Efficacy of the novel tubulin polymerization inhibitor PTC‐028 for myelodysplastic syndrome
Monomer tubulin polymerize into microtubules, which are highly dynamic and play a critical role in mitosis. Therefore, microtubule dynamics are an important target for anticancer drugs. The inhibition of tubulin polymerization or depolymerization was previously targeted and exhibited efficacy agains...
Gespeichert in:
Veröffentlicht in: | Cancer science 2020-12, Vol.111 (12), p.4336-4347 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4347 |
---|---|
container_issue | 12 |
container_start_page | 4336 |
container_title | Cancer science |
container_volume | 111 |
creator | Zhong, Cheng Kayamori, Kensuke Koide, Shuhei Shinoda, Daisuke Oshima, Motohiko Nakajima‐Takagi, Yaeko Nagai, Yurie Mimura, Naoya Sakaida, Emiko Yamazaki, Satoshi Iwano, Satoshi Miyawaki, Atsushi Ito, Ryoji Tohyama, Kaoru Yamaguchi, Kiyoshi Furukawa, Yoichi Lennox, William Sheedy, Josephine Weetall, Marla Iwama, Atsushi |
description | Monomer tubulin polymerize into microtubules, which are highly dynamic and play a critical role in mitosis. Therefore, microtubule dynamics are an important target for anticancer drugs. The inhibition of tubulin polymerization or depolymerization was previously targeted and exhibited efficacy against solid tumors. The novel small molecule PTC596 directly binds tubulin, inhibits microtubule polymerization, downregulates MCL‐1, and induces p53‐independent apoptosis in acute myeloid leukemia cells. We herein investigated the efficacy of PTC‐028, a structural analog of PTC596, for myelodysplastic syndrome (MDS). PTC‐028 suppressed growth and induced apoptosis in MDS cell lines. The efficacy of PTC028 in primary MDS samples was confirmed using cell proliferation assays. PTC‐028 synergized with hypomethylating agents, such as decitabine and azacitidine, to inhibit growth and induce apoptosis in MDS cells. Mechanistically, a treatment with PTC‐028 induced G2/M arrest followed by apoptotic cell death. We also assessed the efficacy of PTC‐028 in a xenograft mouse model of MDS using the MDS cell line, MDS‐L, and the AkaBLI bioluminescence imaging system, which is composed of AkaLumine‐HCl and Akaluc. PTC‐028 prolonged the survival of mice in xenograft models. The present results suggest a chemotherapeutic strategy for MDS through the disruption of microtubule dynamics in combination with DNA hypomethylating agents.
PTC‐028, a novel microtubule polymerization inhibitor, suppresses the growth of MDS cells. PTC‐028 synergizes with DNA hypomethylating agents to inhibit the growth of MDS cells. PTC‐028 prolongs the survival of mice in a xenograft MDS model. |
doi_str_mv | 10.1111/cas.14684 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7734154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710750727</galeid><sourcerecordid>A710750727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6284-4f7485907a4541b53d112aaecfa0b8f75dae9515435d6b1c6895d1b7c548ee473</originalsourceid><addsrcrecordid>eNp9kt1uFCEUx4nR2Lp64QsYEq-8mC0MX8ONyWZTP5ImNbFeGsIw0KWZgRVmasarPkKf0SeR7bbVJipccIDf-Z_D4QDwEqMlLuPI6LzElDf0ETjEhMpKIMQf39iikojUB-BZzhcIEU4lfQoOCEFECCIOwddj57zRZobRwXFjYYiXtofj1E69D3Ab-3mwyf_Qo48B-rDxrR9jgp_O1j-vrlHdQFd2w2z72M152-s8egPzHLoUB_scPHG6z_bF7boAX94dn60_VCen7z-uVyeV4XVDK-oEbZhEQlNGcctIh3GttTVOo7ZxgnXaSoYZJazjLTa8kazDrTCMNtZSQRbg7V53O7WD7YwNY9K92iY_6DSrqL16eBP8Rp3HS1WKQHe6C_D6ViDFb5PNo7qIUwolZ1UzVkvBueD_pSiXXCIq2G_qXPdW-eBiCWkGn41aCYwEQ6Lepbz8C1VmZwdvYrDOl_MHDm_2DibFnJN198_DSO3aQJU2UDdtUNhXf9bjnrz79wIc7YHvJcr8byW1Xn3eS_4CjMy79Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469690475</pqid></control><display><type>article</type><title>Efficacy