Identifying causal effects with proxy variables of an unmeasured confounder

We consider a causal effect that is confounded by an unobserved variable, but for which observed proxy variables of the confounder are available. We show that with at least two independent proxy variables satisfying a certain rank condition, the causal effect can be nonparametrically identified, eve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2018-12, Vol.105 (4), p.987-993
Hauptverfasser: MIAO, WANG, GENG, ZHI, TCHETGEN TCHETGEN, ERIC J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 993
container_issue 4
container_start_page 987
container_title Biometrika
container_volume 105
creator MIAO, WANG
GENG, ZHI
TCHETGEN TCHETGEN, ERIC J.
description We consider a causal effect that is confounded by an unobserved variable, but for which observed proxy variables of the confounder are available. We show that with at least two independent proxy variables satisfying a certain rank condition, the causal effect can be nonparametrically identified, even if the measurement error mechanism, i.e., the conditional distribution of the proxies given the confounder, may not be identified. Our result generalizes the identification strategy of Kuroki & Pearl (2014), which rests on identification of the measurement error mechanism. When only one proxy for the confounder is available, or when the required rank condition is not met, we develop a strategy for testing the null hypothesis of no causal effect.
doi_str_mv 10.1093/biomet/asy038
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7746017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48546362</jstor_id><oup_id>10.1093/biomet/asy038</oup_id><sourcerecordid>48546362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-494c016fbf89b8e85b0f17a133c82c09b1fdeafd5a136401523c10d28cd591063</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxa0KVLa0R44gS71wCYzjjyQXJISgRSD10p4tx7HBq8Re7Hjp_vcEQreUS0-jmfnp6T09hA4InBBo6GnrwmDGU5U2QOsPaEGYYAXlBHbQAgBEQRlje-hTSsvnVXDxEe1RShmdtgW6ue6MH53dOH-HtcpJ9dhYa_SY8KMb7_Eqht8bvFbRqbY3CQeLlcfZD0alHE2HdfA2ZN-Z-BntWtUn8-V17qNfV5c_L74Xtz--XV-c3xaaVTAWrGEaiLCtrZu2NjVvwZJKEUp1XWpoWmI7o2zHp5NgQHhJNYGurHXHGwKC7qOzWXeV28F0egoQVS9X0Q0qbmRQTv778e5e3oW1rComgFSTwPGrQAwP2aRRDi5p0_fKm5CTLFlFOOUlkAn9-g5dhhz9FE-WFERJ6-bFUTFTOoaUorFbMwTkc01yrknONU380dsEW_pPL38dhrz6r9bhjC7TGOIWZjVngk4GnwDKSahl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306238906</pqid></control><display><type>article</type><title>Identifying causal effects with proxy variables of an unmeasured confounder</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>JSTOR Mathematics &amp; Statistics</source><creator>MIAO, WANG ; GENG, ZHI ; TCHETGEN TCHETGEN, ERIC J.</creator><creatorcontrib>MIAO, WANG ; GENG, ZHI ; TCHETGEN TCHETGEN, ERIC J.</creatorcontrib><description>We consider a causal effect that is confounded by an unobserved variable, but for which observed proxy variables of the confounder are available. We show that with at least two independent proxy variables satisfying a certain rank condition, the causal effect can be nonparametrically identified, even if the measurement error mechanism, i.e., the conditional distribution of the proxies given the confounder, may not be identified. Our result generalizes the identification strategy of Kuroki &amp; Pearl (2014), which rests on identification of the measurement error mechanism. When only one proxy for the confounder is available, or when the required rank condition is not met, we develop a strategy for testing the null hypothesis of no causal effect.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asy038</identifier><identifier>PMID: 33343006</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Error analysis ; Independent variables ; Miscellanea ; Null hypothesis ; Variables</subject><ispartof>Biometrika, 2018-12, Vol.105 (4), p.987-993</ispartof><rights>2018 Biometrika Trust</rights><rights>2018 Biometrika Trust 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-494c016fbf89b8e85b0f17a133c82c09b1fdeafd5a136401523c10d28cd591063</citedby><cites>FETCH-LOGICAL-c470t-494c016fbf89b8e85b0f17a133c82c09b1fdeafd5a136401523c10d28cd591063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48546362$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48546362$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,1578,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33343006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MIAO, WANG</creatorcontrib><creatorcontrib>GENG, ZHI</creatorcontrib><creatorcontrib>TCHETGEN TCHETGEN, ERIC J.