Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard

Observational epidemiological studies often confront the problem of estimating exposure‐disease relationships when the exposure is not measured exactly. Regression calibration (RC) is a common approach to correct for bias in regression analysis with covariate measurement error. In survival analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2021-06, Vol.77 (2), p.561-572
Hauptverfasser: Wang, Ching‐Yun, Song, Xiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 572
container_issue 2
container_start_page 561
container_title Biometrics
container_volume 77
creator Wang, Ching‐Yun
Song, Xiao
description Observational epidemiological studies often confront the problem of estimating exposure‐disease relationships when the exposure is not measured exactly. Regression calibration (RC) is a common approach to correct for bias in regression analysis with covariate measurement error. In survival analysis with covariate measurement error, it is well known that the RC estimator may be biased when the hazard is an exponential function of the covariates. In the paper, we investigate the RC estimator with general hazard functions, including exponential and linear functions of the covariates. When the hazard is a linear function of the covariates, we show that a risk set regression calibration (RRC) is consistent and robust to a working model for the calibration function. Under exponential hazard models, there is a trade‐off between bias and efficiency when comparing RC and RRC. However, one surprising finding is that the trade‐off between bias and efficiency in measurement error research is not seen under linear hazard when the unobserved covariate is from a uniform or normal distribution. Under this situation, the RRC estimator is in general slightly better than the RC estimator in terms of both bias and efficiency. The methods are applied to the Nutritional Biomarkers Study of the Women's Health Initiative.
doi_str_mv 10.1111/biom.13318
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7746575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415299267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5188-4a6681925680d7c8f0fb79c23933ed1d5ab48c6cbf691f31ebd061c34ae5d4613</originalsourceid><addsrcrecordid>eNp9kd2KFDEQhRtR3HH1xgeQgDcizJp0frobQdDFn4WVvVDBu1Cdrp7J0p2Mle5ZxrfxTc0446JemJsk1JdTJ3WK4rHgZyKvF62P45mQUtR3ioXQSiy5KvndYsE5N0upxNeT4kFK1_naaF7eL05kqXWlTbUofnzC0W-AYMSJvGOEK8KUfAzMweBbgml_7iOxFQYkGNgavgN1bIwdDon5wNJMW7_NFQgw7JJP7MZPa-biFsjDhGxEyAyOGCaGRJFe7t9syCcfVmyDlOVHCA7ZHDokNviAQMdGD4t7PQwJHx330-LLu7efzz8sL6_eX5y_vlw6Lep6qcCYWjSlNjXvKlf3vG-rxpWykRI70WloVe2Ma3vTiF4KbDtuhJMKUHfKCHlavDrobuZ2xM5ls_m3NrscgXY2grd_V4Jf21Xc2qpSJk8zCzw7ClD8NmOa7OiTw2GAgHFOtlRCl01TmiqjT_9Br-NMeXqZ0koqrkXZZOr5gXIUUyLsb80IbvfJ233y9lfyGX7yp_1b9HfUGRAH4MYPuPuPlH1zcfXxIPoTajS-6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543405129</pqid></control><display><type>article</type><title>Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Wang, Ching‐Yun ; Song, Xiao</creator><creatorcontrib>Wang, Ching‐Yun ; Song, Xiao</creatorcontrib><description>Observational epidemiological studies often confront the problem of estimating exposure‐disease relationships when the exposure is not measured exactly. Regression calibration (RC) is a common approach to correct for bias in regression analysis with covariate measurement error. In survival analysis with covariate measurement error, it is well known that the RC estimator may be biased when the hazard is an exponential function of the covariates. In the paper, we investigate the RC estimator with general hazard functions, including exponential and linear functions of the covariates. When the hazard is a linear function of the covariates, we show that a risk set regression calibration (RRC) is consistent and robust to a working model for the calibration function. Under exponential hazard models, there is a trade‐off between bias and efficiency when comparing RC and RRC. However, one surprising finding is that the trade‐off between bias and efficiency in measurement error research is not seen under linear hazard when the unobserved covariate is from a uniform or normal distribution. Under this situation, the RRC estimator is in general slightly better than the RC estimator in terms of both bias and efficiency. The methods are applied to the Nutritional Biomarkers Study of the Women's Health Initiative.