of the novel tubulin polymerization inhibitor PTC‐028 for myelodysplastic syndrome</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Zhong, Cheng ; Kayamori, Kensuke ; Koide, Shuhei ; Shinoda, Daisuke ; Oshima, Motohiko ; Nakajima‐Takagi, Yaeko ; Nagai, Yurie ; Mimura, Naoya ; Sakaida, Emiko ; Yamazaki, Satoshi ; Iwano, Satoshi ; Miyawaki, Atsushi ; Ito, Ryoji ; Tohyama, Kaoru ; Yamaguchi, Kiyoshi ; Furukawa, Yoichi ; Lennox, William ; Sheedy, Josephine ; Weetall, Marla ; Iwama, Atsushi</creator><creatorcontrib>Zhong, Cheng ; Kayamori, Kensuke ; Koide, Shuhei ; Shinoda, Daisuke ; Oshima, Motohiko ; Nakajima‐Takagi, Yaeko ; Nagai, Yurie ; Mimura, Naoya ; Sakaida, Emiko ; Yamazaki, Satoshi ; Iwano, Satoshi ; Miyawaki, Atsushi ; Ito, Ryoji ; Tohyama, Kaoru ; Yamaguchi, Kiyoshi ; Furukawa, Yoichi ; Lennox, William ; Sheedy, Josephine ; Weetall, Marla ; Iwama, Atsushi</creatorcontrib><description>Monomer tubulin polymerize into microtubules, which are highly dynamic and play a critical role in mitosis. Therefore, microtubule dynamics are an important target for anticancer drugs. The inhibition of tubulin polymerization or depolymerization was previously targeted and exhibited efficacy against solid tumors. The novel small molecule PTC596 directly binds tubulin, inhibits microtubule polymerization, downregulates MCL‐1, and induces p53‐independent apoptosis in acute myeloid leukemia cells. We herein investigated the efficacy of PTC‐028, a structural analog of PTC596, for myelodysplastic syndrome (MDS). PTC‐028 suppressed growth and induced apoptosis in MDS cell lines. The efficacy of PTC028 in primary MDS samples was confirmed using cell proliferation assays. PTC‐028 synergized with hypomethylating agents, such as decitabine and azacitidine, to inhibit growth and induce apoptosis in MDS cells. Mechanistically, a treatment with PTC‐028 induced G2/M arrest followed by apoptotic cell death. We also assessed the efficacy of PTC‐028 in a xenograft mouse model of MDS using the MDS cell line, MDS‐L, and the AkaBLI bioluminescence imaging system, which is composed of AkaLumine‐HCl and Akaluc. PTC‐028 prolonged the survival of mice in xenograft models. The present results suggest a chemotherapeutic strategy for MDS through the disruption of microtubule dynamics in combination with DNA hypomethylating agents.
PTC‐028, a novel microtubule polymerization inhibitor, suppresses the growth of MDS cells. PTC‐028 synergizes with DNA hypomethylating agents to inhibit the growth of MDS cells. PTC‐028 prolongs the survival of mice in a xenograft MDS model.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.14684</identifier><identifier>PMID: 33037737</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>5-aza-2'-deoxycytidine ; Acute myeloid leukemia ; Animal models ; Animals ; Antimetabolites, Antineoplastic - pharmacology ; Antineoplastic drugs ; Antitumor agents ; Apoptosis ; Apoptosis - drug effects ; Apoptosis - genetics ; Benzimidazoles - pharmacology ; Benzimidazoles - therapeutic use ; Binding sites ; Bioluminescence ; Blood ; Cancer ; Care and treatment ; Cell cycle ; Cell death ; Cell division ; Cell Line, Tumor ; Cell proliferation ; Cell Proliferation - drug effects ; chemotherapy ; Cytotoxicity ; Decitabine - pharmacology ; Deoxyribonucleic acid ; Depolymerization ; DNA ; DNA hypomethylating agents ; DNA methylation ; FDA approval ; G2 Phase - drug effects ; Gene expression ; Genomes ; Hematology ; Heterografts ; HL-60 Cells ; Humans ; Laboratory animals ; Leukemia ; Mice ; Microtubules ; Mitosis ; Myelodysplastic syndrome ; Myelodysplastic Syndromes - drug