CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis

Circadian rhythms are daily oscillations in physiology and behavior that can be assessed by recording body temperature, locomotor activity, or bioluminescent reporters, among other measures. These different types of data can vary greatly in waveform, noise characteristics, typical sampling rate, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biological rhythms 2020-04, Vol.35 (2), p.214-222
Hauptverfasser: Cenek, Lisa, Klindziuk, Liubou, Lopez, Cindy, McCartney, Eleanor, Martin Burgos, Blanca, Tir, Selma, Harrington, Mary E., Leise, Tanya L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 2
container_start_page 214
container_title Journal of biological rhythms
container_volume 35
creator Cenek, Lisa
Klindziuk, Liubou
Lopez, Cindy
McCartney, Eleanor
Martin Burgos, Blanca
Tir, Selma
Harrington, Mary E.
Leise, Tanya L.
description Circadian rhythms are daily oscillations in physiology and behavior that can be assessed by recording body temperature, locomotor activity, or bioluminescent reporters, among other measures. These different types of data can vary greatly in waveform, noise characteristics, typical sampling rate, and length of recording. We developed 2 Shiny apps for exploration of these data, enabling visualization and analysis of circadian parameters such as period and phase. Methods include the discrete wavelet transform, sine fitting, the Lomb-Scargle periodogram, autocorrelation, and maximum entropy spectral analysis, giving a sense of how well each method works on each type of data. The apps also provide educational overviews and guidance for these methods, supporting the training of those new to this type of analysis. CIRCADA-E (Circadian App for Data Analysis–Experimental Time Series) allows users to explore a large curated experimental data set with mouse body temperature, locomotor activity, and PER2::LUC rhythms recorded from multiple tissues. CIRCADA-S (Circadian App for Data Analysis–Synthetic Time Series) generates and analyzes time series with user-specified parameters, thereby demonstrating how the accuracy of period and phase estimation depends on the type and level of noise, sampling rate, length of recording, and method. We demonstrate the potential uses of the apps through 2 in silico case studies.
doi_str_mv 10.1177/0748730419900866
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7752169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0748730419900866</sage_id><sourcerecordid>2357339787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-7e4dd1a492ab55b732ca3d7cc0477404126c08d2cdd5e5e89081ab8372b525413</originalsourceid><addsrcrecordid>eNp1kc-L1DAcxYMo7jh69yQBL16q-Z3GgzDUURcWBGc9hzTJbLN0mpq0q_PfmzrrqgueQvh-3vt-Hw-A5xi9xljKN0iyWlLEsFII1UI8ACvMOakYp_ghWC3japmfgSc5XyOEhGL0MTijWNVCcbECU3P-pdm837yFuy4MR7gZxwz3McHtj7GPyUwhDjDul69P4eCHyfTQDA7ujsPU-SlY2IRkjQtmgJcFgLvC-Qy_h6krINy62f5yKbrtYexMDvkpeLQ3ffbPbt81-Pphe9l8qi4-fzxvNheVZYJMlfTMOWyYIqblvJWUWEOdtBYxKVlJTYRFtSPWOe65rxWqsWlrKknLCWeYrsG7k-84twfvbLk-mV6PJYhJRx1N0P9OhtDpq3ijpeQEC1UMXt0apPht9nnSh5Ct73sz-DhnTSiTHHOBl10v76HXcU4l9UJxSamSpao1QCfKpphz8vu7YzDSS6X6fqVF8uLvEHeC3x0WoDoB2Vz5P1v_a_gTFCGoww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357339787</pqid></control><display><type>article</type><title>CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis</title><source>SAGE Complete A-Z List</source><creator>Cenek, Lisa ; Klindziuk, Liubou ; Lopez, Cindy ; McCartney, Eleanor ; Martin Burgos, Blanca ; Tir, Selma ; Harrington, Mary E. ; Leise, Tanya L.</creator><creatorcontrib>Cenek, Lisa ; Klindziuk, Liubou ; Lopez, Cindy ; McCartney, Eleanor ; Martin Burgos, Blanca ; Tir, Selma ; Harrington, Mary E. ; Leise, Tanya L.</creatorcontrib><description>Circadian rhythms are daily oscillations in physiology and behavior that can be assessed by recording body temperature, locomotor activity, or bioluminescent reporters, among other measures. These different types of data can vary greatly in waveform, noise characteristics, typical sampling rate, and length of recording. We developed 2 Shiny apps for exploration of these data, enabling visualization and analysis of circadian parameters such as period and phase. Methods include the discrete wavelet transform, sine fitting, the Lomb-Scargle periodogram, autocorrelation, and maximum entropy spectral analysis, giving a sense of how well each method works on each type of data. The apps also provide educational overviews and guidance for these methods, supporting the training of those new to this type of analysis. CIRCADA-E (Circadian App for Data Analysis–Experimental Time Series) allows users to explore a large curated experimental data set with mouse body temperature, locomotor activity, and PER2::LUC rhythms recorded from multiple tissues. CIRCADA-S (Circadian App for Data Analysis–Synthetic Time Series) generates and analyzes time series with user-specified parameters, thereby demonstrating how the accuracy of period and phase estimation depends on the type and level of noise, sampling rate, length of recording, and method. We demonstrate the potential uses of the apps through 2 in silico case studies.