Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard
Observational epidemiological studies often confront the problem of estimating exposure‐disease relationships when the exposure is not measured exactly. Regression calibration (RC) is a common approach to correct for bias in regression analysis with covariate measurement error. In survival analysis...
Gespeichert in:
Veröffentlicht in: | Biometrics 2021-06, Vol.77 (2), p.561-572 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 572 |
---|---|
container_issue | 2 |
container_start_page | 561 |
container_title | Biometrics |
container_volume | 77 |
creator | Wang, Ching‐Yun Song, Xiao |
description | Observational epidemiological studies often confront the problem of estimating exposure‐disease relationships when the exposure is not measured exactly. Regression calibration (RC) is a common approach to correct for bias in regression analysis with covariate measurement error. In survival analysis with covariate measurement error, it is well known that the RC estimator may be biased when the hazard is an exponential function of the covariates. In the paper, we investigate the RC estimator with general hazard functions, including exponential and linear functions of the covariates. When the hazard is a linear function of the covariates, we show that a risk set regression calibration (RRC) is consistent and robust to a working model for the calibration function. Under exponential hazard models, there is a trade‐off between bias and efficiency when comparing RC and RRC. However, one surprising finding is that the trade‐off between bias and efficiency in measurement error research is not seen under linear hazard when the unobserved covariate is from a uniform or normal distribution. Under this situation, the RRC estimator is in general slightly better than the RC estimator in terms of both bias and efficiency. The methods are applied to the Nutritional Biomarkers Study of the Women's Health Initiative. |
doi_str_mv | 10.1111/biom.13318 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7746575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415299267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5188-4a6681925680d7c8f0fb79c23933ed1d5ab48c6cbf691f31ebd061c34ae5d4613</originalsourceid><addsrcrecordid>eNp9kd2KFDEQhRtR3HH1xgeQgDcizJp0frobQdDFn4WVvVDBu1Cdrp7J0p2Mle5ZxrfxTc0446JemJsk1JdTJ3WK4rHgZyKvF62P45mQUtR3ioXQSiy5KvndYsE5N0upxNeT4kFK1_naaF7eL05kqXWlTbUofnzC0W-AYMSJvGOEK8KUfAzMweBbgml_7iOxFQYkGNgavgN1bIwdDon5wNJMW7_NFQgw7JJP7MZPa-biFsjDhGxEyAyOGCaGRJFe7t9syCcfVmyDlOVHCA7ZHDokNviAQMdGD4t7PQwJHx330-LLu7efzz8sL6_eX5y_vlw6Lep6qcCYWjSlNjXvKlf3vG-rxpWykRI70WloVe2Ma3vTiF4KbDtuhJMKUHfKCHlavDrobuZ2xM5ls_m3NrscgXY2grd_V4Jf21Xc2qpSJk8zCzw7ClD8NmOa7OiTw2GAgHFOtlRCl01TmiqjT_9Br-NMeXqZ0koqrkXZZOr5gXIUUyLsb80IbvfJ233y9lfyGX7yp_1b9HfUGRAH4MYPuPuPlH1zcfXxIPoTajS-6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543405129</pqid></control><display><type>article</type><title>Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Wang, Ching‐Yun ; Song, Xiao</creator><creatorcontrib>Wang, Ching‐Yun ; Song, Xiao</creatorcontrib><description>Observational epidemiological studies often confront the problem of estimating exposure‐disease relationships when the exposure is not measured exactly. Regression calibration (RC) is a common approach to correct for bias in regression analysis with covariate measurement error. In survival analysis with covariate measurement error, it is well known that the RC estimator may be biased when the hazard is an exponential function of the covariates. In the paper, we investigate the RC estimator with general hazard functions, including exponential and linear functions of the covariates. When the hazard is a linear function of the covariates, we show that a risk set regression calibration (RRC) is consistent and robust to a working model for the calibration function. Under exponential hazard models, there is a trade‐off between bias and efficiency when comparing RC and RRC. However, one surprising finding is that the trade‐off between bias and efficiency in measurement error research is not seen under linear hazard when the unobserved covariate is from a uniform or normal distribution. Under this situation, the RRC estimator is in general slightly better than the RC estimator in terms of both bias and efficiency. The methods are applied to the Nutritional Biomarkers Study of the Women's Health Initiative.