therapy ; Myelodysplastic Syndromes - genetics ; Myeloid leukemia ; Original ; Ovarian cancer ; p53 Protein ; Paclitaxel - pharmacology ; Polymerization ; Pyrazines - pharmacology ; Pyrazines - therapeutic use ; Sequence Analysis, RNA - methods ; Software ; Solid tumors ; Tubulin ; Tubulin - drug effects ; Tubulin Modulators - pharmacology ; Tubulin Modulators - therapeutic use ; Tubulin polymerization inhibitor ; Tubulins ; Tumor proteins ; Vincristine ; Vincristine - pharmacology ; Xenografts</subject><ispartof>Cancer science, 2020-12, Vol.111 (12), p.4336-4347</ispartof><rights>2020 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6284-4f7485907a4541b53d112aaecfa0b8f75dae9515435d6b1c6895d1b7c548ee473</citedby><cites>FETCH-LOGICAL-c6284-4f7485907a4541b53d112aaecfa0b8f75dae9515435d6b1c6895d1b7c548ee473</cites><orcidid>0000-0002-0812-9816 ; 0000-0003-2113-4369 ; 0000-0001-9410-8992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734154/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734154/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33037737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Cheng</creatorcontrib><creatorcontrib>Kayamori, Kensuke</creatorcontrib><creatorcontrib>Koide, Shuhei</creatorcontrib><creatorcontrib>Shinoda, Daisuke</creatorcontrib><creatorcontrib>Oshima, Motohiko</creatorcontrib><creatorcontrib>Nakajima‐Takagi, Yaeko</creatorcontrib><creatorcontrib>Nagai, Yurie</creatorcontrib><creatorcontrib>Mimura, Naoya</creatorcontrib><creatorcontrib>Sakaida, Emiko</creatorcontrib><creatorcontrib>Yamazaki, Satoshi</creatorcontrib><creatorcontrib>Iwano, Satoshi</creatorcontrib><creatorcontrib>Miyawaki, Atsushi</creatorcontrib><creatorcontrib>Ito, Ryoji</creatorcontrib><creatorcontrib>Tohyama, Kaoru</creatorcontrib><creatorcontrib>Yamaguchi, Kiyoshi</creatorcontrib><creatorcontrib>Furukawa, Yoichi</creatorcontrib><creatorcontrib>Lennox, William</creatorcontrib><creatorcontrib>Sheedy, Josephine</creatorcontrib><creatorcontrib>Weetall, Marla</creatorcontrib><creatorcontrib>Iwama, Atsushi</creatorcontrib><title>Efficacy of the novel tubulin polymerization inhibitor PTC‐028 for myelodysplastic syndrome</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Monomer tubulin polymerize into microtubules, which are highly dynamic and play a critical role in mitosis. Therefore, microtubule dynamics are an important target for anticancer drugs. The inhibition of tubulin polymerization or depolymerization was previously targeted and exhibited efficacy against solid tumors. The novel small molecule PTC596 directly binds tubulin, inhibits microtubule polymerization, downregulates MCL‐1, and induces p53‐independent apoptosis in acute myeloid leukemia cells. We herein investigated the efficacy of PTC‐028, a structural analog of PTC596, for myelodysplastic syndrome (MDS). PTC‐028 suppressed growth and induced apoptosis in MDS cell lines. The efficacy of PTC028 in primary MDS samples was confirmed using cell proliferation assays. PTC‐028 synergized with hypomethylating agents, such as decitabine and azacitidine, to inhibit growth and induce apoptosis in MDS cells. Mechanistically, a treatment with PTC‐028 induced G2/M arrest followed by apoptotic cell death. We also assessed the efficacy of PTC‐028 in a xenograft mouse model of MDS using the MDS cell line, MDS‐L, and the AkaBLI bioluminescence imaging system, which is composed of AkaLumine‐HCl and Akaluc. PTC‐028 prolonged the survival of mice in xenograft models. The present results suggest a chemotherapeutic strategy for MDS through the disruption of microtubule dynamics in combination with DNA hypomethylating agents.
