Comparison of long-read methods for sequencing and assembly of a plant genome
Abstract Background Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the read...
Gespeichert in:
Veröffentlicht in: | Gigascience 2020-12, Vol.9 (12) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Gigascience |
container_volume | 9 |
creator | Murigneux, Valentine Rai, Subash Kumar Furtado, Agnelo Bruxner, Timothy J C Tian, Wei Harliwong, Ivon Wei, Hanmin Yang, Bicheng Ye, Qianyu Anderson, Ellis Mao, Qing Drmanac, Radoje Wang, Ou Peters, Brock A Xu, Mengyang Wu, Pei Topp, Bruce Coin, Lachlan J M Henry, Robert J |
description | Abstract
Background
Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology, as well as the most appropriate software for assembly and polishing. It is thus important to benchmark different approaches applied to the same sample.
Results
Here, we report a comparison of 3 long-read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION), and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of Pacific Biosciences and Nanopore reads. Results obtained from combining long-read technologies or short-read and long-read technologies are also presented. The assemblies were compared for contiguity, base accuracy, and completeness, as well as sequencing costs and DNA material requirements.
Conclusions
The 3 long-read technologies produced highly contiguous and complete genome assemblies of M. jansenii. At the time of sequencing, the cost associated with each method was significantly different, but continuous improvements in technologies have resulted in greater accuracy, increased throughput, and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies. |
doi_str_mv | 10.1093/gigascience/giaa146 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7751402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gigascience/giaa146</oup_id><sourcerecordid>2472104026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-2164920ad6520d5f9659b64177d7254182e5857ec26d43dff46e0faa7106a8a43</originalsourceid><addsrcrecordid>eNqNkUFr3DAQhUVJaUKaX1Aogl5y2VSSJY33UghL2wRSemmhNzFrjR0HW3IlO5B_X4XdhG1O0UUD-t7TPB5jH6S4kGJdfe76DnPTU2iozIhS2zfsRAkNKyXhz9HBfMzOcr4T5QDUNVTv2HFVVRoMyBP2YxPHCVOfY-Cx5UMM3SoRej7SfBt95m1MPNPfpfzUh45j8BxzpnE7PDwKkE8Dhpl3FOJI79nbFodMZ_v7lP3-9vXX5mp18_P79ebyZtVoW89lK6vXSqC3Rglv2rU1663VEsCDMlrWikxtgBplva5822pLokUEKSzWqKtT9mXnOy3bkXxDYU44uCn1I6YHF7F3_7-E_tZ18d4BGKmFKgbne4MUS7Y8u7HPDQ0lC8UlO6VBSVFIW9BPL9C7uKRQ4jkF0tTSWAmFqnZUk2LOidrnZaRwj425g8bcvrGi-niY41nz1E8BLnZAXKZXOf4D-Xul3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715815617</pqid></control><display><type>article</type><title>Comparison of long-read methods for sequencing and assembly of a plant genome</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Murigneux, Valentine ; Rai, Subash Kumar ; Furtado, Agnelo ; Bruxner, Timothy J C ; Tian, Wei ; Harliwong, Ivon ; Wei, Hanmin ; Yang, Bicheng ; Ye, Qianyu ; Anderson, Ellis ; Mao, Qing ; Drmanac, Radoje ; Wang, Ou ; Peters, Brock A ; Xu, Mengyang ; Wu, Pei ; Topp, Bruce ; Coin, Lachlan J M ; Henry, Robert J</creator><creatorcontrib>Murigneux, Valentine ; Rai, Subash Kumar ; Furtado, Agnelo ; Bruxner, Timothy J C ; Tian, Wei ; Harliwong, Ivon ; Wei, Hanmin ; Yang, Bicheng ; Ye, Qianyu ; Anderson, Ellis ; Mao, Qing ; Drmanac, Radoje ; Wang, Ou ; Peters, Brock A ; Xu, Mengyang ; Wu, Pei ; Topp, Bruce ; Coin, Lachlan J M ; Henry, Robert J</creatorcontrib><description>Abstract
Background
Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology, as well as the most appropriate software for assembly and polishing. It is thus important to benchmark different approaches applied to the same sample.
Results
Here, we report a comparison of 3 long-read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION), and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of Pacific Biosciences and Nanopore reads. Results obtained from combining long-read technologies or short-read and long-read technologies are also presented. The assemblies were compared for contiguity, base accuracy, and completeness, as well as sequencing costs and DNA material requirements.
