Selective regulation of human TRAAK channels by biologically active phospholipids

TRAAK is an ion channel from the two-pore domain potassium (K 2P ) channel family with roles in maintaining the resting membrane potential and fast action potential conduction. Regulated by a wide range of physical and chemical stimuli, the affinity and selectivity of K 2P 4.1 toward lipids remains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2021-01, Vol.17 (1), p.89-95
Hauptverfasser: Schrecke, Samantha, Zhu, Yun, McCabe, Jacob W., Bartz, Mariah, Packianathan, Charles, Zhao, Minglei, Zhou, Ming, Russell, David, Laganowsky, Arthur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 1
container_start_page 89
container_title Nature chemical biology
container_volume 17
creator Schrecke, Samantha
Zhu, Yun
McCabe, Jacob W.
Bartz, Mariah
Packianathan, Charles
Zhao, Minglei
Zhou, Ming
Russell, David
Laganowsky, Arthur
description TRAAK is an ion channel from the two-pore domain potassium (K 2P ) channel family with roles in maintaining the resting membrane potential and fast action potential conduction. Regulated by a wide range of physical and chemical stimuli, the affinity and selectivity of K 2P 4.1 toward lipids remains poorly understood. Here we show the two isoforms of K 2P 4.1 have distinct binding preferences for lipids dependent on acyl chain length and position on the glycerol backbone. The channel can also discriminate the fatty acid linkage at the SN 1 position. Of the 33 lipids interrogated using native mass spectrometry, phosphatidic acid had the lowest equilibrium dissociation constants for both isoforms of K 2P 4.1. Liposome potassium flux assays with K 2P 4.1 reconstituted in defined lipid environments show that those containing phosphatidic acid activate the channel in a dose-dependent fashion. Our results begin to define the molecular requirements for the specific binding of lipids to K 2P 4.1. Native ion mobility mass spectrometry reveals two isoforms of the two-pore domain K + channel K2P4.1 have distinct binding preferences for lipids and show a relationship between the strength of individual lipid binding events and channel activity.
doi_str_mv 10.1038/s41589-020-00659-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7746637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473317312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7fe70a4220e11eddfcdb29b4e30c35c2d9ec1ae884ec82db18046169da2d1b353</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJSdJt_kAPxdBLLm71ZUu6BJaQNKGB0jY9C1ka7ypopY1kB_bf14nT7cchh0ED88w7enkRekfwR4KZ_FQ4aaSqMcU1xm2j6uYVOiZNQ2vOW3Ww7xt8hN6Ucocxa1siD9ERo0oqqtQx-vYDAtjBP0CVYTUGM_gUq9RX63FjYnX7fbn8Utm1iRFCqbpd1fkU0spbE8KuMvPmdp3KVMFvvStv0evehAInz-8C_by8uD2_qm--fr4-X97Ulgs-1KIHgQ2nFAMh4FxvXUdVx4FhyxpLnQJLDEjJwUrqOiIxb0mrnKGOdKxhC3Q2627HbgPOQhyyCXqb_cbknU7G638n0a_1Kj1oIXjbMjEJnD4L5HQ_Qhn0xhcLIZgIaSyaci4YoUzICf3wH3qXxhwnexMlGCNP4ALRmbI5lZKh33-GYP2YmJ4T01Ni-ikx_Wjj_d829iu_I5oANgNlGsUV5D-3X5D9BXB8ovs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473317312</pqid></control><display><type>article</type><title>Selective regulation of human TRAAK channels by biologically active phospholipids</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Schrecke, Samantha ; Zhu, Yun ; McCabe, Jacob W. ; Bartz, Mariah ; Packianathan, Charles ; Zhao, Minglei ; Zhou, Ming ; Russell, David ; Laganowsky, Arthur</creator><creatorcontrib>Schrecke, Samantha ; Zhu, Yun ; McCabe, Jacob W. ; Bartz, Mariah ; Packianathan, Charles ; Zhao, Minglei ; Zhou, Ming ; Russell, David ; Laganowsky, Arthur</creatorcontrib><description>TRAAK is an ion channel from the two-pore domain potassium (K 2P ) channel family with roles in maintaining the resting membrane potential and fast action potential conduction. Regulated by a wide range of physical and chemical stimuli, the affinity and selectivity of K 2P 4.1 toward lipids remains poorly understood. Here we show the two isoforms of K 2P 4.1 have distinct binding preferences for lipids dependent on acyl chain length and position on the