</description><identifier>ISSN: 0748-7304</identifier><identifier>EISSN: 1552-4531</identifier><identifier>DOI: 10.1177/0748730419900866</identifier><identifier>PMID: 31986956</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Body temperature ; Circadian rhythm ; Circadian rhythms ; Data analysis ; Data processing ; Discrete Wavelet Transform ; Education ; Entropy ; Locomotor activity ; Maximum entropy ; Noise ; Oscillations ; Parameters ; Period 2 protein ; Recording ; Sampling ; Spectral analysis ; Spectrum analysis ; Time series ; Waveforms ; Wavelet transforms</subject><ispartof>Journal of biological rhythms, 2020-04, Vol.35 (2), p.214-222</ispartof><rights>2020 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-7e4dd1a492ab55b732ca3d7cc0477404126c08d2cdd5e5e89081ab8372b525413</citedby><cites>FETCH-LOGICAL-c462t-7e4dd1a492ab55b732ca3d7cc0477404126c08d2cdd5e5e89081ab8372b525413</cites><orcidid>0000-0002-7458-7604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0748730419900866$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0748730419900866$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,778,782,883,21802,27907,27908,43604,43605</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31986956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cenek, Lisa</creatorcontrib><creatorcontrib>Klindziuk, Liubou</creatorcontrib><creatorcontrib>Lopez, Cindy</creatorcontrib><creatorcontrib>McCartney, Eleanor</creatorcontrib><creatorcontrib>Martin Burgos, Blanca</creatorcontrib><creatorcontrib>Tir, Selma</creatorcontrib><creatorcontrib>Harrington, Mary E.</creatorcontrib><creatorcontrib>Leise, Tanya L.</creatorcontrib><title>CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis</title><title>Journal of biological rhythms</title><addtitle>J Biol Rhythms</addtitle><description>Circadian rhythms are daily oscillations in physiology and behavior that can be assessed by recording body temperature, locomotor activity, or bioluminescent reporters, among other measures. These different types of data can vary greatly in waveform, noise characteristics, typical sampling rate, and length of recording. We developed 2 Shiny apps for exploration of these data, enabling visualization and analysis of circadian parameters such as period and phase. Methods include the discrete wavelet transform, sine fitting, the Lomb-Scargle periodogram, autocorrelation, and maximum entropy spectral analysis, giving a sense of how well each method works on each type of data. The apps also provide educational overviews and guidance for these methods, supporting the training of those new to this type of analysis. CIRCADA-E (Circadian App for Data Analysis–Experimental Time Series) allows users to explore a large curated experimental data set with mouse body temperature, locomotor activity, and PER2::LUC rhythms recorded from multiple tissues. CIRCADA-S (Circadian App for Data Analysis–Synthetic Time Series) generates and analyzes time series with user-specified parameters, thereby demonstrating how the accuracy of period and phase estimation depends on the type and level of noise, sampling rate, length of recording, and method. We demonstrate the potential uses of the apps through 2 in silico case studies.</description><subject>Body temperature</subject><subject>Circadian rhythm</subject><subject>Circadian rhythms</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Discrete Wavelet Transform</subject><subject>Education</subject><subject>Entropy</subject><subject>Locomotor activity</subject><subject>Maximum entropy</subject><subject>Noise</subject><subject>Oscillations</subject><subject>Parameters</subject><subject>Period 2 protein</subject><subject>Recording</subject><subject>Sampling</subject><subject>Spectral analysis</subject><subject>Spectrum analysis</subject><subject>Time series</subject><subject>Waveforms</subject><subject>Wavelet transforms</subject><issn>0748-7304</issn><issn>1552-4531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc-L1DAcxYMo7jh69yQBL16q-Z3GgzDUURcWBGc9hzTJbLN0mpq0q_PfmzrrqgueQvh-3vt-Hw-A5xi9xljKN0iyWlLEsFII1UI8ACvMOakYp_ghWC3japmfgSc5XyOEhGL0MTijWNVCcbECU3P-pdm837yFuy4MR7gZxwz3McHtj7GPyUwhDjDul69P4eCHyfTQDA7ujsPU-SlY2IRkjQtmgJcFgLvC-Qy_h6krINy62f5yKbrtYexMDvkpeLQ3ffbPbt81-Pphe9l8qi4-fzxvNheVZYJMlfTMOWyYIqblvJWUWEOdtBYxKVlJTYRFtSPWOe65rxWqsWlrKknLCWeYrsG7k-84twfvbLk-mV6PJYhJRx1N0P9OhtDpq3ijpeQEC1UMXt0apPht9nnSh5Ct73sz-DhnTSiTHHOBl10v76HXcU4l9UJxSamSpao1QCfKpphz8vu7YzDSS6X6fqVF8uLvEHeC3x0WoDoB2Vz5P1v_a_gTFCGoww</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Cenek, Lisa</creator><creator>Klindziuk, Liubou</creator><creator>Lopez, Cindy</creator><creator>McCartney, Eleanor</creator><creator>Martin Burgos, Blanca</creator><creator>Tir, Selma</creator><creator>Harrington, Mary E.