Conclusions
The 3 long-read technologies produced highly contiguous and complete genome assemblies of M. jansenii. At the time of sequencing, the cost associated with each method was significantly different, but continuous improvements in technologies have resulted in greater accuracy, increased throughput, and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies.</description><identifier>ISSN: 2047-217X</identifier><identifier>EISSN: 2047-217X</identifier><identifier>DOI: 10.1093/gigascience/giaa146</identifier><identifier>PMID: 33347571</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Accuracy ; Algorithms ; Assemblies ; Assembly ; Chromosomes ; DNA sequencing ; Genome, Bacterial ; Genome, Plant ; Genomes ; Haplotypes ; High-Throughput Nucleotide Sequencing ; Sequence Analysis, DNA ; Software</subject><ispartof>Gigascience, 2020-12, Vol.9 (12)</ispartof><rights>The Author(s) 2020. Published by Oxford University Press GigaScience. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press GigaScience.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-2164920ad6520d5f9659b64177d7254182e5857ec26d43dff46e0faa7106a8a43</citedby><cites>FETCH-LOGICAL-c468t-2164920ad6520d5f9659b64177d7254182e5857ec26d43dff46e0faa7106a8a43</cites><orcidid>0000-0003-3694-5586 ; 0000-0002-6970-4124 ; 0000-0002-4060-0292 ; 0000-0002-5137-3902 ; 0000-0001-8673-6497 ; 0000-0002-8088-316X ; 0000-0002-9599-2334 ; 0000-0002-1235-9462 ; 0000-0001-8948-394X ; 0000-0002-4487-7088 ; 0000-0002-4300-455X ; 0000-0002-6698-6998 ; 0000-0001-5647-3737 ; 0000-0001-6130-9026 ; 0000-0001-9658-9064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751402/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751402/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33347571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murigneux, Valentine</creatorcontrib><creatorcontrib>Rai, Subash Kumar</creatorcontrib><creatorcontrib>Furtado, Agnelo</creatorcontrib><creatorcontrib>Bruxner, Timothy J C</creatorcontrib><creatorcontrib>Tian, Wei</creatorcontrib><creatorcontrib>Harliwong, Ivon</creatorcontrib><creatorcontrib>Wei, Hanmin</creatorcontrib><creatorcontrib>Yang, Bicheng</creatorcontrib><creatorcontrib>Ye, Qianyu</creatorcontrib><creatorcontrib>Anderson, Ellis</creatorcontrib><creatorcontrib>Mao, Qing</creatorcontrib><creatorcontrib>Drmanac, Radoje</creatorcontrib><creatorcontrib>Wang, Ou</creatorcontrib><creatorcontrib>Peters, Brock A</creatorcontrib><creatorcontrib>Xu, Mengyang</creatorcontrib><creatorcontrib>Wu, Pei</creatorcontrib><creatorcontrib>Topp, Bruce</creatorcontrib><creatorcontrib>Coin, Lachlan J M</creatorcontrib><creatorcontrib>Henry, Robert J</creatorcontrib><title>Comparison of long-read methods for sequencing and assembly of a plant genome</title><title>Gigascience</title><addtitle>Gigascience</addtitle><description>Abstract
Background
Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology, as well as the most appropriate software for assembly and polishing. It is thus important to benchmark different approaches applied to the same sample.
Results
Here, we report a comparison of 3 long-read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION), and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of Pacific Biosciences and Nanopore reads. Results obtained from combining long-read technologies or short-read and long-read technologies are also presented. The assemblies were compared for contiguity, base accuracy, and completeness, as well as sequencing costs and DNA material requirements.
