Infrared Excitation Induces Heating and Calcium Microdomain Hyperactivity in Cortical Astrocytes

Unraveling how neural networks process and represent sensory information and how these cellular signals instruct behavioral output is a main goal in neuroscience. Two-photon activation of optogenetic actuators and calcium (Ca2+) imaging with genetically encoded indicators allow, respectively, the al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2020-12, Vol.119 (11), p.2153-2165
Hauptverfasser: Schmidt, Elke, Oheim, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2165
container_issue 11
container_start_page 2153
container_title Biophysical journal
container_volume 119
creator Schmidt, Elke
Oheim, Martin
description Unraveling how neural networks process and represent sensory information and how these cellular signals instruct behavioral output is a main goal in neuroscience. Two-photon activation of optogenetic actuators and calcium (Ca2+) imaging with genetically encoded indicators allow, respectively, the all-optical stimulation and readout of activity from genetically identified cell populations. However, these techniques locally expose the brain to high near-infrared light doses, raising the concern of light-induced adverse effects on the biology under study. Combining 2P imaging of Ca2+ transients in GCaMP6f-expressing cortical astrocytes and unbiased machine-based event detection, we demonstrate the subtle build-up of aberrant microdomain Ca2+ transients in the fine astroglial processes that depended on the average rather than peak laser power. Illumination conditions routinely being used in biological 2P microscopy (920-nm excitation, ∼100-fs, and ∼10 mW average power) increased the frequency of microdomain Ca2+ events but left their amplitude, area, and duration largely unchanged. Ca2+ transients in the otherwise silent soma were secondary to this peripheral hyperactivity that occurred without overt morphological damage. Continuous-wave (nonpulsed) 920-nm illumination at the same average power was as damaging as femtosecond pulses, unraveling the dominance of a heating-mediated damage mechanism. In an astrocyte-specific inositol 3-phosphate receptor type-2 knockout mouse, near-infrared light-induced Ca2+ microdomains persisted in the small processes, underpinning their resemblance to physiological inositol 3-phosphate receptor type-2-independent Ca2+ signals, whereas somatic hyperactivity was abolished. We conclude that, contrary to what has generally been believed in the field, shorter pulses and lower average power can help to alleviate damage and allow for longer recording windows at 920 nm.
doi_str_mv 10.1016/j.bpj.2020.10.027
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7732816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349520308493</els_id><sourcerecordid>2456859723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-8764581c2cff21f81e46ead3f55d47f1e534d162ef5a20da1cc85860881186d63</originalsourceid><addsrcrecordid>eNp9UU1vEzEQtRCIhsIP4IL2CIcN_l5XSEhRVEikIC5wNq492zratYPtjZp_j1cpFXDgNJo3773RzEPoNcFLgol8v1_eHPZLiuncLzHtnqAFEZy2GCv5FC0wxrJl_EpcoBc57zEmVGDyHF0wRhgmRC3Qj23ok0ngmut764spPoZmG9xkITcbqH24bUxwzdoM1k9j88XbFF0cjQ_N5nSAZGzxR19OTQXWMRVvzdCscknRngrkl-hZb4YMrx7qJfr-6frbetPuvn7erle71nIlSqs6yYUiltq-p6RXBLgE41gvhONdT0Aw7oik0AtDsTPEWiWUxErVM6ST7BJ9PPseppsRnIVQkhn0IfnRpJOOxuu_J8Hf6dt41F3HqCKzwbuzwd0_ss1qp2cMMy4Yk92RVO7bh2Up_pwgFz36bGEYTIA4ZU25kEpcdZRVKjlT69tyTtA_ehOs5xT1XtcU9ZziDNUUq-bNn7c8Kn7HVgkfzgSoHz16SDpbD8GC8wls0S76_9j_AvA9rf0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456859723</pqid></control><display><type>article</type><title>Infrared Excitation Induces Heating and Calcium Microdomain Hyperactivity in Cortical Astrocytes</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Schmidt, Elke ; Oheim, Martin</creator><creatorcontrib>Schmidt, Elke ; Oheim, Martin</creatorcontrib><description>Unraveling how neural networks process and represent sensory information and how these cellular signals instruct behavioral output is a main goal in neuroscience. Two-photon activation of optogenetic actuators and calcium (Ca2+) imaging with genetically encoded indicators allow, respectively, the all-optical stimulation and readout of activity from genetically identified cell populations. However, these techniques locally expose the brain to high near-infrared light doses, raising the concern of light-induced adverse effects on the biology under study. Combining 2P imaging of Ca2+ transients in GCaMP6f-expressing cortical astrocytes and unbiased machine-based event detection, we demonstrate the subtle build-up of aberrant microdomain Ca2+ transients