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13318</identifier><identifier>PMID: 32557567</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bias ; Biomarkers ; Calibration ; Efficiency ; Epidemiology ; Error analysis ; Error correction ; Exponential functions ; Female ; Humans ; instrumental variable ; Linear functions ; measurement error ; Normal distribution ; Proportional Hazards Models ; Regression Analysis ; Robustness (mathematics) ; Statistical analysis ; surrogate ; Survival ; Survival analysis ; Womens health</subject><ispartof>Biometrics, 2021-06, Vol.77 (2), p.561-572</ispartof><rights>2020 The International Biometric Society</rights><rights>2020 The International Biometric Society.</rights><rights>2021 The International Biometric Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5188-4a6681925680d7c8f0fb79c23933ed1d5ab48c6cbf691f31ebd061c34ae5d4613</citedby><cites>FETCH-LOGICAL-c5188-4a6681925680d7c8f0fb79c23933ed1d5ab48c6cbf691f31ebd061c34ae5d4613</cites><orcidid>0000-0001-8191-7352 ; 0000-0002-1883-333X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13318$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13318$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32557567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ching‐Yun</creatorcontrib><creatorcontrib>Song, Xiao</creatorcontrib><title>Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Observational epidemiological studies often confront the problem of estimating exposure‐disease relationships when the exposure is not measured exactly. Regression calibration (RC) is a common approach to correct for bias in regression analysis with covariate measurement error. In survival analysis with covariate measurement error, it is well known that the RC estimator may be biased when the hazard is an exponential function of the covariates. In the paper, we investigate the RC estimator with general hazard functions, including exponential and linear functions of the covariates. When the hazard is a linear function of the covariates, we show that a risk set regression calibration (RRC) is consistent and robust to a working model for the calibration function. Under exponential hazard models, there is a trade‐off between bias and efficiency when comparing RC and RRC. However, one surprising finding is that the trade‐off between bias and efficiency in measurement error research is not seen under linear hazard when the unobserved covariate is from a uniform or normal distribution. Under this situation, the RRC estimator is in general slightly better than the RC estimator in terms of both bias and efficiency. The methods are applied to the Nutritional Biomarkers Study of the Women's Health Initiative.</description><subject>Bias</subject><subject>Biomarkers</subject><subject>Calibration</subject><subject>Efficiency</subject><subject>Epidemiology</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Exponential functions</subject><subject>Female</subject><subject>Humans</subject><subject>instrumental variable</subject><subject>Linear functions</subject><subject>measurement error</subject><subject>Normal distribution</subject><subject>Proportional Hazards Models</subject><subject>Regression Analysis</subject><subject>Robustness (mathematics)</subject><subject>Statistical analysis</subject><subject>surrogate</subject><subject>Survival</subject><subject>Survival analysis</subject><subject>Womens health</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd2KFDEQhRtR3HH1xgeQgDcizJp0frobQdDFn4WVvVDBu1Cdrp7J0p2Mle5ZxrfxTc0446JemJsk1JdTJ3WK4rHgZyKvF62P45mQUtR3ioXQSiy5KvndYsE5N0upxNeT4kFK1_naaF7eL05kqXWlTbUofnzC0W-AYMSJvGOEK8KUfAzMweBbgml_7iOxFQYkGNgavgN1bIwdDon5wNJMW7_NFQgw7JJP7MZPa-biFsjDhGxEyAyOGCaGRJFe7t9syCcfVmyDlOVHCA7ZHDokNviAQMdGD4t7PQwJHx330-LLu7efzz8sL6_eX5y_vlw6Lep6qcCYWjSlNjXvKlf3vG-rxpWykRI70WloVe2Ma3vTiF4KbDtuhJMKUHfKCHlavDrobuZ2xM5ls_m3NrscgXY2grd_V4Jf21Xc2qpSJk8zCzw7ClD8NmOa7OiTw2GAgHFOtlRCl01TmiqjT_9Br-NMeXqZ0koqrkXZZOr5gXIUUyLsb80IbvfJ233y9lfyGX7yp_1b9HfUGRAH4MYPuPuPlH1zcfXxIPoTajS-6g</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Wang, Ching‐Yun</creator><creator>Song, Xiao</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8191-7352</orcidid><orcidid>https://orcid.org/0000-0002-1883-333X</orcidid></search><sort><creationdate>202106</creationdate><title>Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard</title><author>Wang, Ching‐Yun ; Song, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5188-4a6681925680d7c8f0fb79c23933ed1d5ab48c6cbf691f31ebd061c34ae5d4613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bias</topic><topic>Biomarkers</topic><topic>Calibration</topic><topic>Efficiency</topic><topic>Epidemiology</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Exponential functions</topic><topic>Female</topic><topic>Humans</topic><topic>instrumental variable</topic><topic>Linear functions</topic><topic>measurement error</topic><topic>Normal distribution</topic><topic>Proportional Hazards Models</topic><topic>Regression Analysis</topic><topic>Robustness (mathematics)</topic><topic>Statistical analysis</topic><topic>surrogate</topic><topic>Survival</topic><topic>Survival analysis</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ching‐Yun</creatorcontrib><creatorcontrib>Song, Xiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ching‐Yun</au><au>Song, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2021-06</date><risdate>2021</risdate><volume>77</volume><issue>2</issue><spage>561</spage><epage>572</epage><pages>561-572</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Observational epidemiological studies often confront the problem of estimating exposure‐disease relationships when the exposure is not measured exactly. Regression calibration (RC) is a common approach to correct for bias in regression analysis with covariate measurement error. In survival analysis with covariate measurement error, it is well known that the RC estimator may be biased when the hazard is an exponential function of the covariates. In the paper, we investigate the RC estimator with general hazard functions, including exponential and linear functions of the covariates. When the hazard is a linear function of the covariates, we show that a risk set regression calibration (RRC) is consistent and robust to a working model for the calibration function. Under exponential hazard models, there is a trade‐off between bias and efficiency when comparing RC and RRC. However, one surprising finding is that the trade‐off between bias and efficiency in measurement error research is not seen under linear hazard when the unobserved covariate is from a uniform or normal distribution. Under this situation, the RRC estimator is in general slightly better than the RC estimator in terms of both bias and efficiency. The methods are applied to the Nutritional Biomarkers Study of the Women's Health Initiative.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32557567</pmid><doi>10.1111/biom.13318</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8191-7352</orcidid><orcidid>https://orcid.org/0000-0002-1883-333X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2021-06, Vol.77 (2), p.561-572
issn 0006-341X
1541-0420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7746575
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Oxford University Press Journals All Titles (1996-Current)
subjects Bias
Biomarkers
Calibration
Efficiency
Epidemiology
Error analysis
Error correction
Exponential functions
Female
Humans
instrumental variable
Linear functions
measurement error
Normal distribution
Proportional Hazards Models
Regression Analysis
Robustness (mathematics)
Statistical analysis
surrogate
Survival
Survival analysis
Womens health
title Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20regression%20calibration%20for%20general%20hazard%20models%20in%20survival%20analysis%20with%20covariate%20measurement%20error;%20surprising%20performance%20under%20linear%20hazard&rft.jtitle=Biometrics&rft.au=Wang,%20Ching%E2%80%90Yun&rft.date=2021-06&rft.volume=77&rft.issue=2&rft.spage=561&rft.epage=572&rft.pages=561-572&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13318&rft_dat=%3Cproquest_pubme%3E2415299267%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543405129&rft_id=info:pmid/32557567&rfr_iscdi=true