Density Functional Theory for Molecule–Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not
While density functional theory (DFT) is perhaps the most used electronic structure theory in chemistry, many of its practical aspects remain poorly understood. For instance, DFT at the generalized gradient approximation (GGA) tends to fail miserably at describing gas-phase reaction barriers, while...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2020-12, Vol.11 (24), p.10552-10560 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10560 |
---|---|
container_issue | 24 |
container_start_page | 10552 |
container_title | The journal of physical chemistry letters |
container_volume | 11 |
creator | Gerrits, Nick Smeets, Egidius W. F Vuckovic, Stefan Powell, Andrew D Doblhoff-Dier, Katharina Kroes, Geert-Jan |
description | While density functional theory (DFT) is perhaps the most used electronic structure theory in chemistry, many of its practical aspects remain poorly understood. For instance, DFT at the generalized gradient approximation (GGA) tends to fail miserably at describing gas-phase reaction barriers, while it performs surprisingly well for many molecule–metal surface reactions. GGA-DFT also fails for many systems in the latter category, and up to now it has not been clear when one may expect it to work. We show that GGA-DFT tends to work if the difference between the work function of the metal and the molecule’s electron affinity is greater than ∼7 eV and to fail if this difference is smaller, with sticking of O2 on Al(111) being a spectacular example. Using dynamics calculations we show that, for this system, the DFT problem may be solved as done for gas-phase reactions, i.e., by resorting to hybrid functionals, but using screening at long-range to obtain a correct description of the metal. Our results suggest the GGA error in the O2 + Al(111) barrier height to be functional driven. Our results also suggest the possibility to compute potential energy surfaces for the difficult-to-treat systems with computationally cheap nonself-consistent calculations in which a hybrid functional is applied to a GGA density. |
doi_str_mv | 10.1021/acs.jpclett.0c02452 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7751010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468670222</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-2166924ca39e811b5470b4b822f8b61b4aea0be7d4d4f243ebd56584cde5275c3</originalsourceid><addsrcrecordid>eNp9kc9u1DAYxC0EoqXwBEjIRw7s1nbsOOGAVLV0WakFqRRxtBznS-MqawfbQSwn3oE7D8eT4P1DVS6cbGlmfh5rEHpOyZwSRo-1ifPb0QyQ0pwYwrhgD9AhrXk1k7QSD-_dD9CTGG8JKWtSycfooChYLaQkh-jXGbho0xqfT84k650e8HUPPqxx5wO-9AOYaYDfP35eQsraxyl02gC-Ar21x9f4cw8On3mIOPWAF-Ag6MF-hxYvgm4tuIRPxjH4b3alN5FsSXiZ8JW96dMrrF2bETrh5DMFL7uNtsW99-kpetTpIcKz_XmEPp2_vT59N7v4sFienlzMNOcizRgty5pxo4saKkobwSVpeFMx1lVNSRuuQZMGZMtb3jFeQNOKUlTctCCYFKY4Qm923HFqVtCaXDp_Qo0hdw5r5bVV_yrO9urGf1VSCkooyYCXe0DwXyaISa1sNDAM2oGfomK8rEpJGGPZWuysJvgYA3R3z1CiNsuqvKzaL6v2y-bUi_sN7zJ_p8yG451hm_ZTyFPG_yL_AOWmtcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468670222</pqid></control><display><type>article</type><title>Density Functional Theory for Molecule–Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not</title><source>ACS Publications</source><creator>Gerrits, Nick ; Smeets, Egidius W. F ; Vuckovic, Stefan ; Powell, Andrew D ; Doblhoff-Dier, Katharina ; Kroes, Geert-Jan</creator><creatorcontrib>Gerrits, Nick ; Smeets, Egidius W. F ; Vuckovic, Stefan ; Powell, Andrew D ; Doblhoff-Dier, Katharina ; Kroes, Geert-Jan</creatorcontrib><description>While density functional theory (DFT) is perhaps the most used electronic structure theory in chemistry, many of its practical aspects remain poorly understood. For instance, DFT at the generalized gradient approximation (GGA) tends to fail miserably at describing gas-phase reaction barriers, while it performs surprisingly well for many molecule–metal surface reactions. GGA-DFT also fails for many systems in the latter category, and up to now it has not been clear when one may expect it to work. We show that GGA-DFT tends to work if the difference between the work function of the metal and the molecule’s electron affinity