in the fine astroglial processes that depended on the average rather than peak laser power. Illumination conditions routinely being used in biological 2P microscopy (920-nm excitation, ∼100-fs, and ∼10 mW average power) increased the frequency of microdomain Ca2+ events but left their amplitude, area, and duration largely unchanged. Ca2+ transients in the otherwise silent soma were secondary to this peripheral hyperactivity that occurred without overt morphological damage. Continuous-wave (nonpulsed) 920-nm illumination at the same average power was as damaging as femtosecond pulses, unraveling the dominance of a heating-mediated damage mechanism. In an astrocyte-specific inositol 3-phosphate receptor type-2 knockout mouse, near-infrared light-induced Ca2+ microdomains persisted in the small processes, underpinning their resemblance to physiological inositol 3-phosphate receptor type-2-independent Ca2+ signals, whereas somatic hyperactivity was abolished. We conclude that, contrary to what has generally been believed in the field, shorter pulses and lower average power can help to alleviate damage and allow for longer recording windows at 920 nm.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2020.10.027</identifier><identifier>PMID: 33130118</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Astrocytes - metabolism ; Calcium - metabolism ; Calcium Signaling ; Heating ; Life Sciences ; Mice ; Neurons - metabolism ; Quantitative Methods</subject><ispartof>Biophysical journal, 2020-12, Vol.119 (11), p.2153-2165</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-8764581c2cff21f81e46ead3f55d47f1e534d162ef5a20da1cc85860881186d63</citedby><cites>FETCH-LOGICAL-c485t-8764581c2cff21f81e46ead3f55d47f1e534d162ef5a20da1cc85860881186d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732816/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2020.10.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,3537,27905,27906,45976,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33130118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03453367$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Elke</creatorcontrib><creatorcontrib>Oheim, Martin</creatorcontrib><title>Infrared Excitation Induces Heating and Calcium Microdomain Hyperactivity in Cortical Astrocytes</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Unraveling how neural networks process and represent sensory information and how these cellular signals instruct behavioral output is a main goal in neuroscience. Two-photon activation of optogenetic actuators and calcium (Ca2+) imaging with genetically encoded indicators allow, respectively, the all-optical stimulation and readout of activity from genetically identified cell populations. However, these techniques locally expose the brain to high near-infrared light doses, raising the concern of light-induced adverse effects on the biology under study. Combining 2P imaging of Ca2+ transients in GCaMP6f-expressing cortical astrocytes and unbiased machine-based event detection, we demonstrate the subtle build-up of aberrant microdomain Ca2+ transients in the fine astroglial processes that depended on the average rather than peak laser power. Illumination conditions routinely being used in biological 2P microscopy (920-nm excitation, ∼100-fs, and ∼10 mW average power) increased the frequency of microdomain Ca2+ events but left their amplitude, area, and duration largely unchanged. Ca2+ transients in the otherwise silent soma were secondary to this peripheral hyperactivity that occurred without overt morphological damage. Continuous-wave (nonpulsed) 920-nm illumination at the same average power was as damaging as femtosecond pulses, unraveling the dominance of a heating-mediated damage mechanism. In an astrocyte-specific inositol 3-phosphate receptor type-2 knockout mouse, near-infrared light-induced Ca2+ microdomains persisted in the small processes, underpinning their resemblance to physiological inositol 3-phosphate receptor type-2-independent Ca2+ signals, whereas somatic hyperactivity was abolished. We conclude that, contrary to what has generally been believed in the field, shorter pulses and lower average power can help to alleviate damage and allow for longer recording windows at 920 nm.