Comparison of long-read methods for sequencing and assembly of a plant genome

Abstract Background Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the read...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gigascience 2020-12, Vol.9 (12)
Hauptverfasser: Murigneux, Valentine, Rai, Subash Kumar, Furtado, Agnelo, Bruxner, Timothy J C, Tian, Wei, Harliwong, Ivon, Wei, Hanmin, Yang, Bicheng, Ye, Qianyu, Anderson, Ellis, Mao, Qing, Drmanac, Radoje, Wang, Ou, Peters, Brock A, Xu, Mengyang, Wu, Pei, Topp, Bruce, Coin, Lachlan J M, Henry, Robert J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Gigascience
container_volume 9
creator Murigneux, Valentine
Rai, Subash Kumar
Furtado, Agnelo
Bruxner, Timothy J C
Tian, Wei
Harliwong, Ivon
Wei, Hanmin
Yang, Bicheng
Ye, Qianyu
Anderson, Ellis
Mao, Qing
Drmanac, Radoje
Wang, Ou
Peters, Brock A
Xu, Mengyang
Wu, Pei
Topp, Bruce
Coin, Lachlan J M
Henry, Robert J
description Abstract Background Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology, as well as the most appropriate software for assembly and polishing. It is thus important to benchmark different approaches applied to the same sample. Results Here, we report a comparison of 3 long-read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION), and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of Pacific Biosciences and Nanopore reads. Results obtained from combining long-read technologies or short-read and long-read technologies are also presented. The assemblies were compared for contiguity, base accuracy, and completeness, as well as sequencing costs and DNA material requirements. Conclusions The 3 long-read technologies produced highly contiguous and complete genome assemblies of M. jansenii. At the time of sequencing, the cost associated with each method was significantly different, but continuous improvements in technologies have resulted in greater accuracy, increased throughput, and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies.
doi_str_mv 10.1093/gigascience/giaa146
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7751402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gigascience/giaa146</oup_id><sourcerecordid>2472104026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-2164920ad6520d5f9659b64177d7254182e5857ec26d43dff46e0faa7106a8a43</originalsourceid><addsrcrecordid>eNqNkUFr3DAQhUVJaUKaX1Aogl5y2VSSJY33UghL2wRSemmhNzFrjR0HW3IlO5B_X4XdhG1O0UUD-t7TPB5jH6S4kGJdfe76DnPTU2iozIhS2zfsRAkNKyXhz9HBfMzOcr4T5QDUNVTv2HFVVRoMyBP2YxPHCVOfY-Cx5UMM3SoRej7SfBt95m1MPNPfpfzUh45j8BxzpnE7PDwKkE8Dhpl3FOJI79nbFodMZ_v7lP3-9vXX5mp18_P79ebyZtVoW89lK6vXSqC3Rglv2rU1663VEsCDMlrWikxtgBplva5822pLokUEKSzWqKtT9mXnOy3bkXxDYU44uCn1I6YHF7F3_7-E_tZ18d4BGKmFKgbne4MUS7Y8u7HPDQ0lC8UlO6VBSVFIW9BPL9C7uKRQ4jkF0tTSWAmFqnZUk2LOidrnZaRwj425g8bcvrGi-niY41nz1E8BLnZAXKZXOf4D-Xul3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715815617</pqid></control><display><type>article</type><title>Comparison of long-read methods for sequencing and assembly of a plant genome</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Murigneux, Valentine ; Rai, Subash Kumar ; Furtado, Agnelo ; Bruxner, Timothy J C ; Tian, Wei ; Harliwong, Ivon ; Wei, Hanmin ; Yang, Bicheng ; Ye, Qianyu ; Anderson, Ellis ; Mao, Qing ; Drmanac, Radoje ; Wang, Ou ; Peters, Brock A ; Xu, Mengyang ; Wu, Pei ; Topp, Bruce ; Coin, Lachlan J M ; Henry, Robert J</creator><creatorcontrib>Murigneux, Valentine ; Rai, Subash Kumar ; Furtado, Agnelo ; Bruxner, Timothy J C ; Tian, Wei ; Harliwong, Ivon ; Wei, Hanmin ; Yang, Bicheng ; Ye, Qianyu ; Anderson, Ellis ; Mao, Qing ; Drmanac, Radoje ; Wang, Ou ; Peters, Brock A ; Xu, Mengyang ; Wu, Pei ; Topp, Bruce ; Coin, Lachlan J M ; Henry, Robert J</creatorcontrib><description>Abstract Background Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology, as well as the most appropriate software for assembly and polishing. It is thus important to benchmark different approaches applied to the same sample. Results Here, we report a comparison of 3 long-read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION), and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of