Identifying causal effects with proxy variables of an unmeasured confounder
We consider a causal effect that is confounded by an unobserved variable, but for which observed proxy variables of the confounder are available. We show that with at least two independent proxy variables satisfying a certain rank condition, the causal effect can be nonparametrically identified, eve...
Gespeichert in:
Veröffentlicht in: | Biometrika 2018-12, Vol.105 (4), p.987-993 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 993 |
---|---|
container_issue | 4 |
container_start_page | 987 |
container_title | Biometrika |
container_volume | 105 |
creator | MIAO, WANG GENG, ZHI TCHETGEN TCHETGEN, ERIC J. |
description | We consider a causal effect that is confounded by an unobserved variable, but for which observed proxy variables of the confounder are available. We show that with at least two independent proxy variables satisfying a certain rank condition, the causal effect can be nonparametrically identified, even if the measurement error mechanism, i.e., the conditional distribution of the proxies given the confounder, may not be identified. Our result generalizes the identification strategy of Kuroki & Pearl (2014), which rests on identification of the measurement error mechanism. When only one proxy for the confounder is available, or when the required rank condition is not met, we develop a strategy for testing the null hypothesis of no causal effect. |
doi_str_mv | 10.1093/biomet/asy038 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7746017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48546362</jstor_id><oup_id>10.1093/biomet/asy038</oup_id><sourcerecordid>48546362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-494c016fbf89b8e85b0f17a133c82c09b1fdeafd5a136401523c10d28cd591063</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxa0KVLa0R44gS71wCYzjjyQXJISgRSD10p4tx7HBq8Re7Hjp_vcEQreUS0-jmfnp6T09hA4InBBo6GnrwmDGU5U2QOsPaEGYYAXlBHbQAgBEQRlje-hTSsvnVXDxEe1RShmdtgW6ue6MH53dOH-HtcpJ9dhYa_SY8KMb7_Eqht8bvFbRqbY3CQeLlcfZD0alHE2HdfA2ZN-Z-BntWtUn8-V17qNfV5c_L74Xtz--XV-c3xaaVTAWrGEaiLCtrZu2NjVvwZJKEUp1XWpoWmI7o2zHp5NgQHhJNYGurHXHGwKC7qOzWXeV28F0egoQVS9X0Q0qbmRQTv778e5e3oW1rComgFSTwPGrQAwP2aRRDi5p0_fKm5CTLFlFOOUlkAn9-g5dhhz9FE-WFERJ6-bFUTFTOoaUorFbMwTkc01yrknONU380dsEW_pPL38dhrz6r9bhjC7TGOIWZjVngk4GnwDKSahl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306238906</pqid></control><display><type>article</type><title>Identifying causal effects with proxy variables of an unmeasured confounder</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>JSTOR Mathematics & Statistics</source><creator>MIAO, WANG ; GENG, ZHI ; TCHETGEN TCHETGEN, ERIC J.</creator><creatorcontrib>MIAO, WANG ; GENG, ZHI ; TCHETGEN TCHETGEN, ERIC J.</creatorcontrib><description>We consider a causal effect that is confounded by an unobserved variable, but for which observed proxy variables of the confounder are available. We show that with at least two independent proxy variables satisfying a certain rank condition, the causal effect can be nonparametrically identified, even if the measurement error mechanism, i.e., the conditional distribution of the proxies given the confounder, may not be identified. Our result generalizes the identification strategy of Kuroki & Pearl (2014), which rests on identification of the measurement error mechanism. When only one proxy for the confounder is available, or when the required rank condition is not met, we develop a strategy for testing the null hypothesis of no causal effect.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asy038</identifier><identifier>PMID: 33343006</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Error analysis ; Independent variables ; Miscellanea ; Null hypothesis ; Variables</subject><ispartof>Biometrika, 2018-12, Vol.105 (4), p.987-993</ispartof><rights>2018 Biometrika Trust</rights><rights>2018 Biometrika Trust 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-494c016fbf89b8e85b0f17a133c82c09b1fdeafd5a136401523c10d28cd591063</citedby><cites>FETCH-LOGICAL-c470t-494c016fbf89b8e85b0f17a133c82c09b1fdeafd5a136401523c10d28cd591063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48546362$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48546362$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,1578,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33343006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MIAO, WANG</creatorcontrib><creatorcontrib>GENG, ZHI</creatorcontrib><creatorcontrib>TCHETGEN TCHETGEN, ERIC J.