Edge Strand Dissociation and Conformational Changes in Transthyretin under Amyloidogenic Conditions

During amyloidogenesis, proteins undergo conformational changes that allow them to aggregate and assemble into insoluble, fibrillar structures. Soluble oligomers that form during this process typically contain 2–24 monomeric subunits and are cytotoxic. Before the formation of these soluble oligomers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2020-11, Vol.119 (10), p.1995-2009
Hauptverfasser: Childers, Matthew C., Daggett, Valerie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2009
container_issue 10
container_start_page 1995
container_title Biophysical journal
container_volume 119
creator Childers, Matthew C.
Daggett, Valerie
description During amyloidogenesis, proteins undergo conformational changes that allow them to aggregate and assemble into insoluble, fibrillar structures. Soluble oligomers that form during this process typically contain 2–24 monomeric subunits and are cytotoxic. Before the formation of these soluble oligomers, monomeric species first adopt aggregation-competent conformations. Knowledge of the structures of these intermediate states is invaluable to the development of molecular strategies to arrest pathological amyloid aggregation. However, the highly dynamic and interconverting nature of amyloidogenic species limits biophysical characterization of their structures during amyloidogenesis. Here, we use molecular dynamics simulations to probe conformations sampled by monomeric transthyretin under amyloidogenic conditions. We show that certain β-strands in transthyretin tend to unfold and sample nonnative conformations and that the edge strands in one β-sheet (the DAGH sheet) are particularly susceptible to conformational changes in the monomeric state. We also find that changes in the tertiary structure of transthyretin can be associated with disruptions to the secondary structure. We evaluated the conformations produced by molecular dynamics by calculating how well molecular-dynamics-derived structures reproduced NMR-derived interatomic distances. Finally, we leverage our computational results to produce experimentally testable hypotheses that may aid experimental explorations of pathological conformations of transthyretin.
doi_str_mv 10.1016/j.bpj.2020.08.043
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7732750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349520308067</els_id><sourcerecordid>2454152710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-c94207cd501bdf1c15eb0e77a11d9396af5181dfcf41278bc94028d04f46ce4a3</originalsourceid><addsrcrecordid>eNp9UcFu1DAQtRAVXQofwAVFnHpJOnacOBESUrUUqFSJA-VsOfZk16vEXmxvpf17HLZUcOlpNOP33rzxI-QdhYoCba921bDfVQwYVNBVwOsXZEUbzkqArn1JVgDQljXvm3PyOsYdAGUN0FfkvK6hp7XoV0TfmA0WP1JQzhSfbYxeW5Wsd8UyWHs3-jD_GaipWG-V22AsrCvuMyGm7TFgyt3BGQzF9XycvDV-g87qhWvsQoxvyNmopohvH-sF-fnl5n79rbz7_vV2fX1Xai66VOqeMxDaZIuDGammDQ6AQihKTV_3rRob2lEz6pFTJroh44F1BvjIW41c1Rfk00l3fxhmNBpdPmuS-2BnFY7SKyv_f3F2Kzf-QQpRM9FAFvhwEvAxWRm1Tai32juHOknGRN-DyKDLxy3B_zpgTHK2UeM0KYf-ECXjDacNE3TRoyeoDj7GgOOTFwpySVDuZE5QLglK6GROMHPe_3vEE-NvZBnw8QTA_JUPFsNiFJ1GY8Pi03j7jPxv6KWuDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454152710</pqid></control><display><type>article</type><title>Edge Strand Dissociation and Conformational Changes in Transthyretin under Amyloidogenic Conditions</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Childers, Matthew C. ; Daggett, Valerie</creator><creatorcontrib>Childers, Matthew C. ; Daggett, Valerie</creatorcontrib><description>During amyloidogenesis, proteins undergo conformational changes that allow them to aggregate and assemble into insoluble, fibrillar structures. Soluble oligomers that form during this process typically contain 2–24 monomeric subunits and are cytotoxic. Before the formation of these soluble oligomers, monomeric species first adopt aggregation-competent conformations. Knowledge of the structures of these intermediate states is invaluable to the development of molecular strategies to arrest pathological amyloid aggregation. However, the highly dynamic and interconverting nature of amyloidogenic species limits biophysical characterization of their structures during amyloidogenesis. Here, we use molecular dynamics