Conclusions
The 3 long-read technologies produced highly contiguous and complete genome assemblies of M. jansenii. At the time of sequencing, the cost associated with each method was significantly different, but continuous improvements in technologies have resulted in greater accuracy, increased throughput, and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Assemblies</subject><subject>Assembly</subject><subject>Chromosomes</subject><subject>DNA sequencing</subject><subject>Genome, Bacterial</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Haplotypes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Sequence Analysis, DNA</subject><subject>Software</subject><issn>2047-217X</issn><issn>2047-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUFr3DAQhUVJaUKaX1Aogl5y2VSSJY33UghL2wRSemmhNzFrjR0HW3IlO5B_X4XdhG1O0UUD-t7TPB5jH6S4kGJdfe76DnPTU2iozIhS2zfsRAkNKyXhz9HBfMzOcr4T5QDUNVTv2HFVVRoMyBP2YxPHCVOfY-Cx5UMM3SoRej7SfBt95m1MPNPfpfzUh45j8BxzpnE7PDwKkE8Dhpl3FOJI79nbFodMZ_v7lP3-9vXX5mp18_P79ebyZtVoW89lK6vXSqC3Rglv2rU1663VEsCDMlrWikxtgBplva5822pLokUEKSzWqKtT9mXnOy3bkXxDYU44uCn1I6YHF7F3_7-E_tZ18d4BGKmFKgbne4MUS7Y8u7HPDQ0lC8UlO6VBSVFIW9BPL9C7uKRQ4jkF0tTSWAmFqnZUk2LOidrnZaRwj425g8bcvrGi-niY41nz1E8BLnZAXKZXOf4D-Xul3A</recordid><startdate>20201221</startdate><enddate>20201221</enddate><creator>Murigneux, Valentine</creator><creator>Rai, Subash Kumar</creator><creator>Furtado, Agnelo</creator><creator>Bruxner, Timothy J C</creator><creator>Tian, Wei</creator><creator>Harliwong, Ivon</creator><creator>Wei, Hanmin</creator><creator>Yang, Bicheng</creator><creator>Ye, Qianyu</creator><creator>Anderson, Ellis</creator><creator>Mao, Qing</creator><creator>Drmanac, Radoje</creator><creator>Wang, Ou</creator><creator>Peters, Brock A</creator><creator>Xu, Mengyang</creator><creator>Wu, Pei</creator><creator>Topp, Bruce</creator><creator>Coin, Lachlan J M</creator><creator>Henry, Robert J</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3694-5586</orcidid><orcidid>https://orcid.org/0000-0002-6970-4124</orcidid><orcidid>https://orcid.org/0000-0002-4060-0292</orcidid><orcidid>https://orcid.org/0000-0002-5137-3902</orcidid><orcidid>https://orcid.org/0000-0001-8673-6497</orcidid><orcidid>https://orcid.org/0000-0002-8088-316X</orcidid><orcidid>https://orcid.org/0000-0002-9599-2334</orcidid><orcidid>https://orcid.org/0000-0002-1235-9462</orcidid><orcidid>https://orcid.org/0000-0001-8948-394X</orcidid><orcidid>https://orcid.org/0000-0002-4487-7088</orcidid><orcidid>https://orcid.org/0000-0002-4300-455X</orcidid><orcidid>https://orcid.org/0000-0002-6698-6998</orcidid><orcidid>https://orcid.org/0000-0001-5647-3737</orcidid><orcidid>https://orcid.org/0000-0001-6130-9026</orcidid><orcidid>https://orcid.org/0000-0001-9658-9064</orcidid></search><sort><creationdate>20201221</creationdate><title>Comparison of long-read methods for sequencing and assembly of a plant genome</title><author>Murigneux, Valentine ; Rai, Subash Kumar ; Furtado, Agnelo ; Bruxner, Timothy J C ; Tian, Wei ; Harliwong, Ivon ; Wei, Hanmin ; Yang, Bicheng ; Ye, Qianyu ; Anderson, Ellis ; Mao, Qing ; Drmanac, Radoje ; Wang, Ou ; Peters, Brock A ; Xu, Mengyang ; Wu, Pei ; Topp, Bruce ; Coin, Lachlan J M ; Henry, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-2164920ad6520d5f9659b64177d7254182e5857ec26d43dff46e0faa7106a8a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Assemblies</topic><topic>Assembly</topic><topic>Chromosomes</topic><topic>DNA sequencing</topic><topic>Genome, Bacterial</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Haplotypes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Sequence Analysis, DNA</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murigneux, Valentine</creatorcontrib><creatorcontrib>Rai, Subash Kumar</creatorcontrib><creatorcontrib>Furtado, Agnelo</creatorcontrib><creatorcontrib>Bruxner, Timothy J C</creatorcontrib><creatorcontrib>Tian, Wei</creatorcontrib><creatorcontrib>Harliwong, Ivon</creatorcontrib><creatorcontrib>Wei, Hanmin</creatorcontrib><creatorcontrib>Yang, Bicheng</creatorcontrib><creatorcontrib>Ye, Qianyu</creatorcontrib><creatorcontrib>Anderson, Ellis</creatorcontrib><creatorcontrib>Mao, Qing</creatorcontrib><creatorcontrib>Drmanac, Radoje</creatorcontrib><creatorcontrib>Wang, Ou</creatorcontrib><creatorcontrib>Peters, Brock