Edge Strand Dissociation and Conformational Changes in Transthyretin under Amyloidogenic Conditions
During amyloidogenesis, proteins undergo conformational changes that allow them to aggregate and assemble into insoluble, fibrillar structures. Soluble oligomers that form during this process typically contain 2–24 monomeric subunits and are cytotoxic. Before the formation of these soluble oligomers...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2020-11, Vol.119 (10), p.1995-2009 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2009 |
---|---|
container_issue | 10 |
container_start_page | 1995 |
container_title | Biophysical journal |
container_volume | 119 |
creator | Childers, Matthew C. Daggett, Valerie |
description | During amyloidogenesis, proteins undergo conformational changes that allow them to aggregate and assemble into insoluble, fibrillar structures. Soluble oligomers that form during this process typically contain 2–24 monomeric subunits and are cytotoxic. Before the formation of these soluble oligomers, monomeric species first adopt aggregation-competent conformations. Knowledge of the structures of these intermediate states is invaluable to the development of molecular strategies to arrest pathological amyloid aggregation. However, the highly dynamic and interconverting nature of amyloidogenic species limits biophysical characterization of their structures during amyloidogenesis. Here, we use molecular dynamics simulations to probe conformations sampled by monomeric transthyretin under amyloidogenic conditions. We show that certain β-strands in transthyretin tend to unfold and sample nonnative conformations and that the edge strands in one β-sheet (the DAGH sheet) are particularly susceptible to conformational changes in the monomeric state. We also find that changes in the tertiary structure of transthyretin can be associated with disruptions to the secondary structure. We evaluated the conformations produced by molecular dynamics by calculating how well molecular-dynamics-derived structures reproduced NMR-derived interatomic distances. Finally, we leverage our computational results to produce experimentally testable hypotheses that may aid experimental explorations of pathological conformations of transthyretin. |
doi_str_mv | 10.1016/j.bpj.2020.08.043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7732750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349520308067</els_id><sourcerecordid>2454152710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-c94207cd501bdf1c15eb0e77a11d9396af5181dfcf41278bc94028d04f46ce4a3</originalsourceid><addsrcrecordid>eNp9UcFu1DAQtRAVXQofwAVFnHpJOnacOBESUrUUqFSJA-VsOfZk16vEXmxvpf17HLZUcOlpNOP33rzxI-QdhYoCba921bDfVQwYVNBVwOsXZEUbzkqArn1JVgDQljXvm3PyOsYdAGUN0FfkvK6hp7XoV0TfmA0WP1JQzhSfbYxeW5Wsd8UyWHs3-jD_GaipWG-V22AsrCvuMyGm7TFgyt3BGQzF9XycvDV-g87qhWvsQoxvyNmopohvH-sF-fnl5n79rbz7_vV2fX1Xai66VOqeMxDaZIuDGammDQ6AQihKTV_3rRob2lEz6pFTJroh44F1BvjIW41c1Rfk00l3fxhmNBpdPmuS-2BnFY7SKyv_f3F2Kzf-QQpRM9FAFvhwEvAxWRm1Tai32juHOknGRN-DyKDLxy3B_zpgTHK2UeM0KYf-ECXjDacNE3TRoyeoDj7GgOOTFwpySVDuZE5QLglK6GROMHPe_3vEE-NvZBnw8QTA_JUPFsNiFJ1GY8Pi03j7jPxv6KWuDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454152710</pqid></control><display><type>article</type><title>Edge Strand Dissociation and Conformational Changes in Transthyretin under Amyloidogenic Conditions</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Childers, Matthew C. ; Daggett, Valerie</creator><creatorcontrib>Childers, Matthew C. ; Daggett, Valerie</creatorcontrib><description>During amyloidogenesis, proteins undergo conformational changes that allow them to aggregate and assemble into insoluble, fibrillar structures. Soluble oligomers that form during this process typically contain 2–24 monomeric subunits and are cytotoxic. Before the formation of these soluble oligomers, monomeric species first adopt aggregation-competent conformations. Knowledge of the structures of these intermediate states is invaluable to the development of molecular strategies to arrest pathological amyloid aggregation. However, the highly dynamic and interconverting nature of amyloidogenic species limits biophysical characterization of their structures during amyloidogenesis. Here, we use molecular dynamics