glycerol backbone. The channel can also discriminate the fatty acid linkage at the SN 1 position. Of the 33 lipids interrogated using native mass spectrometry, phosphatidic acid had the lowest equilibrium dissociation constants for both isoforms of K 2P 4.1. Liposome potassium flux assays with K 2P 4.1 reconstituted in defined lipid environments show that those containing phosphatidic acid activate the channel in a dose-dependent fashion. Our results begin to define the molecular requirements for the specific binding of lipids to K 2P 4.1. Native ion mobility mass spectrometry reveals two isoforms of the two-pore domain K + channel K2P4.1 have distinct binding preferences for lipids and show a relationship between the strength of individual lipid binding events and channel activity.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-020-00659-5</identifier><identifier>PMID: 32989299</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45 ; 631/45/269 ; 631/45/287 ; 631/57 ; 639/638/11/296 ; Action potential ; Adenosine - analogs &amp; derivatives ; Adenosine - chemistry ; Adenosine - metabolism ; Binding ; Biochemical Engineering ; Biochemistry ; Biological activity ; Bioorganic Chemistry ; Cations, Monovalent ; Cell Biology ; Channel gating ; Chemical stimuli ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cloning, Molecular ; Domains ; Fatty acids ; Gene Expression ; Genetic Vectors - chemistry ; Genetic Vectors - metabolism ; Glycerol ; Glycerophospholipids - chemistry ; Glycerophospholipids - metabolism ; Humans ; Ion Channel Gating ; Ion channels ; Ion Transport ; Ionic mobility ; Isoforms ; Kinetics ; Lipids ; Liposomes - chemistry ; Liposomes - metabolism ; Mass spectrometry ; Mass spectroscopy ; Membrane potential ; Phosphatidic acid ; Phosphatidic Acids - chemistry ; Phosphatidic Acids - metabolism ; Phosphatidylcholines - chemistry ; Phosphatidylcholines - metabolism ; Phosphatidylethanolamines - chemistry ; Phosphatidylethanolamines - metabolism ; Phosphatidylglycerols - chemistry ; Phosphatidylglycerols - metabolism ; Phosphatidylserines - chemistry ; Phosphatidylserines - metabolism ; Phospholipids ; Pichia - genetics ; Pichia - metabolism ; Potassium ; Potassium - chemistry ; Potassium - metabolism ; Potassium channels ; Potassium Channels - chemistry ; Potassium Channels - genetics ; Potassium Channels - metabolism ; Protein Binding ; Protein Isoforms - chemistry ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Scientific imaging ; Selectivity ; Spectroscopy</subject><ispartof>Nature chemical biology, 2021-01, Vol.17 (1), p.89-95</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7fe70a4220e11eddfcdb29b4e30c35c2d9ec1ae884ec82db18046169da2d1b353</citedby><cites>FETCH-LOGICAL-c474t-7fe70a4220e11eddfcdb29b4e30c35c2d9ec1ae884ec82db18046169da2d1b353</cites><orcidid>0000-0001-9954-3870 ; 0000-0002-5228-0310 ; 0000-0003-0830-3914 ; 0000-0001-7198-165X ; 0000-0001-5832-6060 ; 0000-0001-5012-5547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-020-00659-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-020-00659-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32989299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schrecke, Samantha</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>McCabe, Jacob W.</creatorcontrib><creatorcontrib>Bartz, Mariah</creatorcontrib><creatorcontrib>Packianathan, Charles</creatorcontrib><creatorcontrib>Zhao, Minglei</creatorcontrib><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Russell, David</creatorcontrib><creatorcontrib>Laganowsky, Arthur</creatorcontrib><title>Selective regulation of human TRAAK channels by biologically active phospholipids</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>TRAAK is an ion channel from the two-pore domain potassium (K 2P ) channel family with roles in maintaining the resting membrane potential and fast action potential conduction. Regulated by a wide range of physical and chemical stimuli, the affinity and selectivity of K 2P 4.1 toward lipids remains poorly understood. Here