CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis
Circadian rhythms are daily oscillations in physiology and behavior that can be assessed by recording body temperature, locomotor activity, or bioluminescent reporters, among other measures. These different types of data can vary greatly in waveform, noise characteristics, typical sampling rate, and...
Gespeichert in:
Veröffentlicht in: | Journal of biological rhythms 2020-04, Vol.35 (2), p.214-222 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 222 |
---|---|
container_issue | 2 |
container_start_page | 214 |
container_title | Journal of biological rhythms |
container_volume | 35 |
creator | Cenek, Lisa Klindziuk, Liubou Lopez, Cindy McCartney, Eleanor Martin Burgos, Blanca Tir, Selma Harrington, Mary E. Leise, Tanya L. |
description | Circadian rhythms are daily oscillations in physiology and behavior that can be assessed by recording body temperature, locomotor activity, or bioluminescent reporters, among other measures. These different types of data can vary greatly in waveform, noise characteristics, typical sampling rate, and length of recording. We developed 2 Shiny apps for exploration of these data, enabling visualization and analysis of circadian parameters such as period and phase. Methods include the discrete wavelet transform, sine fitting, the Lomb-Scargle periodogram, autocorrelation, and maximum entropy spectral analysis, giving a sense of how well each method works on each type of data. The apps also provide educational overviews and guidance for these methods, supporting the training of those new to this type of analysis. CIRCADA-E (Circadian App for Data Analysis–Experimental Time Series) allows users to explore a large curated experimental data set with mouse body temperature, locomotor activity, and PER2::LUC rhythms recorded from multiple tissues. CIRCADA-S (Circadian App for Data Analysis–Synthetic Time Series) generates and analyzes time series with user-specified parameters, thereby demonstrating how the accuracy of period and phase estimation depends on the type and level of noise, sampling rate, length of recording, and method. We demonstrate the potential uses of the apps through 2 in silico case studies. |
doi_str_mv | 10.1177/0748730419900866 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7752169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0748730419900866</sage_id><sourcerecordid>2357339787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-7e4dd1a492ab55b732ca3d7cc0477404126c08d2cdd5e5e89081ab8372b525413</originalsourceid><addsrcrecordid>eNp1kc-L1DAcxYMo7jh69yQBL16q-Z3GgzDUURcWBGc9hzTJbLN0mpq0q_PfmzrrqgueQvh-3vt-Hw-A5xi9xljKN0iyWlLEsFII1UI8ACvMOakYp_ghWC3japmfgSc5XyOEhGL0MTijWNVCcbECU3P-pdm837yFuy4MR7gZxwz3McHtj7GPyUwhDjDul69P4eCHyfTQDA7ujsPU-SlY2IRkjQtmgJcFgLvC-Qy_h6krINy62f5yKbrtYexMDvkpeLQ3ffbPbt81-Pphe9l8qi4-fzxvNheVZYJMlfTMOWyYIqblvJWUWEOdtBYxKVlJTYRFtSPWOe65rxWqsWlrKknLCWeYrsG7k-84twfvbLk-mV6PJYhJRx1N0P9OhtDpq3ijpeQEC1UMXt0apPht9nnSh5Ct73sz-DhnTSiTHHOBl10v76HXcU4l9UJxSamSpao1QCfKpphz8vu7YzDSS6X6fqVF8uLvEHeC3x0WoDoB2Vz5P1v_a_gTFCGoww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357339787</pqid></control><display><type>article</type><title>CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis</title><source>SAGE Complete A-Z List</source><creator>Cenek, Lisa ; Klindziuk, Liubou ; Lopez, Cindy ; McCartney, Eleanor ; Martin Burgos, Blanca ; Tir, Selma ; Harrington, Mary E. ; Leise, Tanya L.</creator><creatorcontrib>Cenek, Lisa ; Klindziuk, Liubou ; Lopez, Cindy ; McCartney, Eleanor ; Martin Burgos, Blanca ; Tir, Selma ; Harrington, Mary E. ; Leise, Tanya L.</creatorcontrib><description>Circadian rhythms are daily oscillations in physiology and behavior that can be assessed by recording body temperature, locomotor activity, or bioluminescent reporters, among other measures. These different types of data can vary greatly in waveform, noise characteristics, typical sampling rate, and length of recording. We developed 2 Shiny apps for exploration of these data, enabling visualization and analysis of circadian parameters such as period and phase. Methods include the discrete wavelet transform, sine fitting, the Lomb-Scargle periodogram, autocorrelation, and maximum entropy spectral analysis, giving a sense of how well each method works on each type of data. The apps also provide educational overviews and guidance for these methods, supporting the training of those new to this type of analysis. CIRCADA-E (Circadian App for Data Analysis–Experimental Time Series) allows users to explore a large curated experimental data set with mouse body temperature, locomotor activity, and PER2::LUC rhythms recorded from multiple tissues. CIRCADA-S (Circadian App for Data Analysis–Synthetic Time Series) generates and analyzes time series with user-specified parameters, thereby demonstrating how the accuracy of period and phase estimation depends on the type and level of noise, sampling rate, length of recording, and method. We demonstrate the potential uses of the apps through 2 in silico case studies.