Selective regulation of human TRAAK channels by biologically active phospholipids
TRAAK is an ion channel from the two-pore domain potassium (K 2P ) channel family with roles in maintaining the resting membrane potential and fast action potential conduction. Regulated by a wide range of physical and chemical stimuli, the affinity and selectivity of K 2P 4.1 toward lipids remains...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2021-01, Vol.17 (1), p.89-95 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | 1 |
container_start_page | 89 |
container_title | Nature chemical biology |
container_volume | 17 |
creator | Schrecke, Samantha Zhu, Yun McCabe, Jacob W. Bartz, Mariah Packianathan, Charles Zhao, Minglei Zhou, Ming Russell, David Laganowsky, Arthur |
description | TRAAK is an ion channel from the two-pore domain potassium (K
2P
) channel family with roles in maintaining the resting membrane potential and fast action potential conduction. Regulated by a wide range of physical and chemical stimuli, the affinity and selectivity of K
2P
4.1 toward lipids remains poorly understood. Here we show the two isoforms of K
2P
4.1 have distinct binding preferences for lipids dependent on acyl chain length and position on the glycerol backbone. The channel can also discriminate the fatty acid linkage at the SN
1
position. Of the 33 lipids interrogated using native mass spectrometry, phosphatidic acid had the lowest equilibrium dissociation constants for both isoforms of K
2P
4.1. Liposome potassium flux assays with K
2P
4.1 reconstituted in defined lipid environments show that those containing phosphatidic acid activate the channel in a dose-dependent fashion. Our results begin to define the molecular requirements for the specific binding of lipids to K
2P
4.1.
Native ion mobility mass spectrometry reveals two isoforms of the two-pore domain K
+
channel K2P4.1 have distinct binding preferences for lipids and show a relationship between the strength of individual lipid binding events and channel activity. |
doi_str_mv | 10.1038/s41589-020-00659-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7746637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473317312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7fe70a4220e11eddfcdb29b4e30c35c2d9ec1ae884ec82db18046169da2d1b353</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJSdJt_kAPxdBLLm71ZUu6BJaQNKGB0jY9C1ka7ypopY1kB_bf14nT7cchh0ED88w7enkRekfwR4KZ_FQ4aaSqMcU1xm2j6uYVOiZNQ2vOW3Ww7xt8hN6Ucocxa1siD9ERo0oqqtQx-vYDAtjBP0CVYTUGM_gUq9RX63FjYnX7fbn8Utm1iRFCqbpd1fkU0spbE8KuMvPmdp3KVMFvvStv0evehAInz-8C_by8uD2_qm--fr4-X97Ulgs-1KIHgQ2nFAMh4FxvXUdVx4FhyxpLnQJLDEjJwUrqOiIxb0mrnKGOdKxhC3Q2627HbgPOQhyyCXqb_cbknU7G638n0a_1Kj1oIXjbMjEJnD4L5HQ_Qhn0xhcLIZgIaSyaci4YoUzICf3wH3qXxhwnexMlGCNP4ALRmbI5lZKh33-GYP2YmJ4T01Ni-ikx_Wjj_d829iu_I5oANgNlGsUV5D-3X5D9BXB8ovs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473317312</pqid></control><display><type>article</type><title>Selective regulation of human TRAAK channels by biologically active phospholipids</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Schrecke, Samantha ; Zhu, Yun ; McCabe, Jacob W. ; Bartz, Mariah ; Packianathan, Charles ; Zhao, Minglei ; Zhou, Ming ; Russell, David ; Laganowsky, Arthur</creator><creatorcontrib>Schrecke, Samantha ; Zhu, Yun ; McCabe, Jacob W. ; Bartz, Mariah ; Packianathan, Charles ; Zhao, Minglei ; Zhou, Ming ; Russell, David ; Laganowsky, Arthur</creatorcontrib><description>TRAAK is an ion channel from the two-pore domain potassium (K
2P
) channel family with roles in maintaining the resting membrane potential and fast action potential conduction. Regulated by a wide range of physical and chemical stimuli, the affinity and selectivity of K
2P
4.1 toward lipids remains poorly understood. Here we show the two isoforms of K
2P
4.1 have distinct binding preferences for lipids dependent on acyl chain length and position on the glycerol backbone. The channel can also discriminate the fatty acid linkage at the SN
1
position. Of the 33 lipids interrogated using native mass spectrometry, phosphatidic acid had the lowest equilibrium dissociation constants for both isoforms of K
2P
4.1. Liposome potassium flux assays with K
2P
4.1 reconstituted in defined lipid environments show that those containing phosphatidic acid activate the channel in a dose-dependent fashion. Our results begin to define the molecular requirements for the specific binding of lipids to K
2P
4.1.