Pacific Biosciences and Nanopore reads. Results obtained from combining long-read technologies or short-read and long-read technologies are also presented. The assemblies were compared for contiguity, base accuracy, and completeness, as well as sequencing costs and DNA material requirements. Conclusions The 3 long-read technologies produced highly contiguous and complete genome assemblies of M. jansenii. At the time of sequencing, the cost associated with each method was significantly different, but continuous improvements in technologies have resulted in greater accuracy, increased throughput, and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies.</description><identifier>ISSN: 2047-217X</identifier><identifier>EISSN: 2047-217X</identifier><identifier>DOI: 10.1093/gigascience/giaa146</identifier><identifier>PMID: 33347571</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Accuracy ; Algorithms ; Assemblies ; Assembly ; Chromosomes ; DNA sequencing ; Genome, Bacterial ; Genome, Plant ; Genomes ; Haplotypes ; High-Throughput Nucleotide Sequencing ; Sequence Analysis, DNA ; Software</subject><ispartof>Gigascience, 2020-12, Vol.9 (12)</ispartof><rights>The Author(s) 2020. Published by Oxford University Press GigaScience. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press GigaScience.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-2164920ad6520d5f9659b64177d7254182e5857ec26d43dff46e0faa7106a8a43</citedby><cites>FETCH-LOGICAL-c468t-2164920ad6520d5f9659b64177d7254182e5857ec26d43dff46e0faa7106a8a43</cites><orcidid>0000-0003-3694-5586 ; 0000-0002-6970-4124 ; 0000-0002-4060-0292 ; 0000-0002-5137-3902 ; 0000-0001-8673-6497 ; 0000-0002-8088-316X ; 0000-0002-9599-2334 ; 0000-0002-1235-9462 ; 0000-0001-8948-394X ; 0000-0002-4487-7088 ; 0000-0002-4300-455X ; 0000-0002-6698-6998 ; 0000-0001-5647-3737 ; 0000-0001-6130-9026 ; 0000-0001-9658-9064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751402/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751402/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33347571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murigneux, Valentine</creatorcontrib><creatorcontrib>Rai, Subash Kumar</creatorcontrib><creatorcontrib>Furtado, Agnelo</creatorcontrib><creatorcontrib>Bruxner, Timothy J C</creatorcontrib><creatorcontrib>Tian, Wei</creatorcontrib><creatorcontrib>Harliwong, Ivon</creatorcontrib><creatorcontrib>Wei, Hanmin</creatorcontrib><creatorcontrib>Yang, Bicheng</creatorcontrib><creatorcontrib>Ye, Qianyu</creatorcontrib><creatorcontrib>Anderson, Ellis</creatorcontrib><creatorcontrib>Mao, Qing</creatorcontrib><creatorcontrib>Drmanac, Radoje</creatorcontrib><creatorcontrib>Wang, Ou</creatorcontrib><creatorcontrib>Peters, Brock A</creatorcontrib><creatorcontrib>Xu, Mengyang</creatorcontrib><creatorcontrib>Wu, Pei</creatorcontrib><creatorcontrib>Topp, Bruce</creatorcontrib><creatorcontrib>Coin, Lachlan J M</creatorcontrib><creatorcontrib>Henry, Robert J</creatorcontrib><title>Comparison of long-read methods for sequencing and assembly of a plant genome</title><title>Gigascience</title><addtitle>Gigascience</addtitle><description>Abstract Background Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology, as well as the most appropriate software for assembly and polishing. It is thus important to benchmark different approaches applied to the same sample. Results Here, we report a comparison of 3 long-read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION), and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of Pacific Biosciences and Nanopore reads. Results obtained from combining long-read technologies or short-read and long-read technologies are also presented. The assemblies were compared for contiguity, base accuracy, and completeness, as well as sequencing costs and DNA material requirements. Conclusions The 3 long-read technologies produced highly contiguous and complete genome assemblies of M. jansenii. At the time of sequencing, the cost associated with each method was significantly different, but continuous improvements