simulations to probe conformations sampled by monomeric transthyretin under amyloidogenic conditions. We show that certain β-strands in transthyretin tend to unfold and sample nonnative conformations and that the edge strands in one β-sheet (the DAGH sheet) are particularly susceptible to conformational changes in the monomeric state. We also find that changes in the tertiary structure of transthyretin can be associated with disruptions to the secondary structure. We evaluated the conformations produced by molecular dynamics by calculating how well molecular-dynamics-derived structures reproduced NMR-derived interatomic distances. Finally, we leverage our computational results to produce experimentally testable hypotheses that may aid experimental explorations of pathological conformations of transthyretin.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2020.08.043</identifier><identifier>PMID: 33091379</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amyloid ; Prealbumin ; Protein Conformation ; Protein Conformation, beta-Strand ; Protein Structure, Secondary</subject><ispartof>Biophysical journal, 2020-11, Vol.119 (10), p.1995-2009</ispartof><rights>2020 Biophysical Society</rights><rights>Copyright © 2020 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 Biophysical Society. 2020 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-c94207cd501bdf1c15eb0e77a11d9396af5181dfcf41278bc94028d04f46ce4a3</citedby><cites>FETCH-LOGICAL-c478t-c94207cd501bdf1c15eb0e77a11d9396af5181dfcf41278bc94028d04f46ce4a3</cites><orcidid>0000-0003-2440-9612 ; 0000000324409612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732750/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2020.08.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33091379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2279907$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Childers, Matthew C.</creatorcontrib><creatorcontrib>Daggett, Valerie</creatorcontrib><title>Edge Strand Dissociation and Conformational Changes in Transthyretin under Amyloidogenic Conditions</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>During amyloidogenesis, proteins undergo conformational changes that allow them to aggregate and assemble into insoluble, fibrillar structures. Soluble oligomers that form during this process typically contain 2–24 monomeric subunits and are cytotoxic. Before the formation of these soluble oligomers, monomeric species first adopt aggregation-competent conformations. Knowledge of the structures of these intermediate states is invaluable to the development of molecular strategies to arrest pathological amyloid aggregation. However, the highly dynamic and interconverting nature of amyloidogenic species limits biophysical characterization of their structures during amyloidogenesis. Here, we use molecular dynamics simulations to probe conformations sampled by monomeric transthyretin under amyloidogenic conditions. We show that certain β-strands in transthyretin tend to unfold and sample nonnative conformations and that the edge strands in one β-sheet (the DAGH sheet) are particularly susceptible to conformational changes in the monomeric state. We also find that changes in the tertiary structure of transthyretin can be associated with disruptions to the secondary structure. We evaluated the conformations produced by molecular dynamics by calculating how well molecular-dynamics-derived structures reproduced NMR-derived interatomic distances. Finally, we leverage our computational results to produce experimentally testable hypotheses that may aid experimental explorations of pathological conformations of transthyretin.</description><subject>Amyloid</subject><subject>Prealbumin</subject><subject>Protein Conformation</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Structure, Secondary</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFu1DAQtRAVXQofwAVFnHpJOnacOBESUrUUqFSJA-VsOfZk16vEXmxvpf17HLZUcOlpNOP33rzxI-QdhYoCba921bDfVQwYVNBVwOsXZEUbzkqArn1JVgDQljXvm3PyOsYdAGUN0FfkvK6hp7XoV0TfmA0WP1JQzhSfbYxeW5Wsd8UyWHs3-jD_GaipWG-V22AsrCvuMyGm7TFgyt3BGQzF9XycvDV-g87qhWvsQoxvyNmopohvH-sF-fnl5n79rbz7_vV2fX1Xai66VOqeMxDaZIuDGammDQ6AQihKTV_3rRob2lEz6pFTJroh44F1BvjIW41c1Rfk00l3fxhmNBpdPmuS-2BnFY7SKyv_f3F2Kzf-QQpRM9FAFvhwEvAxWRm1Tai32juHOknGRN-DyKDLxy3B_zpgTHK2UeM0KYf-ECXjDacNE3TRoyeoDj7GgOOTFwpySVDuZE5QLglK6GROMHPe_3vEE-NvZBnw8QTA_JUPFsNiFJ1GY8Pi03j7jPxv6KWuDg</recordid><startdate>20201117</startdate><enddate>20201117</enddate><creator>Childers, Matthew C.