</description><identifier>ISSN: 0748-7304</identifier><identifier>EISSN: 1552-4531</identifier><identifier>DOI: 10.1177/0748730419900866</identifier><identifier>PMID: 31986956</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Body temperature ; Circadian rhythm ; Circadian rhythms ; Data analysis ; Data processing ; Discrete Wavelet Transform ; Education ; Entropy ; Locomotor activity ; Maximum entropy ; Noise ; Oscillations ; Parameters ; Period 2 protein ; Recording ; Sampling ; Spectral analysis ; Spectrum analysis ; Time series ; Waveforms ; Wavelet transforms</subject><ispartof>Journal of biological rhythms, 2020-04, Vol.35 (2), p.214-222</ispartof><rights>2020 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-7e4dd1a492ab55b732ca3d7cc0477404126c08d2cdd5e5e89081ab8372b525413</citedby><cites>FETCH-LOGICAL-c462t-7e4dd1a492ab55b732ca3d7cc0477404126c08d2cdd5e5e89081ab8372b525413</cites><orcidid>0000-0002-7458-7604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0748730419900866$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0748730419900866$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,778,782,883,21802,27907,27908,43604,43605</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31986956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cenek, Lisa</creatorcontrib><creatorcontrib>Klindziuk, Liubou</creatorcontrib><creatorcontrib>Lopez, Cindy</creatorcontrib><creatorcontrib>McCartney, Eleanor</creatorcontrib><creatorcontrib>Martin Burgos, Blanca</creatorcontrib><creatorcontrib>Tir, Selma</creatorcontrib><creatorcontrib>Harrington, Mary E.</creatorcontrib><creatorcontrib>Leise, Tanya L.</creatorcontrib><title>CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis</title><title>Journal of biological rhythms</title><addtitle>J Biol Rhythms</addtitle><description>Circadian rhythms are daily oscillations in physiology and behavior that can be assessed by recording body temperature, locomotor activity, or bioluminescent reporters, among other measures. These different types of data can vary greatly in waveform, noise characteristics, typical sampling rate, and length of recording. We developed 2 Shiny apps for exploration of these data, enabling visualization and analysis of circadian parameters such as period and phase. Methods include the discrete wavelet transform, sine fitting, the Lomb-Scargle periodogram, autocorrelation, and maximum entropy spectral analysis, giving a sense of how well each method works on each type of data. The apps also provide educational overviews and guidance for these methods, supporting the training of those new to this type of analysis. CIRCADA-E (Circadian App for Data Analysis–Experimental Time Series) allows users to explore a large curated experimental data set with mouse body temperature, locomotor activity, and PER2::LUC rhythms recorded from multiple tissues. CIRCADA-S (Circadian App for Data Analysis–Synthetic Time Series) generates and analyzes time series with user-specified parameters, thereby demonstrating how the accuracy of period and phase estimation depends on the type and level of noise, sampling rate, length of recording, and method. We demonstrate the potential uses of the apps through 2 in silico case studies.</description><subject>Body temperature</subject><subject>Circadian rhythm</subject><subject>Circadian rhythms</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Discrete Wavelet Transform</subject><subject>Education</subject><subject>Entropy</subject><subject>Locomotor activity</subject><subject>Maximum entropy</subject><subject>Noise</subject><subject>Oscillations</subject><subject>Parameters</subject><subject>Period 2 protein</subject><subject>Recording</subject><subject>Sampling</subject><subject>Spectral analysis</subject><subject>Spectrum analysis</subject><subject>Time series</subject><subject>Waveforms</subject><subject>Wavelet transforms</subject><issn>0748-7304</issn><issn>1552-4531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc-L1DAcxYMo7jh69yQBL16q-Z3GgzDUURcWBGc9hzTJbLN0mpq0q_PfmzrrqgueQvh-3vt-Hw-A5xi9xljKN0iyWlLEsFII1UI8ACvMOakYp_ghWC3japmfgSc5XyOEhGL0MTijWNVCcbECU3P-pdm837yFuy4MR7gZxwz3McHtj7GPyUwhDjDul69P4eCHyfTQDA7ujsPU-SlY2IRkjQtmgJcFgLvC-Qy_h6krINy62f5yKbrtYexMDvkpeLQ3ffbPbt81-Pphe9l8qi4-fzxvNheVZYJMlfTMOWyYIqblvJWUWEOdtBYxKVlJTYRFtSPWOe65rxWqsWlrKknLCWeYrsG7k-84twfvbLk-mV6PJYhJRx1N0P9OhtDpq3ijpeQEC1UMXt0apPht9nnSh5Ct73sz-DhnTSiTHHOBl10v76HXcU4l9UJxSamSpao1QCfKpphz8vu7YzDSS6X6fqVF8uLvEHeC3x0WoDoB2Vz5P1v_a_gTFCGoww</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Cenek, Lisa</creator><creator>Klindziuk, Liubou</creator><creator>Lopez, Cindy</creator><creator>McCartney, Eleanor</creator><creator>Martin Burgos, Blanca</creator><creator>Tir, Selma</creator><creator>Harrington, Mary E.</creator><creator>Leise, Tanya L.