in technologies have resulted in greater accuracy, increased throughput, and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Assemblies</subject><subject>Assembly</subject><subject>Chromosomes</subject><subject>DNA sequencing</subject><subject>Genome, Bacterial</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Haplotypes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Sequence Analysis, DNA</subject><subject>Software</subject><issn>2047-217X</issn><issn>2047-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUFr3DAQhUVJaUKaX1Aogl5y2VSSJY33UghL2wRSemmhNzFrjR0HW3IlO5B_X4XdhG1O0UUD-t7TPB5jH6S4kGJdfe76DnPTU2iozIhS2zfsRAkNKyXhz9HBfMzOcr4T5QDUNVTv2HFVVRoMyBP2YxPHCVOfY-Cx5UMM3SoRej7SfBt95m1MPNPfpfzUh45j8BxzpnE7PDwKkE8Dhpl3FOJI79nbFodMZ_v7lP3-9vXX5mp18_P79ebyZtVoW89lK6vXSqC3Rglv2rU1663VEsCDMlrWikxtgBplva5822pLokUEKSzWqKtT9mXnOy3bkXxDYU44uCn1I6YHF7F3_7-E_tZ18d4BGKmFKgbne4MUS7Y8u7HPDQ0lC8UlO6VBSVFIW9BPL9C7uKRQ4jkF0tTSWAmFqnZUk2LOidrnZaRwj425g8bcvrGi-niY41nz1E8BLnZAXKZXOf4D-Xul3A</recordid><startdate>20201221</startdate><enddate>20201221</enddate><creator>Murigneux, Valentine</creator><creator>Rai, Subash Kumar</creator><creator>Furtado, Agnelo</creator><creator>Bruxner, Timothy J C</creator><creator>Tian, Wei</creator><creator>Harliwong, Ivon</creator><creator>Wei, Hanmin</creator><creator>Yang, Bicheng</creator><creator>Ye, Qianyu</creator><creator>Anderson, Ellis</creator><creator>Mao, Qing</creator><creator>Drmanac, Radoje</creator><creator>Wang, Ou</creator><creator>Peters, Brock A</creator><creator>Xu, Mengyang</creator><creator>Wu, Pei</creator><creator>Topp, Bruce</creator><creator>Coin, Lachlan J M</creator><creator>Henry, Robert J</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3694-5586</orcidid><orcidid>https://orcid.org/0000-0002-6970-4124</orcidid><orcidid>https://orcid.org/0000-0002-4060-0292</orcidid><orcidid>https://orcid.org/0000-0002-5137-3902</orcidid><orcidid>https://orcid.org/0000-0001-8673-6497</orcidid><orcidid>https://orcid.org/0000-0002-8088-316X</orcidid><orcidid>https://orcid.org/0000-0002-9599-2334</orcidid><orcidid>https://orcid.org/0000-0002-1235-9462</orcidid><orcidid>https://orcid.org/0000-0001-8948-394X</orcidid><orcidid>https://orcid.org/0000-0002-4487-7088</orcidid><orcidid>https://orcid.org/0000-0002-4300-455X</orcidid><orcidid>https://orcid.org/0000-0002-6698-6998</orcidid><orcidid>https://orcid.org/0000-0001-5647-3737</orcidid><orcidid>https://orcid.org/0000-0001-6130-9026</orcidid><orcidid>https://orcid.org/0000-0001-9658-9064</orcidid></search><sort><creationdate>20201221</creationdate><title>Comparison of long-read methods for sequencing and assembly of a plant genome</title><author>Murigneux, Valentine ; Rai, Subash Kumar ; Furtado, Agnelo ; Bruxner, Timothy J C ; Tian, Wei ; Harliwong, Ivon ; Wei, Hanmin ; Yang, Bicheng ; Ye, Qianyu ; Anderson, Ellis ; Mao, Qing ; Drmanac, Radoje ; Wang, Ou ; Peters, Brock A ; Xu, Mengyang ; Wu, Pei ; Topp, Bruce ; Coin, Lachlan J M ; Henry, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-2164920ad6520d5f9659b64177d7254182e5857ec26d43dff46e0faa7106a8a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Assemblies</topic><topic>Assembly</topic><topic>Chromosomes</topic><topic>DNA sequencing</topic><topic>Genome, Bacterial</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Haplotypes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Sequence Analysis, DNA</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murigneux, Valentine</creatorcontrib><creatorcontrib>Rai, Subash Kumar</creatorcontrib><creatorcontrib>Furtado, Agnelo</creatorcontrib><creatorcontrib>Bruxner, Timothy J C</creatorcontrib><creatorcontrib>Tian, Wei</creatorcontrib><creatorcontrib>Harliwong, Ivon</creatorcontrib><creatorcontrib>Wei, Hanmin</creatorcontrib><creatorcontrib>Yang, Bicheng</creatorcontrib><creatorcontrib>Ye, Qianyu</creatorcontrib><creatorcontrib>Anderson, Ellis</creatorcontrib><creatorcontrib>Mao, Qing</creatorcontrib><creatorcontrib>Drmanac, Radoje</creatorcontrib><creatorcontrib>Wang, Ou</creatorcontrib><creatorcontrib>Peters, Brock