Density Functional Theory for Molecule–Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not

While density functional theory (DFT) is perhaps the most used electronic structure theory in chemistry, many of its practical aspects remain poorly understood. For instance, DFT at the generalized gradient approximation (GGA) tends to fail miserably at describing gas-phase reaction barriers, while...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-12, Vol.11 (24), p.10552-10560
Hauptverfasser: Gerrits, Nick, Smeets, Egidius W. F, Vuckovic, Stefan, Powell, Andrew D, Doblhoff-Dier, Katharina, Kroes, Geert-Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10560
container_issue 24
container_start_page 10552
container_title The journal of physical chemistry letters
container_volume 11
creator Gerrits, Nick
Smeets, Egidius W. F
Vuckovic, Stefan
Powell, Andrew D
Doblhoff-Dier, Katharina
Kroes, Geert-Jan
description While density functional theory (DFT) is perhaps the most used electronic structure theory in chemistry, many of its practical aspects remain poorly understood. For instance, DFT at the generalized gradient approximation (GGA) tends to fail miserably at describing gas-phase reaction barriers, while it performs surprisingly well for many molecule–metal surface reactions. GGA-DFT also fails for many systems in the latter category, and up to now it has not been clear when one may expect it to work. We show that GGA-DFT tends to work if the difference between the work function of the metal and the molecule’s electron affinity is greater than ∼7 eV and to fail if this difference is smaller, with sticking of O2 on Al(111) being a spectacular example. Using dynamics calculations we show that, for this system, the DFT problem may be solved as done for gas-phase reactions, i.e., by resorting to hybrid functionals, but using screening at long-range to obtain a correct description of the metal. Our results suggest the GGA error in the O2 + Al(111) barrier height to be functional driven. Our results also suggest the possibility to compute potential energy surfaces for the difficult-to-treat systems with computationally cheap nonself-consistent calculations in which a hybrid functional is applied to a GGA density.
doi_str_mv 10.1021/acs.jpclett.0c02452
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7751010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468670222</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-2166924ca39e811b5470b4b822f8b61b4aea0be7d4d4f243ebd56584cde5275c3</originalsourceid><addsrcrecordid>eNp9kc9u1DAYxC0EoqXwBEjIRw7s1nbsOOGAVLV0WakFqRRxtBznS-MqawfbQSwn3oE7D8eT4P1DVS6cbGlmfh5rEHpOyZwSRo-1ifPb0QyQ0pwYwrhgD9AhrXk1k7QSD-_dD9CTGG8JKWtSycfooChYLaQkh-jXGbho0xqfT84k650e8HUPPqxx5wO-9AOYaYDfP35eQsraxyl02gC-Ar21x9f4cw8On3mIOPWAF-Ag6MF-hxYvgm4tuIRPxjH4b3alN5FsSXiZ8JW96dMrrF2bETrh5DMFL7uNtsW99-kpetTpIcKz_XmEPp2_vT59N7v4sFienlzMNOcizRgty5pxo4saKkobwSVpeFMx1lVNSRuuQZMGZMtb3jFeQNOKUlTctCCYFKY4Qm923HFqVtCaXDp_Qo0hdw5r5bVV_yrO9urGf1VSCkooyYCXe0DwXyaISa1sNDAM2oGfomK8rEpJGGPZWuysJvgYA3R3z1CiNsuqvKzaL6v2y-bUi_sN7zJ_p8yG451hm_ZTyFPG_yL_AOWmtcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468670222</pqid></control><display><type>article</type><title>Density Functional Theory for Molecule–Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not</title><source>ACS Publications</source><creator>Gerrits, Nick ; Smeets, Egidius W. F ; Vuckovic, Stefan ; Powell, Andrew D ; Doblhoff-Dier, Katharina ; Kroes, Geert-Jan</creator><creatorcontrib>Gerrits, Nick ; Smeets, Egidius W. F ; Vuckovic, Stefan ; Powell, Andrew D ; Doblhoff-Dier, Katharina ; Kroes, Geert-Jan</creatorcontrib><description>While density functional theory (DFT) is perhaps the most used electronic structure theory in chemistry, many of its practical aspects remain poorly understood. For instance, DFT at the generalized gradient approximation (GGA) tends to fail miserably at describing gas-phase reaction barriers, while it performs surprisingly well for many molecule–metal surface reactions. GGA-DFT also fails for many systems in the latter category, and up to now it has not been clear when one may expect it to work. We show that GGA-DFT tends to work if the difference between the work