simulations to probe conformations sampled by monomeric transthyretin under amyloidogenic conditions. We show that certain β-strands in transthyretin tend to unfold and sample nonnative conformations and that the edge strands in one β-sheet (the DAGH sheet) are particularly susceptible to conformational changes in the monomeric state. We also find that changes in the tertiary structure of transthyretin can be associated with disruptions to the secondary structure. We evaluated the conformations produced by molecular dynamics by calculating how well molecular-dynamics-derived structures reproduced NMR-derived interatomic distances. Finally, we leverage our computational results to produce experimentally testable hypotheses that may aid experimental explorations of pathological conformations of transthyretin.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2020.08.043</identifier><identifier>PMID: 33091379</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amyloid ; Prealbumin ; Protein Conformation ; Protein Conformation, beta-Strand ; Protein Structure, Secondary</subject><ispartof>Biophysical journal, 2020-11, Vol.119 (10), p.1995-2009</ispartof><rights>2020 Biophysical Society</rights><rights>Copyright © 2020 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 Biophysical Society. 2020 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-c94207cd501bdf1c15eb0e77a11d9396af5181dfcf41278bc94028d04f46ce4a3</citedby><cites>FETCH-LOGICAL-c478t-c94207cd501bdf1c15eb0e77a11d9396af5181dfcf41278bc94028d04f46ce4a3</cites><orcidid>0000-0003-2440-9612 ; 0000000324409612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732750/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2020.08.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33091379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2279907$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Childers, Matthew C.</creatorcontrib><creatorcontrib>Daggett, Valerie</creatorcontrib><title>Edge Strand Dissociation and Conformational Changes in Transthyretin under Amyloidogenic Conditions</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>During amyloidogenesis, proteins undergo conformational changes that allow them to aggregate and assemble into insoluble, fibrillar structures. Soluble oligomers that form during this process typically contain 2–24 monomeric subunits and are cytotoxic. Before the formation of these soluble oligomers, monomeric species first adopt aggregation-competent conformations. Knowledge of the structures of these intermediate states is invaluable to the development of molecular strategies to arrest pathological amyloid aggregation. However, the highly dynamic and interconverting nature of amyloidogenic species limits biophysical characterization of their structures during amyloidogenesis. Here, we use molecular dynamics simulations to probe conformations sampled by monomeric transthyretin under amyloidogenic conditions. We show that certain β-strands in transthyretin tend to unfold and sample nonnative conformations and that the edge strands in one β-sheet (the DAGH sheet) are particularly susceptible to conformational changes in the monomeric state. We also find that changes in the tertiary structure of transthyretin can be associated with disruptions to the secondary structure. We evaluated the conformations produced by molecular dynamics by calculating how well molecular-dynamics-derived structures reproduced NMR-derived interatomic distances. Finally, we leverage our computational results to produce experimentally testable hypotheses that may aid experimental explorations of pathological conformations of transthyretin.</description><subject>Amyloid</subject><subject>Prealbumin</subject><subject>Protein Conformation</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Structure, Secondary</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFu1DAQtRAVXQofwAVFnHpJOnacOBESUrUUqFSJA-VsOfZk16vEXmxvpf17HLZUcOlpNOP33rzxI-QdhYoCba921bDfVQwYVNBVwOsXZEUbzkqArn1JVgDQljXvm3PyOsYdAGUN0FfkvK6hp7XoV0TfmA0WP1JQzhSfbYxeW5Wsd8UyWHs3-jD_GaipWG-V22AsrCvuMyGm7TFgyt3BGQzF9XycvDV-g87qhWvsQoxvyNmopohvH-sF-fnl5n79rbz7_vV2fX1Xai66VOqeMxDaZIuDGammDQ6AQihKTV_3rRob2lEz6pFTJroh44F1BvjIW41c1Rfk00l3fxhmNBpdPmuS-2BnFY7SKyv_f3F2Kzf-QQpRM9FAFvhwEvAxWRm1Tai32juHOknGRN-DyKDLxy3B_zpgTHK2UeM0KYf-ECXjDacNE3TRoyeoDj7GgOOTFwpySVDuZE5QLglK6GROMHPe_3vEE-NvZBnw8QTA_JUPFsNiFJ1GY8Pi03j7jPxv6KWuDg</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Childers, Matthew C.