The genetic structure of SARS-CoV-2 does not rule out a laboratory origin: SARS-COV-2 chimeric structure and furin cleavage site might be the result of genetic manipulation
Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2's origin is still controversial. Genomic analyses show SARS-CoV-2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric v...
Gespeichert in:
Veröffentlicht in: | BioEssays 2021-03, Vol.43 (3), p.e2000240 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Severe acute respiratory syndrome-coronavirus (SARS-CoV)-2's origin is still controversial. Genomic analyses show SARS-CoV-2 likely to be chimeric, most of its sequence closest to bat CoV RaTG13, whereas its receptor binding domain (RBD) is almost identical to that of a pangolin CoV. Chimeric viruses can arise via natural recombination or human intervention. The furin cleavage site in the spike protein of SARS-CoV-2 confers to the virus the ability to cross species and tissue barriers, but was previously unseen in other SARS-like CoVs. Might genetic manipulations have been performed in order to evaluate pangolins as possible intermediate hosts for bat-derived CoVs that were originally unable to bind to human receptors? Both cleavage site and specific RBD could result from site-directed mutagenesis, a procedure that does not leave a trace. Considering the devastating impact of SARS-CoV-2 and importance of preventing future pandemics, researchers have a responsibility to carry out a thorough analysis of all possible SARS-CoV-2 origins. |
---|---|
ISSN: | 0265-9247 1521-1878 |
DOI: | 10.1002/bies.202000240 |