function of the metal and the molecule’s electron affinity is greater than ∼7 eV and to fail if this difference is smaller, with sticking of O2 on Al(111) being a spectacular example. Using dynamics calculations we show that, for this system, the DFT problem may be solved as done for gas-phase reactions, i.e., by resorting to hybrid functionals, but using screening at long-range to obtain a correct description of the metal. Our results suggest the GGA error in the O2 + Al(111) barrier height to be functional driven. Our results also suggest the possibility to compute potential energy surfaces for the difficult-to-treat systems with computationally cheap nonself-consistent calculations in which a hybrid functional is applied to a GGA density.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.0c02452</identifier><identifier>PMID: 33295770</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Letter ; Physical Insights into Chemistry, Catalysis, and Interfaces</subject><ispartof>The journal of physical chemistry letters, 2020-12, Vol.11 (24), p.10552-10560</ispartof><rights>2020 American Chemical Society</rights><rights>2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-2166924ca39e811b5470b4b822f8b61b4aea0be7d4d4f243ebd56584cde5275c3</citedby><cites>FETCH-LOGICAL-a445t-2166924ca39e811b5470b4b822f8b61b4aea0be7d4d4f243ebd56584cde5275c3</cites><orcidid>0000-0002-5981-9438 ; 0000-0001-5405-7860 ; 0000-0002-4913-4689 ; 0000-0003-0111-087X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.0c02452$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c02452$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33295770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerrits, Nick</creatorcontrib><creatorcontrib>Smeets, Egidius W. F</creatorcontrib><creatorcontrib>Vuckovic, Stefan</creatorcontrib><creatorcontrib>Powell, Andrew D</creatorcontrib><creatorcontrib>Doblhoff-Dier, Katharina</creatorcontrib><creatorcontrib>Kroes, Geert-Jan</creatorcontrib><title>Density Functional Theory for Molecule–Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>While density functional theory (DFT) is perhaps the most used electronic structure theory in chemistry, many of its practical aspects remain poorly understood. For instance, DFT at the generalized gradient approximation (GGA) tends to fail miserably at describing gas-phase reaction barriers, while it performs surprisingly well for many molecule–metal surface reactions. GGA-DFT also fails for many systems in the latter category, and up to now it has not been clear when one may expect it to work. We show that GGA-DFT tends to work if the difference between the work function of the metal and the molecule’s electron affinity is greater than ∼7 eV and to fail if this difference is smaller, with sticking of O2 on Al(111) being a spectacular example. Using dynamics calculations we show that, for this system, the DFT problem may be solved as done for gas-phase reactions, i.e., by resorting to hybrid functionals, but using screening at long-range to obtain a correct description of the metal. Our results suggest the GGA error in the O2 + Al(111) barrier height to be functional driven. Our results also suggest the possibility to compute potential energy surfaces for the difficult-to-treat systems with computationally cheap nonself-consistent calculations in which a hybrid functional is applied to a GGA density.</description><subject>Letter</subject><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAYxC0EoqXwBEjIRw7s1nbsOOGAVLV0WakFqRRxtBznS-MqawfbQSwn3oE7D8eT4P1DVS6cbGlmfh5rEHpOyZwSRo-1ifPb0QyQ0pwYwrhgD9AhrXk1k7QSD-_dD9CTGG8JKWtSycfooChYLaQkh-jXGbho0xqfT84k650e8HUPPqxx5wO-9AOYaYDfP35eQsraxyl02gC-Ar21x9f4cw8On3mIOPWAF-Ag6MF-hxYvgm4tuIRPxjH4b3alN5FsSXiZ8JW96dMrrF2bETrh5DMFL7uNtsW99-kpetTpIcKz_XmEPp2_vT59N7v4sFienlzMNOcizRgty5pxo4saKkobwSVpeFMx1lVNSRuuQZMGZMtb3jFeQNOKUlTctCCYFKY4Qm923HFqVtCaXDp_Qo0hdw5r5bVV_yrO9urGf1VSCkooyYCXe0DwXyaISa1sNDAM2oGfomK8rEpJGGPZWuysJvgYA3R3z1CiNsuqvKzaL6v2y-bUi_sN7zJ_p8yG451hm_ZTyFPG_yL_AOWmtcQ</recordid><startdate>20201217</startdate><enddate>20201217</enddate><creator>Gerrits, Nick</creator><creator>Smeets, Egidius W. F</creator><creator>Vuckovic, Stefan</creator><creator>Powell, Andrew