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7458-7604</orcidid></search><sort><creationdate>20200401</creationdate><title>CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis</title><author>Cenek, Lisa ; Klindziuk, Liubou ; Lopez, Cindy ; McCartney, Eleanor ; Martin Burgos, Blanca ; Tir, Selma ; Harrington, Mary E. ; Leise, Tanya L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-7e4dd1a492ab55b732ca3d7cc0477404126c08d2cdd5e5e89081ab8372b525413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Body temperature</topic><topic>Circadian rhythm</topic><topic>Circadian rhythms</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Discrete Wavelet Transform</topic><topic>Education</topic><topic>Entropy</topic><topic>Locomotor activity</topic><topic>Maximum entropy</topic><topic>Noise</topic><topic>Oscillations</topic><topic>Parameters</topic><topic>Period 2 protein</topic><topic>Recording</topic><topic>Sampling</topic><topic>Spectral analysis</topic><topic>Spectrum analysis</topic><topic>Time series</topic><topic>Waveforms</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cenek, Lisa</creatorcontrib><creatorcontrib>Klindziuk, Liubou</creatorcontrib><creatorcontrib>Lopez, Cindy</creatorcontrib><creatorcontrib>McCartney, Eleanor</creatorcontrib><creatorcontrib>Martin Burgos, Blanca</creatorcontrib><creatorcontrib>Tir, Selma</creatorcontrib><creatorcontrib>Harrington, Mary E.</creatorcontrib><creatorcontrib>Leise, Tanya L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biological rhythms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cenek, Lisa</au><au>Klindziuk, Liubou</au><au>Lopez, Cindy</au><au>McCartney, Eleanor</au><au>Martin Burgos, Blanca</au><au>Tir, Selma</au><au>Harrington, Mary E.</au><au>Leise, Tanya L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis</atitle><jtitle>Journal of biological rhythms</jtitle><addtitle>J Biol Rhythms</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>35</volume><issue>2</issue><spage>214</spage><epage>222</epage><pages>214-222</pages><issn>0748-7304</issn><eissn>1552-4531</eissn><abstract>Circadian rhythms are daily oscillations in physiology and behavior that can be assessed by recording body temperature, locomotor activity, or bioluminescent reporters, among other measures. These different types of data can vary greatly in waveform, noise characteristics, typical sampling rate, and length of recording. We developed 2 Shiny apps for exploration of these data, enabling visualization and analysis of circadian parameters such as period and phase. Methods include the discrete wavelet transform, sine fitting, the Lomb-Scargle periodogram, autocorrelation, and maximum entropy spectral analysis, giving a sense of how well each method works on each type of data. The apps also provide educational overviews and guidance for these methods, supporting the training of those new to this type of analysis. CIRCADA-E (Circadian App for Data Analysis–Experimental Time Series) allows users to explore a large curated experimental data set with mouse body temperature, locomotor activity, and PER2::LUC rhythms recorded from multiple tissues. CIRCADA-S (Circadian App for Data Analysis–Synthetic Time Series) generates and analyzes time series with user-specified parameters, thereby demonstrating how the accuracy of period and phase estimation depends on the type and level of noise, sampling rate, length of recording, and method. We demonstrate the potential uses of the apps through 2 in silico case studies.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>31986956</pmid><doi>10.1177/0748730419900866</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7458-7604</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-7304 |
ispartof | Journal of biological rhythms, 2020-04, Vol.35 (2), p.214-222 |
issn | 0748-7304 1552-4531 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7752169 |
source | SAGE Complete A-Z List |
subjects | Body temperature Circadian rhythm Circadian rhythms Data analysis Data processing Discrete Wavelet Transform Education Entropy Locomotor activity Maximum entropy Noise Oscillations Parameters Period 2 protein Recording Sampling Spectral analysis Spectrum analysis Time series Waveforms Wavelet transforms |
title | CIRCADA: Shiny Apps for Exploration of Experimental and Synthetic Circadian Time Series with an Educational Emphasis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CIRCADA:%20Shiny%20Apps%20for%20Exploration%20of%20Experimental%20and%20Synthetic%20Circadian%20Time%20Series%20with%20an%20Educational%20Emphasis&rft.jtitle=Journal%20of%20biological%20rhythms&rft.au=Cenek,%20Lisa&rft.date=2020-04-01&rft.volume=35&rft.issue=2&rft.spage=214&rft.epage=222&rft.pages=214-222&rft.issn=0748-7304&rft.eissn=1552-4531&rft_id=info:doi/10.1177/0748730419900866&rft_dat=%3Cproquest_pubme%3E2357339787%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357339787&rft_id=info:pmid/31986956&rft_sage_id=10.1177_0748730419900866&rfr_iscdi=true |