we show the two isoforms of K 2P 4.1 have distinct binding preferences for lipids dependent on acyl chain length and position on the glycerol backbone. The channel can also discriminate the fatty acid linkage at the SN 1 position. Of the 33 lipids interrogated using native mass spectrometry, phosphatidic acid had the lowest equilibrium dissociation constants for both isoforms of K 2P 4.1. Liposome potassium flux assays with K 2P 4.1 reconstituted in defined lipid environments show that those containing phosphatidic acid activate the channel in a dose-dependent fashion. Our results begin to define the molecular requirements for the specific binding of lipids to K 2P 4.1. Native ion mobility mass spectrometry reveals two isoforms of the two-pore domain K + channel K2P4.1 have distinct binding preferences for lipids and show a relationship between the strength of individual lipid binding events and channel activity.</description><subject>631/45</subject><subject>631/45/269</subject><subject>631/45/287</subject><subject>631/57</subject><subject>639/638/11/296</subject><subject>Action potential</subject><subject>Adenosine - analogs &amp; derivatives</subject><subject>Adenosine - chemistry</subject><subject>Adenosine - metabolism</subject><subject>Binding</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Biological activity</subject><subject>Bioorganic Chemistry</subject><subject>Cations, Monovalent</subject><subject>Cell Biology</subject><subject>Channel gating</subject><subject>Chemical stimuli</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cloning, Molecular</subject><subject>Domains</subject><subject>Fatty acids</subject><subject>Gene Expression</subject><subject>Genetic Vectors - chemistry</subject><subject>Genetic Vectors - metabolism</subject><subject>Glycerol</subject><subject>Glycerophospholipids - chemistry</subject><subject>Glycerophospholipids - metabolism</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>Ion channels</subject><subject>Ion Transport</subject><subject>Ionic mobility</subject><subject>Isoforms</subject><subject>Kinetics</subject><subject>Lipids</subject><subject>Liposomes - chemistry</subject><subject>Liposomes - metabolism</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Membrane potential</subject><subject>Phosphatidic acid</subject><subject>Phosphatidic Acids - chemistry</subject><subject>Phosphatidic Acids - metabolism</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Phosphatidylethanolamines - chemistry</subject><subject>Phosphatidylethanolamines - metabolism</subject><subject>Phosphatidylglycerols - chemistry</subject><subject>Phosphatidylglycerols - metabolism</subject><subject>Phosphatidylserines - chemistry</subject><subject>Phosphatidylserines - metabolism</subject><subject>Phospholipids</subject><subject>Pichia - genetics</subject><subject>Pichia - metabolism</subject><subject>Potassium</subject><subject>Potassium - chemistry</subject><subject>Potassium - metabolism</subject><subject>Potassium channels</subject><subject>Potassium Channels - chemistry</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels - metabolism</subject><subject>Protein Binding</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Scientific imaging</subject><subject>Selectivity</subject><subject>Spectroscopy</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1r3DAQhkVJSdJt_kAPxdBLLm71ZUu6BJaQNKGB0jY9C1ka7ypopY1kB_bf14nT7cchh0ED88w7enkRekfwR4KZ_FQ4aaSqMcU1xm2j6uYVOiZNQ2vOW3Ww7xt8hN6Ucocxa1siD9ERo0oqqtQx-vYDAtjBP0CVYTUGM_gUq9RX63FjYnX7fbn8Utm1iRFCqbpd1fkU0spbE8KuMvPmdp3KVMFvvStv0evehAInz-8C_by8uD2_qm--fr4-X97Ulgs-1KIHgQ2nFAMh4FxvXUdVx4FhyxpLnQJLDEjJwUrqOiIxb0mrnKGOdKxhC3Q2627HbgPOQhyyCXqb_cbknU7G638n0a_1Kj1oIXjbMjEJnD4L5HQ_Qhn0xhcLIZgIaSyaci4YoUzICf3wH3qXxhwnexMlGCNP4ALRmbI5lZKh33-GYP2YmJ4T01Ni-ikx_Wjj_d829iu_I5oANgNlGsUV5D-3X5D9BXB8ovs</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Schrecke, Samantha</creator><creator>Zhu, Yun</creator><creator>McCabe, Jacob W.