is greater than ∼7 eV and to fail if this difference is smaller, with sticking of O2 on Al(111) being a spectacular example. Using dynamics calculations we show that, for this system, the DFT problem may be solved as done for gas-phase reactions, i.e., by resorting to hybrid functionals, but using screening at long-range to obtain a correct description of the metal. Our results suggest the GGA error in the O2 + Al(111) barrier height to be functional driven. Our results also suggest the possibility to compute potential energy surfaces for the difficult-to-treat systems with computationally cheap nonself-consistent calculations in which a hybrid functional is applied to a GGA density.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.0c02452</identifier><identifier>PMID: 33295770</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Letter ; Physical Insights into Chemistry, Catalysis, and Interfaces</subject><ispartof>The journal of physical chemistry letters, 2020-12, Vol.11 (24), p.10552-10560</ispartof><rights>2020 American Chemical Society</rights><rights>2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-2166924ca39e811b5470b4b822f8b61b4aea0be7d4d4f243ebd56584cde5275c3</citedby><cites>FETCH-LOGICAL-a445t-2166924ca39e811b5470b4b822f8b61b4aea0be7d4d4f243ebd56584cde5275c3</cites><orcidid>0000-0002-5981-9438 ; 0000-0001-5405-7860 ; 0000-0002-4913-4689 ; 0000-0003-0111-087X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.0c02452$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c02452$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33295770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerrits, Nick</creatorcontrib><creatorcontrib>Smeets, Egidius W. F</creatorcontrib><creatorcontrib>Vuckovic, Stefan</creatorcontrib><creatorcontrib>Powell, Andrew D</creatorcontrib><creatorcontrib>Doblhoff-Dier, Katharina</creatorcontrib><creatorcontrib>Kroes, Geert-Jan</creatorcontrib><title>Density Functional Theory for Molecule–Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>While density functional theory (DFT) is perhaps the most used electronic structure theory in chemistry, many of its practical aspects remain poorly understood. For instance, DFT at the generalized gradient approximation (GGA) tends to fail miserably at describing gas-phase reaction barriers, while it performs surprisingly well for many molecule–metal surface reactions. GGA-DFT also fails for many systems in the latter category, and up to now it has not been clear when one may expect it to work. We show that GGA-DFT tends to work if the difference between the work function of the metal and the molecule’s electron affinity is greater than ∼7 eV and to fail if this difference is smaller, with sticking of O2 on Al(111) being a spectacular example. Using dynamics calculations we show that, for this system, the DFT problem may be solved as done for gas-phase reactions, i.e., by resorting to hybrid functionals, but using screening at long-range to obtain a correct description of the metal. Our results suggest the GGA error in the O2 + Al(111) barrier height to be functional driven. Our results also suggest the possibility to compute potential energy surfaces for the difficult-to-treat systems with computationally cheap nonself-consistent calculations in which a hybrid functional is applied to a GGA density.</description><subject>Letter</subject><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAYxC0EoqXwBEjIRw7s1nbsOOGAVLV0WakFqRRxtBznS-MqawfbQSwn3oE7D8eT4P1DVS6cbGlmfh5rEHpOyZwSRo-1ifPb0QyQ0pwYwrhgD9AhrXk1k7QSD-_dD9CTGG8JKWtSycfooChYLaQkh-jXGbho0xqfT84k650e8HUPPqxx5wO-9AOYaYDfP35eQsraxyl02gC-Ar21x9f4cw8On3mIOPWAF-Ag6MF-hxYvgm4tuIRPxjH4b3alN5FsSXiZ8JW96dMrrF2bETrh5DMFL7uNtsW99-kpetTpIcKz_XmEPp2_vT59N7v4sFienlzMNOcizRgty5pxo4saKkobwSVpeFMx1lVNSRuuQZMGZMtb3jFeQNOKUlTctCCYFKY4Qm923HFqVtCaXDp_Qo0hdw5r5bVV_yrO9urGf1VSCkooyYCXe0DwXyaISa1sNDAM2oGfomK8rEpJGGPZWuysJvgYA3R3z1CiNsuqvKzaL6v2y-bUi_sN7zJ_p8yG451hm_ZTyFPG_yL_AOWmtcQ</recordid><startdate>20201217</startdate><enddate>20201217</enddate><creator>Gerrits, Nick</creator><creator>Smeets, Egidius W. F</creator><creator>Vuckovic, Stefan</creator><creator>Powell, Andrew