Sensorimotor experience remaps visual input to a heading-direction network

In the Drosophila brain, ‘compass’ neurons track the orientation of the body and head (the fly’s heading) during navigation  1 , 2 . In the absence of visual cues, the compass neuron network estimates heading by integrating self-movement signals over time 3 , 4 . When a visual cue is present, the es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2019-12, Vol.576 (7785), p.121-125
Hauptverfasser: Fisher, Yvette E., Lu, Jenny, D’Alessandro, Isabel, Wilson, Rachel I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue 7785
container_start_page 121
container_title Nature (London)
container_volume 576
creator Fisher, Yvette E.
Lu, Jenny
D’Alessandro, Isabel
Wilson, Rachel I.
description In the Drosophila brain, ‘compass’ neurons track the orientation of the body and head (the fly’s heading) during navigation  1 , 2 . In the absence of visual cues, the compass neuron network estimates heading by integrating self-movement signals over time 3 , 4 . When a visual cue is present, the estimate of the network is more accurate 1 , 3 . Visual inputs to compass neurons are thought to originate from inhibitory neurons called R neurons (also known as ring neurons); the receptive fields of R neurons tile visual space 5 . The axon of each R neuron overlaps with the dendrites of every compass neuron 6 , raising the question of how visual cues are integrated into the compass. Here, using in vivo whole-cell recordings, we show that a visual cue can evoke synaptic inhibition in compass neurons and that R neurons mediate this inhibition. Each compass neuron is inhibited only by specific visual cue positions, indicating that many potential connections from R neurons onto compass neurons are actually weak or silent. We also show that the pattern of visually evoked inhibition can reorganize over minutes as the fly explores an altered virtual-reality environment. Using ensemble calcium imaging, we demonstrate that this reorganization causes persistent changes in the compass coordinate frame. Taken together, our data suggest a model in which correlated pre- and postsynaptic activity triggers associative long-term synaptic depression of visually evoked inhibition in compass neurons. Our findings provide evidence for the theoretical proposal that associative plasticity of sensory inputs, when combined with attractor dynamics, can reconcile self-movement information with changing external cues to generate a coherent sense of direction 7 – 12 . Visual inputs to compass neurons can reorganize over minutes as a fly explores an altered virtual-reality environment.
doi_str_mv 10.1038/s41586-019-1772-4
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7753972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642219748</galeid><sourcerecordid>A642219748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c709t-94c4b1476e9b7a0d0278d59c612d8c633999e635fd6006c9a31ebd53edfe3f483</originalsourceid><addsrcrecordid>eNp1kttu1DAQhiMEokvhAbhBEdyAUIpP8eGm0mrFoagCiRZxaXmdSeqStVM7KeXt8bKl7aKtfDGS55t_ZjR_UTzH6AAjKt8lhmvJK4RVhYUgFXtQzDATvGJciofFDCEiKyQp3yuepHSOEKqxYI-LPZqDFEzNis8n4FOIbhXGEEu4GiA68BbKCCszpPLSpcn0pfPDNJZjKE15BqZxvqsaF8GOLvjSw_grxJ9Pi0et6RM8u477xfcP708Xn6rjrx-PFvPjygqkxkoxy5brKUEthUENIkI2tbIck0ZaTqlSCjit24YjxK0yFMOyqSk0LdCWSbpfHG50h2m5gsaCH6Pp9ZCXMPG3Dsbp7Yx3Z7oLl1qImipBssDra4EYLiZIo165ZKHvjYcwJU0o5kJSimhGX_2Hnocp-rxepgiXhFGJb6nO9KCdb0Pua9eies4ZIViJv3NXO6gOPOQhg4fW5e8t_uUO3g7uQt-FDnZA-TWwcnan6putgsyMcDV2ZkpJH51822bf3s_OT38svmzTeEPbGFKK0N6cBCO99qve-FVnv-q1XzXLNS_u3vKm4p9BM0A2QMop30G8PcD9qn8AornxrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2326824381</pqid></control><display><type>article</type><title>Sensorimotor experience remaps visual input to a heading-direction network</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Fisher, Yvette E. ; Lu, Jenny ; D’Alessandro, Isabel ; Wilson, Rachel I.</creator><creatorcontrib>Fisher, Yvette E. ; Lu, Jenny ; D’Alessandro, Isabel ; Wilson, Rachel I.