</creator><creator>Bartz, Mariah</creator><creator>Packianathan, Charles</creator><creator>Zhao, Minglei</creator><creator>Zhou, Ming</creator><creator>Russell, David</creator><creator>Laganowsky, Arthur</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9954-3870</orcidid><orcidid>https://orcid.org/0000-0002-5228-0310</orcidid><orcidid>https://orcid.org/0000-0003-0830-3914</orcidid><orcidid>https://orcid.org/0000-0001-7198-165X</orcidid><orcidid>https://orcid.org/0000-0001-5832-6060</orcidid><orcidid>https://orcid.org/0000-0001-5012-5547</orcidid></search><sort><creationdate>20210101</creationdate><title>Selective regulation of human TRAAK channels by biologically active phospholipids</title><author>Schrecke, Samantha ; Zhu, Yun ; McCabe, Jacob W. ; Bartz, Mariah ; Packianathan, Charles ; Zhao, Minglei ; Zhou, Ming ; Russell, David ; Laganowsky, Arthur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7fe70a4220e11eddfcdb29b4e30c35c2d9ec1ae884ec82db18046169da2d1b353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/45</topic><topic>631/45/269</topic><topic>631/45/287</topic><topic>631/57</topic><topic>639/638/11/296</topic><topic>Action potential</topic><topic>Adenosine - analogs &amp; derivatives</topic><topic>Adenosine - chemistry</topic><topic>Adenosine - metabolism</topic><topic>Binding</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Biological activity</topic><topic>Bioorganic Chemistry</topic><topic>Cations, Monovalent</topic><topic>Cell Biology</topic><topic>Channel gating</topic><topic>Chemical stimuli</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cloning, Molecular</topic><topic>Domains</topic><topic>Fatty acids</topic><topic>Gene Expression</topic><topic>Genetic Vectors - chemistry</topic><topic>Genetic Vectors - metabolism</topic><topic>Glycerol</topic><topic>Glycerophospholipids - chemistry</topic><topic>Glycerophospholipids - metabolism</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>Ion channels</topic><topic>Ion Transport</topic><topic>Ionic mobility</topic><topic>Isoforms</topic><topic>Kinetics</topic><topic>Lipids</topic><topic>Liposomes - chemistry</topic><topic>Liposomes - metabolism</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Membrane potential</topic><topic>Phosphatidic acid</topic><topic>Phosphatidic Acids - chemistry</topic><topic>Phosphatidic Acids - metabolism</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Phosphatidylethanolamines - chemistry</topic><topic>Phosphatidylethanolamines - metabolism</topic><topic>Phosphatidylglycerols - chemistry</topic><topic>Phosphatidylglycerols - metabolism</topic><topic>Phosphatidylserines - chemistry</topic><topic>Phosphatidylserines - metabolism</topic><topic>Phospholipids</topic><topic>Pichia - genetics</topic><topic>Pichia - metabolism</topic><topic>Potassium</topic><topic>Potassium - chemistry</topic><topic>Potassium - metabolism</topic><topic>Potassium channels</topic><topic>Potassium Channels - chemistry</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels - metabolism</topic><topic>Protein Binding</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Scientific imaging</topic><topic>Selectivity</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schrecke, Samantha</creatorcontrib><creatorcontrib>Zhu, Yun</creatorcontrib><creatorcontrib>McCabe, Jacob W.</creatorcontrib><creatorcontrib>Bartz, Mariah</creatorcontrib><creatorcontrib>Packianathan, Charles</creatorcontrib><creatorcontrib>Zhao, Minglei</creatorcontrib><creatorcontrib>Zhou, Ming</creatorcontrib><creatorcontrib>Russell, David</creatorcontrib><creatorcontrib>Laganowsky, Arthur</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schrecke, Samantha</au><au>Zhu, Yun</au><au>McCabe, Jacob W.