Native ion mobility mass spectrometry reveals two isoforms of the two-pore domain K
+
channel K2P4.1 have distinct binding preferences for lipids and show a relationship between the strength of individual lipid binding events and channel activity.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-020-00659-5</identifier><identifier>PMID: 32989299</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45 ; 631/45/269 ; 631/45/287 ; 631/57 ; 639/638/11/296 ; Action potential ; Adenosine - analogs & derivatives ; Adenosine - chemistry ; Adenosine - metabolism ; Binding ; Biochemical Engineering ; Biochemistry ; Biological activity ; Bioorganic Chemistry ; Cations, Monovalent ; Cell Biology ; Channel gating ; Chemical stimuli ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cloning, Molecular ; Domains ; Fatty acids ; Gene Expression ; Genetic Vectors - chemistry ; Genetic Vectors - metabolism ; Glycerol ; Glycerophospholipids - chemistry ; Glycerophospholipids - metabolism ; Humans ; Ion Channel Gating ; Ion channels ; Ion Transport ; Ionic mobility ; Isoforms ; Kinetics ; Lipids ; Liposomes - chemistry ; Liposomes - metabolism ; Mass spectrometry ; Mass spectroscopy ; Membrane potential ; Phosphatidic acid ; Phosphatidic Acids - chemistry ; Phosphatidic Acids - metabolism ; Phosphatidylcholines - chemistry ; Phosphatidylcholines - metabolism ; Phosphatidylethanolamines - chemistry ; Phosphatidylethanolamines - metabolism ; Phosphatidylglycerols - chemistry ; Phosphatidylglycerols - metabolism ; Phosphatidylserines - chemistry ; Phosphatidylserines - metabolism ; Phospholipids ; Pichia - genetics ; Pichia - metabolism ; Potassium ; Potassium - chemistry ; Potassium - metabolism ; Potassium channels ; Potassium Channels - chemistry ; Potassium Channels - genetics ; Potassium Channels - metabolism ; Protein Binding ; Protein Isoforms - chemistry ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Scientific imaging ; Selectivity ; Spectroscopy</subject><ispartof>Nature chemical biology, 2021-01, Vol.17 (1), p.89-95</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7fe70a4220e11eddfcdb29b4e30c35c2d9ec1ae884ec82db18046169da2d1b353</citedby><cites>FETCH-LOGICAL-c474t-7fe70a4220e11eddfcdb29b4e30c35c2d9ec1ae884ec82db18046169da2d1b353</cites><orcidid>0000-0001-9954-3870 ; 0000-0002-5228-0310 ; 0000-0003-0830-3914 ; 0000-0001-7198-165X ; 0000-0001-5832-6060 ; 0000-0001-5012-5547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-020-00659-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-020-00659-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32989299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schrecke, Samantha</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>McCabe, Jacob W.</creatorcontrib><creatorcontrib>Bartz, Mariah</creatorcontrib><creatorcontrib>Packianathan, Charles</creatorcontrib><creatorcontrib>Zhao, Minglei</creatorcontrib><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Russell, David</creatorcontrib><creatorcontrib>Laganowsky, Arthur</creatorcontrib><title>Selective regulation of human TRAAK channels by biologically active phospholipids</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>TRAAK is an ion channel from the two-pore domain potassium (K
2P
) channel family with roles in maintaining the resting membrane potential and fast action potential conduction. Regulated by a wide range of physical and chemical stimuli, the affinity and selectivity of K
2P
4.1 toward lipids remains poorly understood. Here we show the two isoforms of K
2P
4.1 have distinct binding preferences for lipids dependent on acyl chain length and position on the glycerol backbone. The channel can also discriminate the fatty acid linkage at the SN
1
position. Of the 33 lipids interrogated using native mass spectrometry, phosphatidic acid had the lowest equilibrium dissociation constants for both isoforms of K
2P
4.1. Liposome potassium flux assays with K
2P
4.1 reconstituted in defined lipid environments show that those containing phosphatidic acid activate the channel in a dose-dependent fashion. Our results begin to define the molecular requirements for the specific binding of lipids to K
2P
4.1.