</creatorcontrib><description>In the Drosophila brain, ‘compass’ neurons track the orientation of the body and head (the fly’s heading) during navigation  1 , 2 . In the absence of visual cues, the compass neuron network estimates heading by integrating self-movement signals over time 3 , 4 . When a visual cue is present, the estimate of the network is more accurate 1 , 3 . Visual inputs to compass neurons are thought to originate from inhibitory neurons called R neurons (also known as ring neurons); the receptive fields of R neurons tile visual space 5 . The axon of each R neuron overlaps with the dendrites of every compass neuron 6 , raising the question of how visual cues are integrated into the compass. Here, using in vivo whole-cell recordings, we show that a visual cue can evoke synaptic inhibition in compass neurons and that R neurons mediate this inhibition. Each compass neuron is inhibited only by specific visual cue positions, indicating that many potential connections from R neurons onto compass neurons are actually weak or silent. We also show that the pattern of visually evoked inhibition can reorganize over minutes as the fly explores an altered virtual-reality environment. Using ensemble calcium imaging, we demonstrate that this reorganization causes persistent changes in the compass coordinate frame. Taken together, our data suggest a model in which correlated pre- and postsynaptic activity triggers associative long-term synaptic depression of visually evoked inhibition in compass neurons. Our findings provide evidence for the theoretical proposal that associative plasticity of sensory inputs, when combined with attractor dynamics, can reconcile self-movement information with changing external cues to generate a coherent sense of direction 7 – 12 . Visual inputs to compass neurons can reorganize over minutes as a fly explores an altered virtual-reality environment.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1772-4</identifier><identifier>PMID: 31748749</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/69 ; 631/378/1595 ; 631/378/1697 ; 64 ; 64/24 ; 9/74 ; Analysis ; Animal navigation ; Animals ; Calcium imaging ; Cues ; Dendrites ; Directions (Geography) ; Drosophila ; Drosophila melanogaster ; Fruit flies ; Gene expression ; Head ; Humanities and Social Sciences ; Influence ; Insects ; Mechanical properties ; Motor Activity ; Movement ; multidisciplinary ; Neuroimaging ; Neurons ; Neurons - physiology ; Neurosciences ; Observations ; Orientation behavior ; Physiological aspects ; Psychological aspects ; Scene perception ; Science ; Science (multidisciplinary) ; Sensorimotor integration ; Sensorimotor system ; Synaptic depression ; Velocity ; Virtual environments ; Virtual reality ; Vision, Ocular ; Visual signals ; Visual stimuli</subject><ispartof>Nature (London), 2019-12, Vol.576 (7785), p.121-125</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 5, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c709t-94c4b1476e9b7a0d0278d59c612d8c633999e635fd6006c9a31ebd53edfe3f483</citedby><cites>FETCH-LOGICAL-c709t-94c4b1476e9b7a0d0278d59c612d8c633999e635fd6006c9a31ebd53edfe3f483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-019-1772-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-019-1772-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31748749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fisher, Yvette E.</creatorcontrib><creatorcontrib>Lu, Jenny</creatorcontrib><creatorcontrib>D’Alessandro, Isabel</creatorcontrib><creatorcontrib>Wilson, Rachel I.</creatorcontrib><title>Sensorimotor experience remaps visual input to a heading-direction network</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>In the Drosophila brain, ‘compass’ neurons track the orientation of the body and head (the fly’s heading) during navigation  1 , 2 . In the absence of visual cues, the compass neuron network estimates heading by integrating self-movement signals over time 3 , 4 . When a visual cue is present, the estimate of the network is more accurate 1 , 3 . Visual inputs to compass neurons are thought to originate from inhibitory neurons called R neurons (also known as ring neurons); the receptive fields of R neurons tile visual space 5 . The axon of each R neuron overlaps with the dendrites of every compass neuron 6 , raising the question of how visual cues are integrated into the compass. Here, using in vivo whole-cell recordings, we show that a visual cue can evoke synaptic inhibition in compass neurons and that R neurons mediate this inhibition. Each compass neuron is inhibited only by specific visual cue positions, indicating that many potential connections from R neurons onto