin ; Sun, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4760-ba7d3dfb36dbf855800545aa04e707b591f001327d7e04fc38ca1f477765d9993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Angina pectoris</topic><topic>Angiogenesis</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Biomarkers</topic><topic>Blood vessels</topic><topic>Calcification</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Cells, Cultured</topic><topic>Cholesterol</topic><topic>Diabetic retinopathy</topic><topic>Disease</topic><topic>Endothelial cells</topic><topic>Feedback</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genes, Reporter</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose - pharmacology</topic><topic>Growth factors</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Humans</topic><topic>Hybridization</topic><topic>Immunoprecipitation</topic><topic>Kinases</topic><topic>lncRNA HCG11</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical prognosis</topic><topic>MicroRNAs - genetics</topic><topic>Middle Aged</topic><topic>miR‐26b‐5p</topic><topic>Neovascularization, Physiologic - genetics</topic><topic>Non-coding RNA</topic><topic>Original</topic><topic>Patients</topic><topic>Plaques</topic><topic>Proteins</topic><topic>QKI‐5</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA-binding protein</topic><topic>RNA-Binding Proteins - genetics</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Jiao</creatorcontrib><creatorcontrib>Han, Ruijuan</creatorcontrib><creatorcontrib>Li, Yihua</creatorcontrib><creatorcontrib>Liu, Xiaolin</creatorcontrib><creatorcontrib>Liu, Shurong</creatorcontrib><creatorcontrib>Cai, Zhenyu</creatorcontrib><creatorcontrib>Xu, Zhaolong</creatorcontrib><creatorcontrib>Li, Ya</creatorcontrib><creatorcontrib>Yuan, Xuchun</creatorcontrib><creatorcontrib>Guo, Xiuhai</creatorcontrib><creatorcontrib>Lu, Bin</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Jiao</au><au>Han, Ruijuan</au><au>Li, Yihua</au><au>Liu, Xiaolin</au><au>Liu, Shurong</au><au>Cai, Zhenyu</au><au>Xu, Zhaolong</au><au>Li, Ya</au><au>Yuan, Xuchun</au><au>Guo, Xiuhai</au><au>Lu, Bin</au><au>Sun, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LncRNA HCG11/miR‐26b‐5p/QKI5 feedback loop reversed high glucose‐induced proliferation and angiogenesis inhibition of HUVECs</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2020-12</date><risdate>2020</risdate><volume>24</volume><issue>24</issue><spage>14231</spage><epage>14246</epage><pages>14231-14246</pages><issn>1582-1838</issn><issn>1582-4934</issn><eissn>1582-4934</eissn><abstract>Acute coronary syndrome caused by the rupture of atherosclerotic plaques is one of the primary causes of cerebrovascular and cardiovascular events. Neovascularization within the plaque is closely associated with its stability. Long non‐coding RNA (lncRNA) serves a crucial role in regulating vascular endothelial cells (VECs) proliferation and angiogenesis. In this study, we identified lncRNA HCG11, which is highly expressed in patients with vulnerable plaque compared with stable plaque. Then, functional experiments showed that HCG11 reversed high glucose‐induced vascular endothelial injury through increased cell proliferation and tube formation. Meanwhile, vascular‐related RNA‐binding protein QKI5 was greatly activated. Luciferase reporter assays and RNA‐binding protein immunoprecipitation (RIP) assays verified interaction between them. Interestingly, HCG11 can also positively regulated by QKI5. Bioinformatics analysis and luciferase reporter assays showed HCG11 can worked as a competing endogenous RNA by sponging miR‐26b‐5p, and QKI5 was speculated as the target of miR‐26b‐5p. Taken together, our findings revered that the feedback loop of lncRNA HCG11/miR‐26b‐5p/QKI‐5 played a vital role in the physiological function of HUVECs, and this also provide a potential target for therapeutic strategies of As.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33128346</pmid><doi>10.1111/jcmm.16040</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4135-7412</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2020-12, Vol.24 (24), p.14231-14246
issn 1582-1838
1582-4934
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7753996
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Aged
Angina pectoris
Angiogenesis
Arteriosclerosis
Atherosclerosis
Binding sites
Bioinformatics
Biomarkers
Blood vessels
Calcification
Cell Line, Tumor
Cell proliferation
Cells, Cultured
Cholesterol
Diabetic retinopathy
Disease
Endothelial cells
Feedback
Female
Gene expression
Gene Expression Regulation
Genes, Reporter
Glucose
Glucose - metabolism
Glucose - pharmacology
Growth factors
Human Umbilical Vein Endothelial Cells - metabolism
Humans
Hybridization
Immunoprecipitation
Kinases
lncRNA HCG11
Male
Medical imaging
Medical prognosis
MicroRNAs - genetics
Middle Aged
miR‐26b‐5p
Neovascularization, Physiologic - genetics
Non-coding RNA
Original
Patients
Plaques
Proteins
QKI‐5
Ribonucleic acid
RNA
RNA Interference
RNA, Long Noncoding - genetics
RNA-binding protein
RNA-Binding Proteins - genetics
Vascularization
title LncRNA HCG11/miR‐26b‐5p/QKI5 feedback loop reversed high glucose‐induced proliferation and angiogenesis inhibition of HUVECs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LncRNA%20HCG11/miR%E2%80%9026b%E2%80%905p/QKI5%20feedback%20loop%20reversed%20high%20glucose%E2%80%90induced%20proliferation%20and%20angiogenesis%20inhibition%20of%20HUVECs&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Du,%20Jiao&rft.date=2020-12&rft.volume=24&rft.issue=24&rft.spage=14231&rft.epage=14246&rft.pages=14231-14246&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.16040&rft_dat=%3Cproquest_pubme%3E2467799753%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467799753&rft_id=info:pmid/33128346&rfr_iscdi=true