PTC‐028, a novel microtubule polymerization inhibitor, suppresses the growth of MDS cells. PTC‐028 synergizes with DNA hypomethylating agents to inhibit the growth of MDS cells. PTC‐028 prolongs the survival of mice in a xenograft MDS model.</description><subject>5-aza-2'-deoxycytidine</subject><subject>Acute myeloid leukemia</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antimetabolites, Antineoplastic - pharmacology</subject><subject>Antineoplastic drugs</subject><subject>Antitumor agents</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - genetics</subject><subject>Benzimidazoles - pharmacology</subject><subject>Benzimidazoles - therapeutic use</subject><subject>Binding sites</subject><subject>Bioluminescence</subject><subject>Blood</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Cell division</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - drug effects</subject><subject>chemotherapy</subject><subject>Cytotoxicity</subject><subject>Decitabine - pharmacology</subject><subject>Deoxyribonucleic acid</subject><subject>Depolymerization</subject><subject>DNA</subject><subject>DNA hypomethylating agents</subject><subject>DNA methylation</subject><subject>FDA approval</subject><subject>G2 Phase - drug effects</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Hematology</subject><subject>Heterografts</subject><subject>HL-60 Cells</subject><subject>Humans</subject><subject>Laboratory animals</subject><subject>Leukemia</subject><subject>Mice</subject><subject>Microtubules</subject><subject>Mitosis</subject><subject>Myelodysplastic syndrome</subject><subject>Myelodysplastic Syndromes - drug therapy</subject><subject>Myelodysplastic Syndromes - genetics</subject><subject>Myeloid leukemia</subject><subject>Original</subject><subject>Ovarian cancer</subject><subject>p53 Protein</subject><subject>Paclitaxel - pharmacology</subject><subject>Polymerization</subject><subject>Pyrazines - pharmacology</subject><subject>Pyrazines - therapeutic use</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Software</subject><subject>Solid tumors</subject><subject>Tubulin</subject><subject>Tubulin - drug effects</subject><subject>Tubulin Modulators - pharmacology</subject><subject>Tubulin Modulators - therapeutic use</subject><subject>Tubulin polymerization inhibitor</subject><subject>Tubulins</subject><subject>Tumor proteins</subject><subject>Vincristine</subject><subject>Vincristine - pharmacology</subject><subject>Xenografts</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kt1uFCEUx4nR2Lp64QsYEq-8mC0MX8ONyWZTP5ImNbFeGsIw0KWZgRVmasarPkKf0SeR7bbVJipccIDf-Z_D4QDwEqMlLuPI6LzElDf0ETjEhMpKIMQf39iikojUB-BZzhcIEU4lfQoOCEFECCIOwddj57zRZobRwXFjYYiXtofj1E69D3Ab-3mwyf_Qo48B-rDxrR9jgp_O1j-vrlHdQFd2w2z72M152-s8egPzHLoUB_scPHG6z_bF7boAX94dn60_VCen7z-uVyeV4XVDK-oEbZhEQlNGcctIh3GttTVOo7ZxgnXaSoYZJazjLTa8kazDrTCMNtZSQRbg7V53O7WD7YwNY9K92iY_6DSrqL16eBP8Rp3HS1WKQHe6C_D6ViDFb5PNo7qIUwolZ1UzVkvBueD_pSiXXCIq2G_qXPdW-eBiCWkGn41aCYwEQ6Lepbz8C1VmZwdvYrDOl_MHDm_2DibFnJN198_DSO3aQJU2UDdtUNhXf9bjnrz79wIc7YHvJcr8byW1Xn3eS_4CjMy79Q</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Zhong, Cheng</creator><creator>Kayamori, Kensuke</creator><creator>Koide, Shuhei</creator><creator>Shinoda, Daisuke</creator><creator>Oshima, Motohiko</creator><creator>Nakajima‐Takagi, Yaeko</creator><creator>Nagai, Yurie</creator><creator>Mimura, Naoya</creator><creator>Sakaida, Emiko</creator><creator>Yamazaki, Satoshi</creator><creator>Iwano, Satoshi</creator><creator>Miyawaki, Atsushi</creator><creator>Ito, Ryoji</creator><creator>Tohyama, Kaoru</creator><creator>Yamaguchi, Kiyoshi</creator><creator>Furukawa, Yoichi</creator><creator>Lennox, William</creator><creator>Sheedy, Josephine</creator><creator>Weetall, Marla</creator><creator>Iwama, Atsushi</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0812-9816</orcidid><orcidid>https://orcid.org/0000-0003-2113-4369</orcidid><orcidid>https://orcid.org/0000-0001-9410-8992</orcidid></search><sort><creationdate>202012</creationdate><title>Efficacy of the novel tubulin polymerization inhibitor PTC‐028 for myelodysplastic syndrome</title><author>Zhong, Cheng ; Kayamori, Kensuke ; Koide, Shuhei ; Shinoda, Daisuke ; Oshima, Motohiko ; Nakajima‐Takagi, Yaeko ; Nagai, Yurie ; Mimura, Naoya ; Sakaida, Emiko ; Yamazaki, Satoshi ; Iwano, Satoshi ; Miyawaki, Atsushi ; Ito, Ryoji ; Tohyama, Kaoru ; Yamaguchi, Kiyoshi ; Furukawa, Yoichi ; Lennox, William ; Sheedy, Josephine ; Weetall, Marla ; Iwama, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6284-4f7485907a4541b53d112aaecfa0b8f75dae9515435d6b1c6895d1b7c548ee473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5-aza-2'-deoxycytidine</topic><topic>Acute myeloid leukemia</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antimetabolites, Antineoplastic - pharmacology</topic><topic>Antineoplastic drugs</topic><topic>Antitumor agents</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - genetics</topic><topic>Benzimidazoles - pharmacology</topic><topic>Benzimidazoles - therapeutic use</topic><topic>Binding sites</topic><topic>Bioluminescence</topic><topic>Blood</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Cell division</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - drug effects</topic><topic>chemotherapy</topic><topic>Cytotoxicity</topic><topic>Decitabine - pharmacology</topic><topic>Deoxyribonucleic acid</topic><topic>Depolymerization</topic><topic>DNA</topic><topic>DNA hypomethylating agents</topic><topic>DNA methylation</topic><topic>FDA approval</topic><topic>G2 Phase - drug effects</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Hematology</topic><topic>Heterografts</topic><topic>HL-60 Cells</topic><topic>Humans</topic><topic>Laboratory animals</topic><topic>Leukemia</topic><topic>Mice</topic><topic>Microtubules</topic><topic>Mitosis</topic><topic>Myelodysplastic syndrome</topic><topic>Myelodysplastic Syndromes - drug therapy</topic><topic>Myelodysplastic Syndromes - genetics</topic><topic>Myeloid leukemia</topic><topic>Original</topic><topic>Ovarian cancer</topic><topic>p53 Protein</topic><topic>Paclitaxel - pharmacology</topic><topic>Polymerization</topic><topic>Pyrazines - pharmacology</topic><topic>Pyrazines - therapeutic use</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Software</topic><topic>Solid tumors</topic><topic>Tubulin</topic><topic>Tubulin - drug effects</topic><topic>Tubulin Modulators - pharmacology</topic><topic>Tubulin Modulators - therapeutic use</topic><topic>Tubulin polymerization inhibitor</topic><topic>Tubulins</topic><topic>Tumor proteins</topic><topic>Vincristine</topic><topic>Vincristine - pharmacology</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Cheng</creatorcontrib><creatorcontrib>Kayamori, Kensuke</creatorcontrib><creatorcontrib>Koide, Shuhei</creatorcontrib><creatorcontrib>Shinoda, Daisuke</creatorcontrib><creatorcontrib>Oshima, Motohiko</creatorcontrib><creatorcontrib>Nakajima‐Takagi, Yaeko</creatorcontrib><creatorcontrib>Nagai, Yurie</creatorcontrib><creatorcontrib>Mimura, Naoya</creatorcontrib><creatorcontrib>Sakaida, Emiko</creatorcontrib><creatorcontrib>Yamazaki, Satoshi</creatorcontrib><creatorcontrib>Iwano, Satoshi</creatorcontrib><creatorcontrib>Miyawaki, Atsushi</creatorcontrib><creatorcontrib>Ito, Ryoji</creatorcontrib><creatorcontrib>Tohyama, Kaoru</creatorcontrib><creatorcontrib>Yamaguchi, Kiyoshi</creatorcontrib><creatorcontrib>Furukawa, Yoichi</creatorcontrib><creatorcontrib>Lennox, William</creatorcontrib><creatorcontrib>Sheedy, Josephine</creatorcontrib><creatorcontrib>Weetall, Marla</creatorcontrib><creatorcontrib>Iwama, Atsushi</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Cheng</au><au>Kayamori, Kensuke</au><au>Koide, Shuhei</au><au>Shinoda, Daisuke</au><au>Oshima, Motohiko</au><au>Nakajima‐Takagi, Yaeko</au><au>Nagai, Yurie</au><au>Mimura, Naoya</au><au>Sakaida, Emiko</au><au>Yamazaki, Satoshi</au><au>Iwano, Satoshi</au><au>Miyawaki, Atsushi</au><au>Ito, Ryoji</au><au>Tohyama, Kaoru</au><au>Yamaguchi, Kiyoshi</au><au>Furukawa, Yoichi</au><au>Lennox, William</au><au>Sheedy, Josephine</au><au>Weetall, Marla</au><au>Iwama, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficacy of the novel tubulin polymerization inhibitor PTC‐028 for myelodysplastic syndrome</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2020-12</date><risdate>2020</risdate><volume>111</volume><issue>12</issue><spage>4336</spage><epage>4347</epage><pages>4336-4347</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>Monomer