Native ion mobility mass spectrometry reveals two isoforms of the two-pore domain K
+
channel K2P4.1 have distinct binding preferences for lipids and show a relationship between the strength of individual lipid binding events and channel activity.</description><subject>631/45</subject><subject>631/45/269</subject><subject>631/45/287</subject><subject>631/57</subject><subject>639/638/11/296</subject><subject>Action potential</subject><subject>Adenosine - analogs & derivatives</subject><subject>Adenosine - chemistry</subject><subject>Adenosine - metabolism</subject><subject>Binding</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Biological activity</subject><subject>Bioorganic Chemistry</subject><subject>Cations, Monovalent</subject><subject>Cell Biology</subject><subject>Channel gating</subject><subject>Chemical stimuli</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cloning, Molecular</subject><subject>Domains</subject><subject>Fatty acids</subject><subject>Gene Expression</subject><subject>Genetic Vectors - chemistry</subject><subject>Genetic Vectors - metabolism</subject><subject>Glycerol</subject><subject>Glycerophospholipids - chemistry</subject><subject>Glycerophospholipids - metabolism</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>Ion channels</subject><subject>Ion Transport</subject><subject>Ionic mobility</subject><subject>Isoforms</subject><subject>Kinetics</subject><subject>Lipids</subject><subject>Liposomes - chemistry</subject><subject>Liposomes - metabolism</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Membrane potential</subject><subject>Phosphatidic acid</subject><subject>Phosphatidic Acids - chemistry</subject><subject>Phosphatidic Acids - metabolism</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Phosphatidylethanolamines - chemistry</subject><subject>Phosphatidylethanolamines - metabolism</subject><subject>Phosphatidylglycerols - chemistry</subject><subject>Phosphatidylglycerols - metabolism</subject><subject>Phosphatidylserines - chemistry</subject><subject>Phosphatidylserines - metabolism</subject><subject>Phospholipids</subject><subject>Pichia - genetics</subject><subject>Pichia - metabolism</subject><subject>Potassium</subject><subject>Potassium - chemistry</subject><subject>Potassium - metabolism</subject><subject>Potassium channels</subject><subject>Potassium Channels - chemistry</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels - metabolism</subject><subject>Protein Binding</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Scientific imaging</subject><subject>Selectivity</subject><subject>Spectroscopy</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1r3DAQhkVJSdJt_kAPxdBLLm71ZUu6BJaQNKGB0jY9C1ka7ypopY1kB_bf14nT7cchh0ED88w7enkRekfwR4KZ_FQ4aaSqMcU1xm2j6uYVOiZNQ2vOW3Ww7xt8hN6Ucocxa1siD9ERo0oqqtQx-vYDAtjBP0CVYTUGM_gUq9RX63FjYnX7fbn8Utm1iRFCqbpd1fkU0spbE8KuMvPmdp3KVMFvvStv0evehAInz-8C_by8uD2_qm--fr4-X97Ulgs-1KIHgQ2nFAMh4FxvXUdVx4FhyxpLnQJLDEjJwUrqOiIxb0mrnKGOdKxhC3Q2627HbgPOQhyyCXqb_cbknU7G638n0a_1Kj1oIXjbMjEJnD4L5HQ_Qhn0xhcLIZgIaSyaci4YoUzICf3wH3qXxhwnexMlGCNP4ALRmbI5lZKh33-GYP2YmJ4T01Ni-ikx_Wjj_d829iu_I5oANgNlGsUV5D-3X5D9BXB8ovs</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Schrecke, Samantha</creator><creator>Zhu, Yun</creator><creator>McCabe, Jacob W.</creator><creator>Bartz, Mariah</creator><creator>Packianathan, Charles</creator><creator>Zhao, Minglei</creator><creator>Zhou, Ming</creator><creator>Russell, David</creator><creator>Laganowsky, Arthur</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9954-3870</orcidid><orcidid>https://orcid.org/0000-0002-5228-0310</orcidid><orcidid>https://orcid.org/0000-0003-0830-3914</orcidid><orcidid>https://orcid.org/0000-0001-7198-165X</orcidid><orcidid>https://orcid.org/0000-0001-5832-6060</orcidid><orcidid>https://orcid.org/0000-0001-5012-5547</orcidid></search><sort><creationdate>20210101</creationdate><title>Selective regulation of human TRAAK channels by biologically active phospholipids</title><author>Schrecke, Samantha ; Zhu, Yun ; McCabe, Jacob W. ; Bartz, Mariah ; Packianathan, Charles ; Zhao, Minglei ; Zhou, Ming ; Russell, David ; Laganowsky, Arthur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7fe70a4220e11eddfcdb29b4e30c35c2d9ec1ae884ec82db18046169da2d1b353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/45</topic><topic>631/45/269</topic><topic>631/45/287</topic><topic>631/57</topic><topic>639/638/11/296</topic><topic>Action potential</topic><topic>Adenosine - analogs & derivatives</topic><topic>Adenosine - chemistry</topic><topic>Adenosine - metabolism</topic><topic>Binding</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Biological activity</topic><topic>Bioorganic Chemistry</topic><topic>Cations, Monovalent</topic><topic>Cell Biology</topic><topic>Channel gating</topic><topic>Chemical stimuli</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cloning, Molecular</topic><topic>Domains</topic><topic>Fatty acids</topic><topic>Gene Expression</topic><topic>Genetic Vectors - chemistry</topic><topic>Genetic Vectors - metabolism</topic><topic>Glycerol</topic><topic>Glycerophospholipids - chemistry</topic><topic>Glycerophospholipids - metabolism</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>Ion channels</topic><topic>Ion Transport</topic><topic>Ionic mobility</topic><topic>Isoforms</topic><topic>Kinetics</topic><topic>Lipids</topic><topic>Liposomes - chemistry</topic><topic>Liposomes - metabolism</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Membrane potential</topic><topic>Phosphatidic acid</topic><topic>Phosphatidic Acids - chemistry</topic><topic>Phosphatidic Acids - metabolism</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Phosphatidylethanolamines - chemistry</topic><topic>Phosphatidylethanolamines - metabolism</topic><topic>Phosphatidylglycerols - chemistry</topic><topic>Phosphatidylglycerols - metabolism</topic><topic>Phosphatidylserines - chemistry</topic><topic>Phosphatidylserines - metabolism</topic><topic>Phospholipids</topic><topic>Pichia - genetics</topic><topic>Pichia - metabolism</topic><topic>Potassium</topic><topic>Potassium - chemistry</topic><topic>Potassium - metabolism</topic><topic>Potassium channels</topic><topic>Potassium Channels - chemistry</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels - metabolism</topic><topic>Protein Binding</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Scientific imaging</topic><topic>Selectivity</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schrecke, Samantha</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>McCabe, Jacob W.</creatorcontrib><creatorcontrib>Bartz, Mariah</creatorcontrib><creatorcontrib>Packianathan, Charles</creatorcontrib><creatorcontrib>Zhao, Minglei</creatorcontrib><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Russell, David</creatorcontrib><creatorcontrib>Laganowsky, Arthur</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schrecke, Samantha</au><au>Zhu, Yun</au><au>McCabe, Jacob W.</au><au>Bartz, Mariah</au><au>Packianathan, Charles</au><au>Zhao, Minglei</au><au>Zhou, Ming</au><au>Russell, David</au><au>Laganowsky, Arthur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective regulation of human TRAAK channels by biologically active phospholipids</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>17</volume><issue>1</issue><spage>89</spage><epage>95</epage><pages>89-95</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>TRAAK is an ion channel from the two-pore domain potassium (K
2P
) channel family with roles in maintaining the resting membrane potential and fast action potential conduction. Regulated by a wide range of physical and chemical stimuli, the affinity and selectivity of K
2P
4.1 toward lipids remains poorly understood. Here we show the two isoforms of K
2P
4.1 have distinct binding preferences for lipids dependent on acyl chain length and position on the glycerol backbone. The channel can also discriminate the fatty acid linkage at the SN
1
position. Of the 33 lipids interrogated using native mass spectrometry, phosphatidic acid had the lowest equilibrium dissociation constants for both isoforms of K
2P
4.1. Liposome potassium flux assays with K
2P
4.1 reconstituted in defined lipid environments show that those containing phosphatidic acid activate the channel in a dose-dependent fashion. Our results begin to define the molecular requirements for the specific binding of lipids to K
2P
4.1.