A</creatorcontrib><creatorcontrib>Xu, Mengyang</creatorcontrib><creatorcontrib>Wu, Pei</creatorcontrib><creatorcontrib>Topp, Bruce</creatorcontrib><creatorcontrib>Coin, Lachlan J M</creatorcontrib><creatorcontrib>Henry, Robert J</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gigascience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murigneux, Valentine</au><au>Rai, Subash Kumar</au><au>Furtado, Agnelo</au><au>Bruxner, Timothy J C</au><au>Tian, Wei</au><au>Harliwong, Ivon</au><au>Wei, Hanmin</au><au>Yang, Bicheng</au><au>Ye, Qianyu</au><au>Anderson, Ellis</au><au>Mao, Qing</au><au>Drmanac, Radoje</au><au>Wang, Ou</au><au>Peters, Brock A</au><au>Xu, Mengyang</au><au>Wu, Pei</au><au>Topp, Bruce</au><au>Coin, Lachlan J M</au><au>Henry, Robert J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of long-read methods for sequencing and assembly of a plant genome</atitle><jtitle>Gigascience</jtitle><addtitle>Gigascience</addtitle><date>2020-12-21</date><risdate>2020</risdate><volume>9</volume><issue>12</issue><issn>2047-217X</issn><eissn>2047-217X</eissn><abstract>Abstract Background Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology, as well as the most appropriate software for assembly and polishing. It is thus important to benchmark different approaches applied to the same sample. Results Here, we report a comparison of 3 long-read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION), and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of Pacific Biosciences and Nanopore reads. Results obtained from combining long-read technologies or short-read and long-read technologies are also presented. The assemblies were compared for contiguity, base accuracy, and completeness, as well as sequencing costs and DNA material requirements. Conclusions The 3 long-read technologies produced highly contiguous and complete genome assemblies of M. jansenii. At the time of sequencing, the cost associated with each method was significantly different, but continuous improvements in technologies have resulted in greater accuracy, increased throughput, and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33347571</pmid><doi>10.1093/gigascience/giaa146</doi><orcidid>https://orcid.org/0000-0003-3694-5586</orcidid><orcidid>https://orcid.org/0000-0002-6970-4124</orcidid><orcidid>https://orcid.org/0000-0002-4060-0292</orcidid><orcidid>https://orcid.org/0000-0002-5137-3902</orcidid><orcidid>https://orcid.org/0000-0001-8673-6497</orcidid><orcidid>https://orcid.org/0000-0002-8088-316X</orcidid><orcidid>https://orcid.org/0000-0002-9599-2334</orcidid><orcidid>https://orcid.org/0000-0002-1235-9462</orcidid><orcidid>https://orcid.org/0000-0001-8948-394X</orcidid><orcidid>https://orcid.org/0000-0002-4487-7088</orcidid><orcidid>https://orcid.org/0000-0002-4300-455X</orcidid><orcidid>https://orcid.org/0000-0002-6698-6998</orcidid><orcidid>https://orcid.org/0000-0001-5647-3737</orcidid><orcidid>https://orcid.org/0000-0001-6130-9026</orcidid><orcidid>https://orcid.org/0000-0001-9658-9064</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-217X
ispartof Gigascience, 2020-12, Vol.9 (12)
issn 2047-217X
2047-217X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7751402
source MEDLINE; Access via Oxford University Press (Open Access Collection); PubMed Central; EZB Electronic Journals Library
subjects Accuracy
Algorithms
Assemblies
Assembly
Chromosomes
DNA sequencing
Genome, Bacterial
Genome, Plant
Genomes
Haplotypes
High-Throughput Nucleotide Sequencing
Sequence Analysis, DNA
Software
title Comparison of long-read methods for sequencing and assembly of a plant genome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20long-read%20methods%20for%20sequencing%20and%20assembly%20of%20a%20plant%20genome&rft.jtitle=Gigascience&rft.au=Murigneux,%20Valentine&rft.date=2020-12-21&rft.volume=9&rft.issue=12&rft.issn=2047-217X&rft.eissn=2047-217X&rft_id=info:doi/10.1093/gigascience/giaa146&rft_dat=%3Cproquest_pubme%3E2472104026%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715815617&rft_id=info:pmid/33347571&rft_oup_id=10.1093/gigascience/giaa146&rfr_iscdi=true