</creatorcontrib><title>Identifying causal effects with proxy variables of an unmeasured confounder</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>We consider a causal effect that is confounded by an unobserved variable, but for which observed proxy variables of the confounder are available. We show that with at least two independent proxy variables satisfying a certain rank condition, the causal effect can be nonparametrically identified, even if the measurement error mechanism, i.e., the conditional distribution of the proxies given the confounder, may not be identified. Our result generalizes the identification strategy of Kuroki & Pearl (2014), which rests on identification of the measurement error mechanism. When only one proxy for the confounder is available, or when the required rank condition is not met, we develop a strategy for testing the null hypothesis of no causal effect.</description><subject>Error analysis</subject><subject>Independent variables</subject><subject>Miscellanea</subject><subject>Null hypothesis</subject><subject>Variables</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc1P3DAQxa0KVLa0R44gS71wCYzjjyQXJISgRSD10p4tx7HBq8Re7Hjp_vcEQreUS0-jmfnp6T09hA4InBBo6GnrwmDGU5U2QOsPaEGYYAXlBHbQAgBEQRlje-hTSsvnVXDxEe1RShmdtgW6ue6MH53dOH-HtcpJ9dhYa_SY8KMb7_Eqht8bvFbRqbY3CQeLlcfZD0alHE2HdfA2ZN-Z-BntWtUn8-V17qNfV5c_L74Xtz--XV-c3xaaVTAWrGEaiLCtrZu2NjVvwZJKEUp1XWpoWmI7o2zHp5NgQHhJNYGurHXHGwKC7qOzWXeV28F0egoQVS9X0Q0qbmRQTv778e5e3oW1rComgFSTwPGrQAwP2aRRDi5p0_fKm5CTLFlFOOUlkAn9-g5dhhz9FE-WFERJ6-bFUTFTOoaUorFbMwTkc01yrknONU380dsEW_pPL38dhrz6r9bhjC7TGOIWZjVngk4GnwDKSahl</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>MIAO, WANG</creator><creator>GENG, ZHI</creator><creator>TCHETGEN TCHETGEN, ERIC J.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181201</creationdate><title>Identifying causal effects with proxy variables of an unmeasured confounder</title><author>MIAO, WANG ; GENG, ZHI ; TCHETGEN TCHETGEN, ERIC J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-494c016fbf89b8e85b0f17a133c82c09b1fdeafd5a136401523c10d28cd591063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Error analysis</topic><topic>Independent variables</topic><topic>Miscellanea</topic><topic>Null hypothesis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MIAO, WANG</creatorcontrib><creatorcontrib>GENG, ZHI</creatorcontrib><creatorcontrib>TCHETGEN TCHETGEN, ERIC J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MIAO, WANG</au><au>GENG, ZHI</au><au>TCHETGEN TCHETGEN, ERIC J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying causal effects with proxy variables of an unmeasured confounder</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>105</volume><issue>4</issue><spage>987</spage><epage>993</epage><pages>987-993</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>We consider a causal effect that is confounded by an unobserved variable, but for which observed proxy variables of the confounder are available. We show that with at least two independent proxy variables satisfying a certain rank condition, the causal effect can be nonparametrically identified, even if the measurement error mechanism, i.e., the conditional distribution of the proxies given the confounder, may not be identified. Our result generalizes the identification strategy of Kuroki & Pearl (2014), which rests on identification of the measurement error mechanism. When only one proxy for the confounder is available, or when the required rank condition is not met, we develop a strategy for testing the null hypothesis of no causal effect.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33343006</pmid><doi>10.1093/biomet/asy038</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2018-12, Vol.105 (4), p.987-993 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7746017 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); JSTOR Mathematics & Statistics |
subjects | Error analysis Independent variables Miscellanea Null hypothesis Variables |
title | Identifying causal effects with proxy variables of an unmeasured confounder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20causal%20effects%20with%20proxy%20variables%20of%20an%20unmeasured%20confounder&rft.jtitle=Biometrika&rft.au=MIAO,%20WANG&rft.date=2018-12-01&rft.volume=105&rft.issue=4&rft.spage=987&rft.epage=993&rft.pages=987-993&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asy038&rft_dat=%3Cjstor_pubme%3E48546362%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306238906&rft_id=info:pmid/33343006&rft_jstor_id=48546362&rft_oup_id=10.1093/biomet/asy038&rfr_iscdi=true |