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13318</identifier><identifier>PMID: 32557567</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bias ; Biomarkers ; Calibration ; Efficiency ; Epidemiology ; Error analysis ; Error correction ; Exponential functions ; Female ; Humans ; instrumental variable ; Linear functions ; measurement error ; Normal distribution ; Proportional Hazards Models ; Regression Analysis ; Robustness (mathematics) ; Statistical analysis ; surrogate ; Survival ; Survival analysis ; Womens health</subject><ispartof>Biometrics, 2021-06, Vol.77 (2), p.561-572</ispartof><rights>2020 The International Biometric Society</rights><rights>2020 The International Biometric Society.</rights><rights>2021 The International Biometric Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5188-4a6681925680d7c8f0fb79c23933ed1d5ab48c6cbf691f31ebd061c34ae5d4613</citedby><cites>FETCH-LOGICAL-c5188-4a6681925680d7c8f0fb79c23933ed1d5ab48c6cbf691f31ebd061c34ae5d4613</cites><orcidid>0000-0001-8191-7352 ; 0000-0002-1883-333X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13318$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13318$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32557567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ching‐Yun</creatorcontrib><creatorcontrib>Song, Xiao</creatorcontrib><title>Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Observational epidemiological studies often confront the problem of estimating exposure‐disease relationships when the exposure is not measured exactly. Regression calibration (RC) is a common approach to correct for bias in regression analysis with covariate measurement error. In survival analysis with covariate measurement error, it is well known that the RC estimator may be biased when the hazard is an exponential function of the covariates. In the paper, we investigate the RC estimator with general hazard functions, including exponential and linear functions of the covariates. When the hazard is a linear function of the covariates, we show that a risk set regression calibration (RRC) is consistent and robust to a working model for the calibration function. Under exponential hazard models, there is a trade‐off between bias and efficiency when comparing RC and RRC. However, one surprising finding is that the trade‐off between bias and efficiency in measurement error research is not seen under linear hazard when the unobserved covariate is from a uniform or normal distribution. Under this situation, the RRC estimator is in general slightly better than the RC estimator in terms of both bias and efficiency. The methods are applied to the Nutritional Biomarkers Study of the Women's Health Initiative.</description><subject>Bias</subject><subject>Biomarkers</subject><subject>Calibration</subject><subject>Efficiency</subject><subject>Epidemiology</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Exponential functions</subject><subject>Female</subject><subject>Humans</subject><subject>instrumental variable</subject><subject>Linear functions</subject><subject>measurement error</subject><subject>Normal distribution</subject><subject>Proportional Hazards Models</subject><subject>Regression Analysis</subject><subject>Robustness (mathematics)</subject><subject>Statistical analysis</subject><subject>surrogate</subject><subject>Survival</subject><subject>Survival analysis</subject><subject>Womens health</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd2KFDEQhRtR3HH1xgeQgDcizJp0frobQdDFn4WVvVDBu1Cdrp7J0p2Mle5ZxrfxTc0446JemJsk1JdTJ3WK4rHgZyKvF62P45mQUtR3ioXQSiy5KvndYsE5N0upxNeT4kFK1_naaF7eL05kqXWlTbUofnzC0W-AYMSJvGOEK8KUfAzMweBbgml_7iOxFQYkGNgavgN1bIwdDon5wNJMW7_NFQgw7JJP7MZPa-biFsjDhGxEyAyOGCaGRJFe7t9syCcfVmyDlOVHCA7ZHDokNviAQMdGD4t7PQwJHx330-LLu7efzz8sL6_eX5y_vlw6Lep6qcCYWjSlNjXvKlf3vG-rxpWykRI70WloVe2Ma3vTiF4KbDtuhJMKUHfKCHlavDrobuZ2xM5ls_m3NrscgXY2grd_V4Jf21Xc2qpSJk8zCzw7ClD8NmOa7OiTw2GAgHFOtlRCl01TmiqjT_9Br-NMeXqZ0koqrkXZZOr5gXIUUyLsb80IbvfJ233y9lfyGX7yp_1b9HfUGRAH4MYPuPuPlH1zcfXxIPoTajS-6g</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Wang, Ching‐Yun</creator><creator>Song, Xiao</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8191-7352</orcidid><orcidid>https://orcid.org/0000-0002-1883-333X</orcidid></search><sort><creationdate>202106</creationdate><title>Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard</title><author>Wang, Ching‐Yun ; Song, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5188-4a6681925680d7c8f0fb79c23933ed1d5ab48c6cbf691f31ebd061c34ae5d4613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bias</topic><topic>Biomarkers</topic><topic>Calibration</topic><topic>Efficiency</topic><topic>Epidemiology</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Exponential functions</topic><topic>Female</topic><topic>Humans</topic><topic>instrumental variable</topic><topic>Linear functions</topic><topic>measurement error</topic><topic>Normal distribution</topic><topic>Proportional Hazards Models</topic><topic>Regression Analysis</topic><topic>Robustness (mathematics)</topic><topic>Statistical analysis</topic><topic>surrogate</topic><topic>Survival</topic><topic>Survival analysis</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ching‐Yun</creatorcontrib><creatorcontrib>Song, Xiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ching‐Yun</au><au>Song, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2021-06</date><risdate>2021</risdate><volume>77</volume><issue>2</issue><spage>561</spage><epage>572</epage><pages>561-572</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Observational epidemiological studies often confront the problem of estimating exposure‐disease relationships when the exposure is not measured exactly. Regression calibration (RC) is a common approach to correct for bias in regression analysis with covariate measurement error. In survival analysis with covariate measurement error, it is well known that the RC estimator may be biased when the hazard is an exponential function of the covariates. In the paper, we investigate the RC estimator with general hazard functions, including exponential and linear functions of the covariates. When the hazard is a linear function of the covariates, we show that a risk set regression calibration (RRC) is consistent and robust to a working model for the calibration function. Under exponential hazard models, there is a trade‐off between bias and efficiency when comparing RC and RRC. However, one surprising finding is that the trade‐off between bias and efficiency in measurement error research is not seen under linear hazard when the unobserved covariate is from a uniform or normal distribution. Under this situation, the RRC estimator is in general slightly better than the RC estimator in terms of both bias and efficiency. The methods are applied to the Nutritional Biomarkers Study of the Women's Health Initiative.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32557567</pmid><doi>10.1111/biom.13318</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8191-7352</orcidid><orcidid>https://orcid.org/0000-0002-1883-333X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2021-06, Vol.77 (2), p.561-572 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7746575 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Oxford University Press Journals All Titles (1996-Current) |
subjects | Bias Biomarkers Calibration Efficiency Epidemiology Error analysis Error correction Exponential functions Female Humans instrumental variable Linear functions measurement error Normal distribution Proportional Hazards Models Regression Analysis Robustness (mathematics) Statistical analysis surrogate Survival Survival analysis Womens health |
title | Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20regression%20calibration%20for%20general%20hazard%20models%20in%20survival%20analysis%20with%20covariate%20measurement%20error;%20surprising%20performance%20under%20linear%20hazard&rft.jtitle=Biometrics&rft.au=Wang,%20Ching%E2%80%90Yun&rft.date=2021-06&rft.volume=77&rft.issue=2&rft.spage=561&rft.epage=572&rft.pages=561-572&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13318&rft_dat=%3Cproquest_pubme%3E2415299267%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543405129&rft_id=info:pmid/32557567&rfr_iscdi=true |