tubulin polymerize into microtubules, which are highly dynamic and play a critical role in mitosis. Therefore, microtubule dynamics are an important target for anticancer drugs. The inhibition of tubulin polymerization or depolymerization was previously targeted and exhibited efficacy against solid tumors. The novel small molecule PTC596 directly binds tubulin, inhibits microtubule polymerization, downregulates MCL‐1, and induces p53‐independent apoptosis in acute myeloid leukemia cells. We herein investigated the efficacy of PTC‐028, a structural analog of PTC596, for myelodysplastic syndrome (MDS). PTC‐028 suppressed growth and induced apoptosis in MDS cell lines. The efficacy of PTC028 in primary MDS samples was confirmed using cell proliferation assays. PTC‐028 synergized with hypomethylating agents, such as decitabine and azacitidine, to inhibit growth and induce apoptosis in MDS cells. Mechanistically, a treatment with PTC‐028 induced G2/M arrest followed by apoptotic cell death. We also assessed the efficacy of PTC‐028 in a xenograft mouse model of MDS using the MDS cell line, MDS‐L, and the AkaBLI bioluminescence imaging system, which is composed of AkaLumine‐HCl and Akaluc. PTC‐028 prolonged the survival of mice in xenograft models. The present results suggest a chemotherapeutic strategy for MDS through the disruption of microtubule dynamics in combination with DNA hypomethylating agents.
PTC‐028, a novel microtubule polymerization inhibitor, suppresses the growth of MDS cells. PTC‐028 synergizes with DNA hypomethylating agents to inhibit the growth of MDS cells. PTC‐028 prolongs the survival of mice in a xenograft MDS model.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>33037737</pmid><doi>10.1111/cas.14684</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0812-9816</orcidid><orcidid>https://orcid.org/0000-0003-2113-4369</orcidid><orcidid>https://orcid.org/0000-0001-9410-8992</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1347-9032 |
ispartof | Cancer science, 2020-12, Vol.111 (12), p.4336-4347 |
issn | 1347-9032 1349-7006 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7734154 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; PubMed Central |
subjects | 5-aza-2'-deoxycytidine Acute myeloid leukemia Animal models Animals Antimetabolites, Antineoplastic - pharmacology Antineoplastic drugs Antitumor agents Apoptosis Apoptosis - drug effects Apoptosis - genetics Benzimidazoles - pharmacology Benzimidazoles - therapeutic use Binding sites Bioluminescence Blood Cancer Care and treatment Cell cycle Cell death Cell division Cell Line, Tumor Cell proliferation Cell Proliferation - drug effects chemotherapy Cytotoxicity Decitabine - pharmacology Deoxyribonucleic acid Depolymerization DNA DNA hypomethylating agents DNA methylation FDA approval G2 Phase - drug effects Gene expression Genomes Hematology Heterografts HL-60 Cells Humans Laboratory animals Leukemia Mice Microtubules Mitosis Myelodysplastic syndrome Myelodysplastic Syndromes - drug therapy Myelodysplastic Syndromes - genetics Myeloid leukemia Original Ovarian cancer p53 Protein Paclitaxel - pharmacology Polymerization Pyrazines - pharmacology Pyrazines - therapeutic use Sequence Analysis, RNA - methods Software Solid tumors Tubulin Tubulin - drug effects Tubulin Modulators - pharmacology Tubulin Modulators - therapeutic use Tubulin polymerization inhibitor Tubulins Tumor proteins Vincristine Vincristine - pharmacology Xenografts |
title | Efficacy of the novel tubulin polymerization inhibitor PTC‐028 for myelodysplastic syndrome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficacy%20of%20the%20novel%20tubulin%20polymerization%20inhibitor%20PTC%E2%80%90028%20for%20myelodysplastic%20syndrome&rft.jtitle=Cancer%20science&rft.au=Zhong,%20Cheng&rft.date=2020-12&rft.volume=111&rft.issue=12&rft.spage=4336&rft.epage=4347&rft.pages=4336-4347&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.14684&rft_dat=%3Cgale_pubme%3EA710750727%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469690475&rft_id=info:pmid/33037737&rft_galeid=A710750727&rfr_iscdi=true |