A</creatorcontrib><creatorcontrib>Xu, Mengyang</creatorcontrib><creatorcontrib>Wu, Pei</creatorcontrib><creatorcontrib>Topp, Bruce</creatorcontrib><creatorcontrib>Coin, Lachlan J M</creatorcontrib><creatorcontrib>Henry, Robert J</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gigascience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murigneux, Valentine</au><au>Rai, Subash Kumar</au><au>Furtado, Agnelo</au><au>Bruxner, Timothy J C</au><au>Tian, Wei</au><au>Harliwong, Ivon</au><au>Wei, Hanmin</au><au>Yang, Bicheng</au><au>Ye, Qianyu</au><au>Anderson, Ellis</au><au>Mao, Qing</au><au>Drmanac, Radoje</au><au>Wang, Ou</au><au>Peters, Brock A</au><au>Xu, Mengyang</au><au>Wu, Pei</au><au>Topp, Bruce</au><au>Coin, Lachlan J M</au><au>Henry, Robert J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of long-read methods for sequencing and assembly of a plant genome</atitle><jtitle>Gigascience</jtitle><addtitle>Gigascience</addtitle><date>2020-12-21</date><risdate>2020</risdate><volume>9</volume><issue>12</issue><issn>2047-217X</issn><eissn>2047-217X</eissn><abstract>Abstract
Background
Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology, as well as the most appropriate software for assembly and polishing. It is thus important to benchmark different approaches applied to the same sample.
Results
Here, we report a comparison of 3 long-read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION), and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of Pacific Biosciences and Nanopore reads. Results obtained from combining long-read technologies or short-read and long-read technologies are also presented. The assemblies were compared for contiguity, base accuracy, and completeness, as well as sequencing costs and DNA material requirements.
Conclusions
The 3 long-read technologies produced highly contiguous and complete genome assemblies of M. jansenii. At the time of sequencing, the cost associated with each method was significantly different, but continuous improvements in technologies have resulted in greater accuracy, increased throughput, and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33347571</pmid><doi>10.1093/gigascience/giaa146</doi><orcidid>https://orcid.org/0000-0003-3694-5586</orcidid><orcidid>https://orcid.org/0000-0002-6970-4124</orcidid><orcidid>https://orcid.org/0000-0002-4060-0292</orcidid><orcidid>https://orcid.org/0000-0002-5137-3902</orcidid><orcidid>https://orcid.org/0000-0001-8673-6497</orcidid><orcidid>https://orcid.org/0000-0002-8088-316X</orcidid><orcidid>https://orcid.org/0000-0002-9599-2334</orcidid><orcidid>https://orcid.org/0000-0002-1235-9462</orcidid><orcidid>https://orcid.org/0000-0001-8948-394X</orcidid><orcidid>https://orcid.org/0000-0002-4487-7088</orcidid><orcidid>https://orcid.org/0000-0002-4300-455X</orcidid><orcidid>https://orcid.org/0000-0002-6698-6998</orcidid><orcidid>https://orcid.org/0000-0001-5647-3737</orcidid><orcidid>https://orcid.org/0000-0001-6130-9026</orcidid><orcidid>https://orcid.org/0000-0001-9658-9064</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-217X |
ispartof | Gigascience, 2020-12, Vol.9 (12) |
issn | 2047-217X 2047-217X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7751402 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); PubMed Central; EZB Electronic Journals Library |
subjects | Accuracy Algorithms Assemblies Assembly Chromosomes DNA sequencing Genome, Bacterial Genome, Plant Genomes Haplotypes High-Throughput Nucleotide Sequencing Sequence Analysis, DNA Software |
title | Comparison of long-read methods for sequencing and assembly of a plant genome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20long-read%20methods%20for%20sequencing%20and%20assembly%20of%20a%20plant%20genome&rft.jtitle=Gigascience&rft.au=Murigneux,%20Valentine&rft.date=2020-12-21&rft.volume=9&rft.issue=12&rft.issn=2047-217X&rft.eissn=2047-217X&rft_id=info:doi/10.1093/gigascience/giaa146&rft_dat=%3Cproquest_pubme%3E2472104026%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715815617&rft_id=info:pmid/33347571&rft_oup_id=10.1093/gigascience/giaa146&rfr_iscdi=true |