</creator><creator>Daggett, Valerie</creator><general>Elsevier Inc</general><general>Elsevier</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2440-9612</orcidid><orcidid>https://orcid.org/0000000324409612</orcidid></search><sort><creationdate>20201117</creationdate><title>Edge Strand Dissociation and Conformational Changes in Transthyretin under Amyloidogenic Conditions</title><author>Childers, Matthew C. ; Daggett, Valerie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-c94207cd501bdf1c15eb0e77a11d9396af5181dfcf41278bc94028d04f46ce4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amyloid</topic><topic>Prealbumin</topic><topic>Protein Conformation</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Structure, Secondary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Childers, Matthew C.</creatorcontrib><creatorcontrib>Daggett, Valerie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Childers, Matthew C.</au><au>Daggett, Valerie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Strand Dissociation and Conformational Changes in Transthyretin under Amyloidogenic Conditions</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2020-11-17</date><risdate>2020</risdate><volume>119</volume><issue>10</issue><spage>1995</spage><epage>2009</epage><pages>1995-2009</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>During amyloidogenesis, proteins undergo conformational changes that allow them to aggregate and assemble into insoluble, fibrillar structures. Soluble oligomers that form during this process typically contain 2–24 monomeric subunits and are cytotoxic. Before the formation of these soluble oligomers, monomeric species first adopt aggregation-competent conformations. Knowledge of the structures of these intermediate states is invaluable to the development of molecular strategies to arrest pathological amyloid aggregation. However, the highly dynamic and interconverting nature of amyloidogenic species limits biophysical characterization of their structures during amyloidogenesis. Here, we use molecular dynamics simulations to probe conformations sampled by monomeric transthyretin under amyloidogenic conditions. We show that certain β-strands in transthyretin tend to unfold and sample nonnative conformations and that the edge strands in one β-sheet (the DAGH sheet) are particularly susceptible to conformational changes in the monomeric state. We also find that changes in the tertiary structure of transthyretin can be associated with disruptions to the secondary structure. We evaluated the conformations produced by molecular dynamics by calculating how well molecular-dynamics-derived structures reproduced NMR-derived interatomic distances. Finally, we leverage our computational results to produce experimentally testable hypotheses that may aid experimental explorations of pathological conformations of transthyretin.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33091379</pmid><doi>10.1016/j.bpj.2020.08.043</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2440-9612</orcidid><orcidid>https://orcid.org/0000000324409612</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2020-11, Vol.119 (10), p.1995-2009
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7732750
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Amyloid
Prealbumin
Protein Conformation
Protein Conformation, beta-Strand
Protein Structure, Secondary
title Edge Strand Dissociation and Conformational Changes in Transthyretin under Amyloidogenic Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Strand%20Dissociation%20and%20Conformational%20Changes%20in%20Transthyretin%20under%20Amyloidogenic%20Conditions&rft.jtitle=Biophysical%20journal&rft.au=Childers,%20Matthew%20C.&rft.date=2020-11-17&rft.volume=119&rft.issue=10&rft.spage=1995&rft.epage=2009&rft.pages=1995-2009&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2020.08.043&rft_dat=%3Cproquest_pubme%3E2454152710%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454152710&rft_id=info:pmid/33091379&rft_els_id=S0006349520308067&rfr_iscdi=true