D</creator><creator>Doblhoff-Dier, Katharina</creator><creator>Kroes, Geert-Jan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5981-9438</orcidid><orcidid>https://orcid.org/0000-0001-5405-7860</orcidid><orcidid>https://orcid.org/0000-0002-4913-4689</orcidid><orcidid>https://orcid.org/0000-0003-0111-087X</orcidid></search><sort><creationdate>20201217</creationdate><title>Density Functional Theory for Molecule–Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not</title><author>Gerrits, Nick ; Smeets, Egidius W. F ; Vuckovic, Stefan ; Powell, Andrew D ; Doblhoff-Dier, Katharina ; Kroes, Geert-Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-2166924ca39e811b5470b4b822f8b61b4aea0be7d4d4f243ebd56584cde5275c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Letter</topic><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerrits, Nick</creatorcontrib><creatorcontrib>Smeets, Egidius W. F</creatorcontrib><creatorcontrib>Vuckovic, Stefan</creatorcontrib><creatorcontrib>Powell, Andrew D</creatorcontrib><creatorcontrib>Doblhoff-Dier, Katharina</creatorcontrib><creatorcontrib>Kroes, Geert-Jan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerrits, Nick</au><au>Smeets, Egidius W. F</au><au>Vuckovic, Stefan</au><au>Powell, Andrew D</au><au>Doblhoff-Dier, Katharina</au><au>Kroes, Geert-Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density Functional Theory for Molecule–Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2020-12-17</date><risdate>2020</risdate><volume>11</volume><issue>24</issue><spage>10552</spage><epage>10560</epage><pages>10552-10560</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>While density functional theory (DFT) is perhaps the most used electronic structure theory in chemistry, many of its practical aspects remain poorly understood. For instance, DFT at the generalized gradient approximation (GGA) tends to fail miserably at describing gas-phase reaction barriers, while it performs surprisingly well for many molecule–metal surface reactions. GGA-DFT also fails for many systems in the latter category, and up to now it has not been clear when one may expect it to work. We show that GGA-DFT tends to work if the difference between the work function of the metal and the molecule’s electron affinity is greater than ∼7 eV and to fail if this difference is smaller, with sticking of O2 on Al(111) being a spectacular example. Using dynamics calculations we show that, for this system, the DFT problem may be solved as done for gas-phase reactions, i.e., by resorting to hybrid functionals, but using screening at long-range to obtain a correct description of the metal. Our results suggest the GGA error in the O2 + Al(111) barrier height to be functional driven. Our results also suggest the possibility to compute potential energy surfaces for the difficult-to-treat systems with computationally cheap nonself-consistent calculations in which a hybrid functional is applied to a GGA density.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33295770</pmid><doi>10.1021/acs.jpclett.0c02452</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5981-9438</orcidid><orcidid>https://orcid.org/0000-0001-5405-7860</orcidid><orcidid>https://orcid.org/0000-0002-4913-4689</orcidid><orcidid>https://orcid.org/0000-0003-0111-087X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2020-12, Vol.11 (24), p.10552-10560
issn 1948-7185
1948-7185
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7751010
source ACS Publications
subjects Letter
Physical Insights into Chemistry, Catalysis, and Interfaces
title Density Functional Theory for Molecule–Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20Functional%20Theory%20for%20Molecule%E2%80%93Metal%20Surface%20Reactions:%20When%20Does%20the%20Generalized%20Gradient%20Approximation%20Get%20It%20Right,%20and%20What%20to%20Do%20If%20It%20Does%20Not&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Gerrits,%20Nick&rft.date=2020-12-17&rft.volume=11&rft.issue=24&rft.spage=10552&rft.epage=10560&rft.pages=10552-10560&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.0c02452&rft_dat=%3Cproquest_pubme%3E2468670222%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468670222&rft_id=info:pmid/33295770&rfr_iscdi=true