</creator><creator>Daggett, Valerie</creator><general>Elsevier Inc</general><general>Elsevier</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2440-9612</orcidid><orcidid>https://orcid.org/0000000324409612</orcidid></search><sort><creationdate>20201117</creationdate><title>Edge Strand Dissociation and Conformational Changes in Transthyretin under Amyloidogenic Conditions</title><author>Childers, Matthew C. ; Daggett, Valerie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-c94207cd501bdf1c15eb0e77a11d9396af5181dfcf41278bc94028d04f46ce4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amyloid</topic><topic>Prealbumin</topic><topic>Protein Conformation</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Structure, Secondary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Childers, Matthew C.</creatorcontrib><creatorcontrib>Daggett, Valerie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Childers, Matthew C.</au><au>Daggett, Valerie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Strand Dissociation and Conformational Changes in Transthyretin under Amyloidogenic Conditions</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2020-11-17</date><risdate>2020</risdate><volume>119</volume><issue>10</issue><spage>1995</spage><epage>2009</epage><pages>1995-2009</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>During amyloidogenesis, proteins undergo conformational changes that allow them to aggregate and assemble into insoluble, fibrillar structures. Soluble oligomers that form during this process typically contain 2–24 monomeric subunits and are cytotoxic. Before the formation of these soluble oligomers, monomeric species first adopt aggregation-competent conformations. Knowledge of the structures of these intermediate states is invaluable to the development of molecular strategies to arrest pathological amyloid aggregation. However, the highly dynamic and interconverting nature of amyloidogenic species limits biophysical characterization of their structures during amyloidogenesis. Here, we use molecular dynamics simulations to probe conformations sampled by monomeric transthyretin under amyloidogenic conditions. We show that certain β-strands in transthyretin tend to unfold and sample nonnative conformations and that the edge strands in one β-sheet (the DAGH sheet) are particularly susceptible to conformational changes in the monomeric state. We also find that changes in the tertiary structure of transthyretin can be associated with disruptions to the secondary structure. We evaluated the conformations produced by molecular dynamics by calculating how well molecular-dynamics-derived structures reproduced NMR-derived interatomic distances. Finally, we leverage our computational results to produce experimentally testable hypotheses that may aid experimental explorations of pathological conformations of transthyretin.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33091379</pmid><doi>10.1016/j.bpj.2020.08.043</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2440-9612</orcidid><orcidid>https://orcid.org/0000000324409612</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2020-11, Vol.119 (10), p.1995-2009 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7732750 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Amyloid Prealbumin Protein Conformation Protein Conformation, beta-Strand Protein Structure, Secondary |
title | Edge Strand Dissociation and Conformational Changes in Transthyretin under Amyloidogenic Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Strand%20Dissociation%20and%20Conformational%20Changes%20in%20Transthyretin%20under%20Amyloidogenic%20Conditions&rft.jtitle=Biophysical%20journal&rft.au=Childers,%20Matthew%20C.&rft.date=2020-11-17&rft.volume=119&rft.issue=10&rft.spage=1995&rft.epage=2009&rft.pages=1995-2009&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2020.08.043&rft_dat=%3Cproquest_pubme%3E2454152710%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454152710&rft_id=info:pmid/33091379&rft_els_id=S0006349520308067&rfr_iscdi=true |