compass neurons are actually weak or silent. We also show that the pattern of visually evoked inhibition can reorganize over minutes as the fly explores an altered virtual-reality environment. Using ensemble calcium imaging, we demonstrate that this reorganization causes persistent changes in the compass coordinate frame. Taken together, our data suggest a model in which correlated pre- and postsynaptic activity triggers associative long-term synaptic depression of visually evoked inhibition in compass neurons. Our findings provide evidence for the theoretical proposal that associative plasticity of sensory inputs, when combined with attractor dynamics, can reconcile self-movement information with changing external cues to generate a coherent sense of direction 7 – 12 . Visual inputs to compass neurons can reorganize over minutes as a fly explores an altered virtual-reality environment.</description><subject>14/69</subject><subject>631/378/1595</subject><subject>631/378/1697</subject><subject>64</subject><subject>64/24</subject><subject>9/74</subject><subject>Analysis</subject><subject>Animal navigation</subject><subject>Animals</subject><subject>Calcium imaging</subject><subject>Cues</subject><subject>Dendrites</subject><subject>Directions (Geography)</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Fruit flies</subject><subject>Gene expression</subject><subject>Head</subject><subject>Humanities and Social Sciences</subject><subject>Influence</subject><subject>Insects</subject><subject>Mechanical properties</subject><subject>Motor Activity</subject><subject>Movement</subject><subject>multidisciplinary</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Observations</subject><subject>Orientation behavior</subject><subject>Physiological aspects</subject><subject>Psychological aspects</subject><subject>Scene perception</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensorimotor integration</subject><subject>Sensorimotor system</subject><subject>Synaptic depression</subject><subject>Velocity</subject><subject>Virtual environments</subject><subject>Virtual reality</subject><subject>Vision, Ocular</subject><subject>Visual signals</subject><subject>Visual stimuli</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kttu1DAQhiMEokvhAbhBEdyAUIpP8eGm0mrFoagCiRZxaXmdSeqStVM7KeXt8bKl7aKtfDGS55t_ZjR_UTzH6AAjKt8lhmvJK4RVhYUgFXtQzDATvGJciofFDCEiKyQp3yuepHSOEKqxYI-LPZqDFEzNis8n4FOIbhXGEEu4GiA68BbKCCszpPLSpcn0pfPDNJZjKE15BqZxvqsaF8GOLvjSw_grxJ9Pi0et6RM8u477xfcP708Xn6rjrx-PFvPjygqkxkoxy5brKUEthUENIkI2tbIck0ZaTqlSCjit24YjxK0yFMOyqSk0LdCWSbpfHG50h2m5gsaCH6Pp9ZCXMPG3Dsbp7Yx3Z7oLl1qImipBssDra4EYLiZIo165ZKHvjYcwJU0o5kJSimhGX_2Hnocp-rxepgiXhFGJb6nO9KCdb0Pua9eies4ZIViJv3NXO6gOPOQhg4fW5e8t_uUO3g7uQt-FDnZA-TWwcnan6putgsyMcDV2ZkpJH51822bf3s_OT38svmzTeEPbGFKK0N6cBCO99qve-FVnv-q1XzXLNS_u3vKm4p9BM0A2QMop30G8PcD9qn8AornxrQ</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Fisher, Yvette E.</creator><creator>Lu, Jenny</creator><creator>D’Alessandro, Isabel</creator><creator>Wilson, Rachel I.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201912</creationdate><title>Sensorimotor experience remaps visual input to a heading-direction network</title><author>Fisher, Yvette E. ; Lu, Jenny ; D’Alessandro, Isabel ; Wilson, Rachel I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c709t-94c4b1476e9b7a0d0278d59c612d8c633999e635fd6006c9a31ebd53edfe3f483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14/69</topic><topic>631/378/1595</topic><topic>631/378/1697</topic><topic>64</topic><topic>64/24</topic><topic>9/74</topic><topic>Analysis</topic><topic>Animal navigation</topic><topic>Animals</topic><topic>Calcium imaging</topic><topic>Cues</topic><topic>Dendrites</topic><topic>Directions (Geography)</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Fruit flies</topic><topic>Gene expression</topic><topic>Head</topic><topic>Humanities and Social Sciences</topic><topic>Influence</topic><topic>Insects</topic><topic>Mechanical properties</topic><topic>Motor Activity</topic><topic>Movement</topic><topic>multidisciplinary</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Observations</topic><topic>Orientation behavior</topic><topic>Physiological aspects</topic><topic>Psychological aspects</topic><topic>Scene perception</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensorimotor integration</topic><topic>Sensorimotor system</topic><topic>Synaptic depression</topic><topic>Velocity</topic><topic>Virtual environments</topic><topic>Virtual reality</topic><topic>Vision, Ocular</topic><topic>Visual signals</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisher, Yvette E.