Native ion mobility mass spectrometry reveals two isoforms of the two-pore domain K
+
channel K2P4.1 have distinct binding preferences for lipids and show a relationship between the strength of individual lipid binding events and channel activity.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32989299</pmid><doi>10.1038/s41589-020-00659-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9954-3870</orcidid><orcidid>https://orcid.org/0000-0002-5228-0310</orcidid><orcidid>https://orcid.org/0000-0003-0830-3914</orcidid><orcidid>https://orcid.org/0000-0001-7198-165X</orcidid><orcidid>https://orcid.org/0000-0001-5832-6060</orcidid><orcidid>https://orcid.org/0000-0001-5012-5547</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2021-01, Vol.17 (1), p.89-95 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7746637 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 631/45 631/45/269 631/45/287 631/57 639/638/11/296 Action potential Adenosine - analogs & derivatives Adenosine - chemistry Adenosine - metabolism Binding Biochemical Engineering Biochemistry Biological activity Bioorganic Chemistry Cations, Monovalent Cell Biology Channel gating Chemical stimuli Chemistry Chemistry and Materials Science Chemistry/Food Science Cloning, Molecular Domains Fatty acids Gene Expression Genetic Vectors - chemistry Genetic Vectors - metabolism Glycerol Glycerophospholipids - chemistry Glycerophospholipids - metabolism Humans Ion Channel Gating Ion channels Ion Transport Ionic mobility Isoforms Kinetics Lipids Liposomes - chemistry Liposomes - metabolism Mass spectrometry Mass spectroscopy Membrane potential Phosphatidic acid Phosphatidic Acids - chemistry Phosphatidic Acids - metabolism Phosphatidylcholines - chemistry Phosphatidylcholines - metabolism Phosphatidylethanolamines - chemistry Phosphatidylethanolamines - metabolism Phosphatidylglycerols - chemistry Phosphatidylglycerols - metabolism Phosphatidylserines - chemistry Phosphatidylserines - metabolism Phospholipids Pichia - genetics Pichia - metabolism Potassium Potassium - chemistry Potassium - metabolism Potassium channels Potassium Channels - chemistry Potassium Channels - genetics Potassium Channels - metabolism Protein Binding Protein Isoforms - chemistry Protein Isoforms - genetics Protein Isoforms - metabolism Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Scientific imaging Selectivity Spectroscopy |
title | Selective regulation of human TRAAK channels by biologically active phospholipids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20regulation%20of%20human%20TRAAK%20channels%20by%20biologically%20active%20phospholipids&rft.jtitle=Nature%20chemical%20biology&rft.au=Schrecke,%20Samantha&rft.date=2021-01-01&rft.volume=17&rft.issue=1&rft.spage=89&rft.epage=95&rft.pages=89-95&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-020-00659-5&rft_dat=%3Cproquest_pubme%3E2473317312%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473317312&rft_id=info:pmid/32989299&rfr_iscdi=true |