</au><au>Bartz, Mariah</au><au>Packianathan, Charles</au><au>Zhao, Minglei</au><au>Zhou, Ming</au><au>Russell, David</au><au>Laganowsky, Arthur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective regulation of human TRAAK channels by biologically active phospholipids</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>17</volume><issue>1</issue><spage>89</spage><epage>95</epage><pages>89-95</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>TRAAK is an ion channel from the two-pore domain potassium (K 2P ) channel family with roles in maintaining the resting membrane potential and fast action potential conduction. Regulated by a wide range of physical and chemical stimuli, the affinity and selectivity of K 2P 4.1 toward lipids remains poorly understood. Here we show the two isoforms of K 2P 4.1 have distinct binding preferences for lipids dependent on acyl chain length and position on the glycerol backbone. The channel can also discriminate the fatty acid linkage at the SN 1 position. Of the 33 lipids interrogated using native mass spectrometry, phosphatidic acid had the lowest equilibrium dissociation constants for both isoforms of K 2P 4.1. Liposome potassium flux assays with K 2P 4.1 reconstituted in defined lipid environments show that those containing phosphatidic acid activate the channel in a dose-dependent fashion. Our results begin to define the molecular requirements for the specific binding of lipids to K 2P 4.1. Native ion mobility mass spectrometry reveals two isoforms of the two-pore domain K + channel K2P4.1 have distinct binding preferences for lipids and show a relationship between the strength of individual lipid binding events and channel activity.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32989299</pmid><doi>10.1038/s41589-020-00659-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9954-3870</orcidid><orcidid>https://orcid.org/0000-0002-5228-0310</orcidid><orcidid>https://orcid.org/0000-0003-0830-3914</orcidid><orcidid>https://orcid.org/0000-0001-7198-165X</orcidid><orcidid>https://orcid.org/0000-0001-5832-6060</orcidid><orcidid>https://orcid.org/0000-0001-5012-5547</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2021-01, Vol.17 (1), p.89-95
issn 1552-4450
1552-4469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7746637
source MEDLINE; SpringerLink Journals; Nature
subjects 631/45
631/45/269
631/45/287
631/57
639/638/11/296
Action potential
Adenosine - analogs & derivatives
Adenosine - chemistry
Adenosine - metabolism
Binding
Biochemical Engineering
Biochemistry
Biological activity
Bioorganic Chemistry
Cations, Monovalent
Cell Biology
Channel gating
Chemical stimuli
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Cloning, Molecular
Domains
Fatty acids
Gene Expression
Genetic Vectors - chemistry
Genetic Vectors - metabolism
Glycerol
Glycerophospholipids - chemistry
Glycerophospholipids - metabolism
Humans
Ion Channel Gating
Ion channels
Ion Transport
Ionic mobility
Isoforms
Kinetics
Lipids
Liposomes - chemistry
Liposomes - metabolism
Mass spectrometry
Mass spectroscopy
Membrane potential
Phosphatidic acid
Phosphatidic Acids - chemistry
Phosphatidic Acids - metabolism
Phosphatidylcholines - chemistry
Phosphatidylcholines - metabolism
Phosphatidylethanolamines - chemistry
Phosphatidylethanolamines - metabolism
Phosphatidylglycerols - chemistry
Phosphatidylglycerols - metabolism
Phosphatidylserines - chemistry
Phosphatidylserines - metabolism
Phospholipids
Pichia - genetics
Pichia - metabolism
Potassium
Potassium - chemistry
Potassium - metabolism
Potassium channels
Potassium Channels - chemistry
Potassium Channels - genetics
Potassium Channels - metabolism
Protein Binding
Protein Isoforms - chemistry
Protein Isoforms - genetics
Protein Isoforms - metabolism
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Scientific imaging
Selectivity
Spectroscopy
title Selective regulation of human TRAAK channels by biologically active phospholipids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20regulation%20of%20human%20TRAAK%20channels%20by%20biologically%20active%20phospholipids&rft.jtitle=Nature%20chemical%20biology&rft.au=Schrecke,%20Samantha&rft.date=2021-01-01&rft.volume=17&rft.issue=1&rft.spage=89&rft.epage=95&rft.pages=89-95&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-020-00659-5&rft_dat=%3Cproquest_pubme%3E2473317312%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473317312&rft_id=info:pmid/32989299&rfr_iscdi=true