</creator><creator>Leise, Tanya L.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7458-7604</orcidid></search><sort><creationdate>20200401</creationdate><title>CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis</title><author>Cenek, Lisa ; Klindziuk, Liubou ; Lopez, Cindy ; McCartney, Eleanor ; Martin Burgos, Blanca ; Tir, Selma ; Harrington, Mary E. ; Leise, Tanya L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-7e4dd1a492ab55b732ca3d7cc0477404126c08d2cdd5e5e89081ab8372b525413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Body temperature</topic><topic>Circadian rhythm</topic><topic>Circadian rhythms</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Discrete Wavelet Transform</topic><topic>Education</topic><topic>Entropy</topic><topic>Locomotor activity</topic><topic>Maximum entropy</topic><topic>Noise</topic><topic>Oscillations</topic><topic>Parameters</topic><topic>Period 2 protein</topic><topic>Recording</topic><topic>Sampling</topic><topic>Spectral analysis</topic><topic>Spectrum analysis</topic><topic>Time series</topic><topic>Waveforms</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cenek, Lisa</creatorcontrib><creatorcontrib>Klindziuk, Liubou</creatorcontrib><creatorcontrib>Lopez, Cindy</creatorcontrib><creatorcontrib>McCartney, Eleanor</creatorcontrib><creatorcontrib>Martin Burgos, Blanca</creatorcontrib><creatorcontrib>Tir, Selma</creatorcontrib><creatorcontrib>Harrington, Mary E.</creatorcontrib><creatorcontrib>Leise, Tanya L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biological rhythms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cenek, Lisa</au><au>Klindziuk, Liubou</au><au>Lopez, Cindy</au><au>McCartney, Eleanor</au><au>Martin Burgos, Blanca</au><au>Tir, Selma</au><au>Harrington, Mary E.</au><au>Leise, Tanya L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis</atitle><jtitle>Journal of biological rhythms</jtitle><addtitle>J Biol Rhythms</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>35</volume><issue>2</issue><spage>214</spage><epage>222</epage><pages>214-222</pages><issn>0748-7304</issn><eissn>1552-4531</eissn><abstract>Circadian rhythms are daily oscillations in physiology and behavior that can be assessed by recording body temperature, locomotor activity, or bioluminescent reporters, among other measures. These different types of data can vary greatly in waveform, noise characteristics, typical sampling rate, and length of recording. We developed 2 Shiny apps for exploration of these data, enabling visualization and analysis of circadian parameters such as period and phase. Methods include the discrete wavelet transform, sine fitting, the Lomb-Scargle periodogram, autocorrelation, and maximum entropy spectral analysis, giving a sense of how well each method works on each type of data. The apps also provide educational overviews and guidance for these methods, supporting the training of those new to this type of analysis. CIRCADA-E (Circadian App for Data Analysis–Experimental Time Series) allows users to explore a large curated experimental data set with mouse body temperature, locomotor activity, and PER2::LUC rhythms recorded from multiple tissues. CIRCADA-S (Circadian App for Data Analysis–Synthetic Time Series) generates and analyzes time series with user-specified parameters, thereby demonstrating how the accuracy of period and phase estimation depends on the type and level of noise, sampling rate, length of recording, and method. We demonstrate the potential uses of the apps through 2 in silico case studies.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>31986956</pmid><doi>10.1177/0748730419900866</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7458-7604</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0748-7304
ispartof Journal of biological rhythms, 2020-04, Vol.35 (2), p.214-222
issn 0748-7304
1552-4531
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7752169
source SAGE Complete A-Z List
subjects Body temperature
Circadian rhythm
Circadian rhythms
Data analysis
Data processing
Discrete Wavelet Transform
Education
Entropy
Locomotor activity
Maximum entropy
Noise
Oscillations
Parameters
Period 2 protein
Recording
Sampling
Spectral analysis
Spectrum analysis
Time series
Waveforms
Wavelet transforms
title CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CIRCADA:%20Shiny%20Apps%20for%20Exploration%20of%20Experimental%20and%20Synthetic%20Circadian%20Time%20Series%20with%20an%20Educational%20Emphasis&rft.jtitle=Journal%20of%20biological%20rhythms&rft.au=Cenek,%20Lisa&rft.date=2020-04-01&rft.volume=35&rft.issue=2&rft.spage=214&rft.epage=222&rft.pages=214-222&rft.issn=0748-7304&rft.eissn=1552-4531&rft_id=info:doi/10.1177/0748730419900866&rft_dat=%3Cproquest_pubme%3E2357339787%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357339787&rft_id=info:pmid/31986956&rft_sage_id=10.1177_0748730419900866&rfr_iscdi=true