</creatorcontrib><creatorcontrib>Lu, Jenny</creatorcontrib><creatorcontrib>D’Alessandro, Isabel</creatorcontrib><creatorcontrib>Wilson, Rachel I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisher, Yvette E.</au><au>Lu, Jenny</au><au>D’Alessandro, Isabel</au><au>Wilson, Rachel I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensorimotor experience remaps visual input to a heading-direction network</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-12</date><risdate>2019</risdate><volume>576</volume><issue>7785</issue><spage>121</spage><epage>125</epage><pages>121-125</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>In the Drosophila brain, ‘compass’ neurons track the orientation of the body and head (the fly’s heading) during navigation  1 , 2 . In the absence of visual cues, the compass neuron network estimates heading by integrating self-movement signals over time 3 , 4 . When a visual cue is present, the estimate of the network is more accurate 1 , 3 . Visual inputs to compass neurons are thought to originate from inhibitory neurons called R neurons (also known as ring neurons); the receptive fields of R neurons tile visual space 5 . The axon of each R neuron overlaps with the dendrites of every compass neuron 6 , raising the question of how visual cues are integrated into the compass. Here, using in vivo whole-cell recordings, we show that a visual cue can evoke synaptic inhibition in compass neurons and that R neurons mediate this inhibition. Each compass neuron is inhibited only by specific visual cue positions, indicating that many potential connections from R neurons onto compass neurons are actually weak or silent. We also show that the pattern of visually evoked inhibition can reorganize over minutes as the fly explores an altered virtual-reality environment. Using ensemble calcium imaging, we demonstrate that this reorganization causes persistent changes in the compass coordinate frame. Taken together, our data suggest a model in which correlated pre- and postsynaptic activity triggers associative long-term synaptic depression of visually evoked inhibition in compass neurons. Our findings provide evidence for the theoretical proposal that associative plasticity of sensory inputs, when combined with attractor dynamics, can reconcile self-movement information with changing external cues to generate a coherent sense of direction 7 – 12 . Visual inputs to compass neurons can reorganize over minutes as a fly explores an altered virtual-reality environment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31748749</pmid><doi>10.1038/s41586-019-1772-4</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2019-12, Vol.576 (7785), p.121-125
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7753972
source MEDLINE; SpringerLink Journals; Nature
subjects 14/69
631/378/1595
631/378/1697
64
64/24
9/74
Analysis
Animal navigation
Animals
Calcium imaging
Cues
Dendrites
Directions (Geography)
Drosophila
Drosophila melanogaster
Fruit flies
Gene expression
Head
Humanities and Social Sciences
Influence
Insects
Mechanical properties
Motor Activity
Movement
multidisciplinary
Neuroimaging
Neurons
Neurons - physiology
Neurosciences
Observations
Orientation behavior
Physiological aspects
Psychological aspects
Scene perception
Science
Science (multidisciplinary)
Sensorimotor integration
Sensorimotor system
Synaptic depression
Velocity
Virtual environments
Virtual reality
Vision, Ocular
Visual signals
Visual stimuli
title Sensorimotor experience remaps visual input to a heading-direction network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensorimotor%20experience%20remaps%20visual%20input%20to%20a%20heading-direction%20network&rft.jtitle=Nature%20(London)&rft.au=Fisher,%20Yvette%20E.&rft.date=2019-12&rft.volume=576&rft.issue=7785&rft.spage=121&rft.epage=125&rft.pages=121-125&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1772-4&rft_dat=%3Cgale_pubme%3EA642219748%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2326824381&rft_id=info:pmid/31748749&rft_galeid=A642219748&rfr_iscdi=true