D</creator><creator>Doblhoff-Dier, Katharina</creator><creator>Kroes, Geert-Jan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5981-9438</orcidid><orcidid>https://orcid.org/0000-0001-5405-7860</orcidid><orcidid>https://orcid.org/0000-0002-4913-4689</orcidid><orcidid>https://orcid.org/0000-0003-0111-087X</orcidid></search><sort><creationdate>20201217</creationdate><title>Density Functional Theory for Molecule–Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not</title><author>Gerrits, Nick ; Smeets, Egidius W. F ; Vuckovic, Stefan ; Powell, Andrew D ; Doblhoff-Dier, Katharina ; Kroes, Geert-Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-2166924ca39e811b5470b4b822f8b61b4aea0be7d4d4f243ebd56584cde5275c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Letter</topic><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerrits, Nick</creatorcontrib><creatorcontrib>Smeets, Egidius W. F</creatorcontrib><creatorcontrib>Vuckovic, Stefan</creatorcontrib><creatorcontrib>Powell, Andrew D</creatorcontrib><creatorcontrib>Doblhoff-Dier, Katharina</creatorcontrib><creatorcontrib>Kroes, Geert-Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerrits, Nick</au><au>Smeets, Egidius W. F</au><au>Vuckovic, Stefan</au><au>Powell, Andrew D</au><au>Doblhoff-Dier, Katharina</au><au>Kroes, Geert-Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density Functional Theory for Molecule–Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2020-12-17</date><risdate>2020</risdate><volume>11</volume><issue>24</issue><spage>10552</spage><epage>10560</epage><pages>10552-10560</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>While density functional theory (DFT) is perhaps the most used electronic structure theory in chemistry, many of its practical aspects remain poorly understood. For instance, DFT at the generalized gradient approximation (GGA) tends to fail miserably at describing gas-phase reaction barriers, while it performs surprisingly well for many molecule–metal surface reactions. GGA-DFT also fails for many systems in the latter category, and up to now it has not been clear when one may expect it to work. We show that GGA-DFT tends to work if the difference between the work function of the metal and the molecule’s electron affinity is greater than ∼7 eV and to fail if this difference is smaller, with sticking of O2 on Al(111) being a spectacular example. Using dynamics calculations we show that, for this system, the DFT problem may be solved as done for gas-phase reactions, i.e., by resorting to hybrid functionals, but using screening at long-range to obtain a correct description of the metal. Our results suggest the GGA error in the O2 + Al(111) barrier height to be functional driven. Our results also suggest the possibility to compute potential energy surfaces for the difficult-to-treat systems with computationally cheap nonself-consistent calculations in which a hybrid functional is applied to a GGA density.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33295770</pmid><doi>10.1021/acs.jpclett.0c02452</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5981-9438</orcidid><orcidid>https://orcid.org/0000-0001-5405-7860</orcidid><orcidid>https://orcid.org/0000-0002-4913-4689</orcidid><orcidid>https://orcid.org/0000-0003-0111-087X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2020-12, Vol.11 (24), p.10552-10560 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7751010 |
source | ACS Publications |
subjects | Letter Physical Insights into Chemistry, Catalysis, and Interfaces |
title | Density Functional Theory for Molecule–Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20Functional%20Theory%20for%20Molecule%E2%80%93Metal%20Surface%20Reactions:%20When%20Does%20the%20Generalized%20Gradient%20Approximation%20Get%20It%20Right,%20and%20What%20to%20Do%20If%20It%20Does%20Not&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Gerrits,%20Nick&rft.date=2020-12-17&rft.volume=11&rft.issue=24&rft.spage=10552&rft.epage=10560&rft.pages=10552-10560&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.0c02452&rft_dat=%3Cproquest_pubme%3E2468670222%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468670222&rft_id=info:pmid/33295770&rfr_iscdi=true |