</creatorcontrib><title>Identifying causal effects with proxy variables of an unmeasured confounder</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>We consider a causal effect that is confounded by an unobserved variable, but for which observed proxy variables of the confounder are available. We show that with at least two independent proxy variables satisfying a certain rank condition, the causal effect can be nonparametrically identified, even if the measurement error mechanism, i.e., the conditional distribution of the proxies given the confounder, may not be identified. Our result generalizes the identification strategy of Kuroki &amp; Pearl (2014), which rests on identification of the measurement error mechanism. When only one proxy for the confounder is available, or when the required rank condition is not met, we develop a strategy for testing the null hypothesis of no causal effect.</description><subject>Error analysis</subject><subject>Independent variables</subject><subject>Miscellanea</subject><subject>Null hypothesis</subject><subject>Variables</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc1P3DAQxa0KVLa0R44gS71wCYzjjyQXJISgRSD10p4tx7HBq8Re7Hjp_vcEQreUS0-jmfnp6T09hA4InBBo6GnrwmDGU5U2QOsPaEGYYAXlBHbQAgBEQRlje-hTSsvnVXDxEe1RShmdtgW6ue6MH53dOH-HtcpJ9dhYa_SY8KMb7_Eqht8bvFbRqbY3CQeLlcfZD0alHE2HdfA2ZN-Z-BntWtUn8-V17qNfV5c_L74Xtz--XV-c3xaaVTAWrGEaiLCtrZu2NjVvwZJKEUp1XWpoWmI7o2zHp5NgQHhJNYGurHXHGwKC7qOzWXeV28F0egoQVS9X0Q0qbmRQTv778e5e3oW1rComgFSTwPGrQAwP2aRRDi5p0_fKm5CTLFlFOOUlkAn9-g5dhhz9FE-WFERJ6-bFUTFTOoaUorFbMwTkc01yrknONU380dsEW_pPL38dhrz6r9bhjC7TGOIWZjVngk4GnwDKSahl</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>MIAO, WANG</creator><creator>GENG, ZHI</creator><creator>TCHETGEN TCHETGEN, ERIC J.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181201</creationdate><title>Identifying causal effects with proxy variables of an unmeasured confounder</title><author>MIAO, WANG ; GENG, ZHI ; TCHETGEN TCHETGEN, ERIC J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-494c016fbf89b8e85b0f17a133c82c09b1fdeafd5a136401523c10d28cd591063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Error analysis</topic><topic>Independent variables</topic><topic>Miscellanea</topic><topic>Null hypothesis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MIAO, WANG</creatorcontrib><creatorcontrib>GENG, ZHI</creatorcontrib><creatorcontrib>TCHETGEN TCHETGEN, ERIC J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MIAO, WANG</au><au>GENG, ZHI</au><au>TCHETGEN TCHETGEN, ERIC J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying causal effects with proxy variables of an unmeasured confounder</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>105</volume><issue>4</issue><spage>987</spage><epage>993</epage><pages>987-993</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>We consider a causal effect that is confounded by an unobserved variable, but for which observed proxy variables of the confounder are available. We show that with at least two independent proxy variables satisfying a certain rank condition, the causal effect can be nonparametrically identified, even if the measurement error mechanism, i.e., the conditional distribution of the proxies given the confounder, may not be identified. Our result generalizes the identification strategy of Kuroki &amp; Pearl (2014), which rests on identification of the measurement error mechanism. When only one proxy for the confounder is available, or when the required rank condition is not met, we develop a strategy for testing the null hypothesis of no causal effect.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33343006</pmid><doi>10.1093/biomet/asy038</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2018-12, Vol.105 (4), p.987-993
issn 0006-3444
1464-3510
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7746017
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); JSTOR Mathematics & Statistics
subjects Error analysis
Independent variables
Miscellanea
Null hypothesis
Variables
title Identifying causal effects with proxy variables of an unmeasured confounder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20causal%20effects%20with%20proxy%20variables%20of%20an%20unmeasured%20confounder&rft.jtitle=Biometrika&rft.au=MIAO,%20WANG&rft.date=2018-12-01&rft.volume=105&rft.issue=4&rft.spage=987&rft.epage=993&rft.pages=987-993&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asy038&rft_dat=%3Cjstor_pubme%3E48546362%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306238906&rft_id=info:pmid/33343006&rft_jstor_id=48546362&rft_oup_id=10.1093/biomet/asy038&rfr_iscdi=true