</description><subject>Animals</subject><subject>Astrocytes - metabolism</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling</subject><subject>Heating</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Neurons - metabolism</subject><subject>Quantitative Methods</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1vEzEQtRCIhsIP4IL2CIcN_l5XSEhRVEikIC5wNq492zratYPtjZp_j1cpFXDgNJo3773RzEPoNcFLgol8v1_eHPZLiuncLzHtnqAFEZy2GCv5FC0wxrJl_EpcoBc57zEmVGDyHF0wRhgmRC3Qj23ok0ngmut764spPoZmG9xkITcbqH24bUxwzdoM1k9j88XbFF0cjQ_N5nSAZGzxR19OTQXWMRVvzdCscknRngrkl-hZb4YMrx7qJfr-6frbetPuvn7erle71nIlSqs6yYUiltq-p6RXBLgE41gvhONdT0Aw7oik0AtDsTPEWiWUxErVM6ST7BJ9PPseppsRnIVQkhn0IfnRpJOOxuu_J8Hf6dt41F3HqCKzwbuzwd0_ss1qp2cMMy4Yk92RVO7bh2Up_pwgFz36bGEYTIA4ZU25kEpcdZRVKjlT69tyTtA_ehOs5xT1XtcU9ZziDNUUq-bNn7c8Kn7HVgkfzgSoHz16SDpbD8GC8wls0S76_9j_AvA9rf0</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Schmidt, Elke</creator><creator>Oheim, Martin</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20201201</creationdate><title>Infrared Excitation Induces Heating and Calcium Microdomain Hyperactivity in Cortical Astrocytes</title><author>Schmidt, Elke ; Oheim, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-8764581c2cff21f81e46ead3f55d47f1e534d162ef5a20da1cc85860881186d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Astrocytes - metabolism</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling</topic><topic>Heating</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Neurons - metabolism</topic><topic>Quantitative Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Elke</creatorcontrib><creatorcontrib>Oheim, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Elke</au><au>Oheim, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared Excitation Induces Heating and Calcium Microdomain Hyperactivity in Cortical Astrocytes</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>119</volume><issue>11</issue><spage>2153</spage><epage>2165</epage><pages>2153-2165</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Unraveling how neural networks process and represent sensory information and how these cellular signals instruct behavioral output is a main goal in neuroscience. Two-photon activation of optogenetic actuators and calcium (Ca2+) imaging with genetically encoded indicators allow, respectively, the all-optical stimulation and readout of activity from genetically identified cell populations. However, these techniques locally expose the brain to high near-infrared light doses, raising the concern of light-induced adverse effects on the biology under study. Combining 2P imaging of Ca2+ transients in GCaMP6f-expressing cortical astrocytes and unbiased machine-based event detection, we demonstrate the subtle build-up of aberrant microdomain Ca2+ transients in the fine astroglial processes that depended on the average rather than peak laser power. Illumination conditions routinely being used in biological 2P microscopy (920-nm excitation, ∼100-fs, and ∼10 mW average power) increased the frequency of microdomain Ca2+ events but left their amplitude, area, and duration largely unchanged. Ca2+ transients in the otherwise silent soma were secondary to this peripheral hyperactivity that occurred without overt morphological damage. Continuous-wave (nonpulsed) 920-nm illumination at the same average power was as damaging as femtosecond pulses, unraveling the dominance of a heating-mediated damage mechanism. In an astrocyte-specific inositol 3-phosphate receptor type-2 knockout mouse, near-infrared light-induced Ca2+ microdomains persisted in the small processes, underpinning their resemblance to physiological inositol 3-phosphate receptor type-2-independent Ca2+ signals, whereas somatic hyperactivity was abolished. We conclude that, contrary to what has generally been believed in the field, shorter pulses and lower average power can help to alleviate damage and allow for longer recording windows at 920 nm.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33130118</pmid><doi>10.1016/j.bpj.2020.10.027</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2020-12, Vol.119 (11), p.2153-2165
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7732816
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Astrocytes - metabolism
Calcium - metabolism
Calcium Signaling
Heating
Life Sciences
Mice
Neurons - metabolism
Quantitative Methods
title Infrared Excitation Induces Heating and Calcium Microdomain Hyperactivity in Cortical Astrocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20Excitation%20Induces%20Heating%20and%20Calcium%20Microdomain%20Hyperactivity%20in%20Cortical%20Astrocytes&rft.jtitle=Biophysical%20journal&rft.au=Schmidt,%20Elke&rft.date=2020-12-01&rft.volume=119&rft.issue=11&rft.spage=2153&rft.epage=2165&rft.pages=2153-2165&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2020.10.027&rft_dat=%3Cproquest_pubme%3E2456859723%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456859723&rft_id=info:pmid/33130118&rft_els_id=S0006349520308493&rfr_iscdi=true