Cyclodextrin-Based Nanostructure Efficiently Delivers siRNA to Glioblastoma Cells Preferentially via Macropinocytosis

Small interfering ribonucleic acid (siRNA) has the potential to revolutionize therapeutics since it can knockdown very efficiently the target protein. It is starting to be widely used to interfere with cell infection by HIV. However, naked siRNAs are unable to get into the cell, requiring the use of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-12, Vol.21 (23), p.9306
Hauptverfasser: Manzanares, Darío, Pérez-Carrión, María Dolores, Jiménez Blanco, José Luis, Ortiz Mellet, Carmen, García Fernández, José Manuel, Ceña, Valentín
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 9306
container_title International journal of molecular sciences
container_volume 21
creator Manzanares, Darío
Pérez-Carrión, María Dolores
Jiménez Blanco, José Luis
Ortiz Mellet, Carmen
García Fernández, José Manuel
Ceña, Valentín
description Small interfering ribonucleic acid (siRNA) has the potential to revolutionize therapeutics since it can knockdown very efficiently the target protein. It is starting to be widely used to interfere with cell infection by HIV. However, naked siRNAs are unable to get into the cell, requiring the use of carriers to protect them from degradation and transporting them across the cell membrane. There is no information about which is the most efficient endocytosis route for high siRNA transfection efficiency. One of the most promising carriers to efficiently deliver siRNA are cyclodextrin derivatives. We have used nanocomplexes composed of siRNA and a β-cyclodextrin derivative, AMC6, with a very high transfection efficiency to selectively knockdown clathrin heavy chain, caveolin 1, and p21 Activated Kinase 1 to specifically block clathrin-mediated, caveolin-mediated and macropinocytosis endocytic pathways. The main objective was to identify whether there is a preferential endocytic pathway associated with high siRNA transfection efficiency. We have found that macropinocytosis is the preferential entry pathway for the nanoparticle and its associated siRNA cargo. However, blockade of macropinocytosis does not affect AMC6-mediated transfection efficiency, suggesting that macropinocytosis blockade can be functionally compensated by an increase in clathrin- and caveolin-mediated endocytosis.
doi_str_mv 10.3390/ijms21239306
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7731237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469420065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-fbff551e6396631396686cc1f9ce41f6efe077198d8798ffd826bd64e7a9e5383</originalsourceid><addsrcrecordid>eNpVUUtLAzEQDqLY-rh5loBXV_PYzW4uQq1P8IXoOaTZRFPSTU2yxf57I1apl5mB-eabb-YD4ACjE0o5OrXTWSSYUE4R2wBDXBJSIMTqzbV6AHZinCJEKKn4NhhQSjimBA9BP14q51v9mYLtinMZdQsfZOdjCr1KfdDw0hirrO6SW8IL7exChwijfX4YweThtbN-4mRMfibhWDsX4VPQRoc8YKXLMwsr4b1Uwc9t59Uy-WjjHtgy0kW9v8q74PXq8mV8U9w9Xt-OR3eFKjFJhZkYU1VYM8oZo_g7NkwpbLjSJTYs70F1jXnTNjVvjGkbwiYtK3Utua5oQ3fB2Q_vvJ_MdKuyqCCdmAc7k2EpvLTif6ez7-LNL0Rd0_zSOhMcrQiC_-h1TGLq-9BlzYKUjJckf7fKqOMfVL4yxnz-3waMxLdJYt2kDD9cV_UH_nWFfgEaiZEC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469420065</pqid></control><display><type>article</type><title>Cyclodextrin-Based Nanostructure Efficiently Delivers siRNA to Glioblastoma Cells Preferentially via Macropinocytosis</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Manzanares, Darío ; Pérez-Carrión, María Dolores ; Jiménez Blanco, José Luis ; Ortiz Mellet, Carmen ; García Fernández, José Manuel ; Ceña, Valentín</creator><creatorcontrib>Manzanares, Darío ; Pérez-Carrión, María Dolores ; Jiménez Blanco, José Luis ; Ortiz Mellet, Carmen ; García Fernández, José Manuel ; Ceña, Valentín</creatorcontrib><description>Small interfering ribonucleic acid (siRNA) has the potential to revolutionize therapeutics since it can knockdown very efficiently the target protein. It is starting to be widely used to interfere with cell infection by HIV. However, naked siRNAs are unable to get into the cell, requiring the use of carriers to protect them from degradation and transporting them across the cell membrane. There is no information about which is the most efficient endocytosis route for high siRNA transfection efficiency. One of the most promising carriers to efficiently deliver siRNA are cyclodextrin derivatives. We have used nanocomplexes composed of siRNA and a β-cyclodextrin derivative, AMC6, with a very high transfection efficiency to selectively knockdown clathrin heavy chain, caveolin 1, and p21 Activated Kinase 1 to specifically block clathrin-mediated, caveolin-mediated and macropinocytosis endocytic pathways. The main objective was to identify whether there is a preferential endocytic pathway associated with high siRNA transfection efficiency. We have found that macropinocytosis is the preferential entry pathway for the nanoparticle and its associated siRNA cargo. However, blockade of macropinocytosis does not affect AMC6-mediated transfection efficiency, suggesting that macropinocytosis blockade can be functionally compensated by an increase in clathrin- and caveolin-mediated endocytosis.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21239306</identifier><identifier>PMID: 33291321</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; beta-Cyclodextrins - chemistry ; Brain cancer ; Brain Neoplasms - metabolism ; Caveolin ; Caveolin-1 ; Cell Line, Tumor ; Cell membranes ; Clathrin ; Cyclodextrins ; Efficiency ; Endocytosis ; Glioblastoma ; Glioblastoma - metabolism ; Glioblastoma cells ; Humans ; Kinases ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - metabolism ; p21-activated kinase ; Pinocytosis ; Proteins ; Rats ; RNA, Small Interfering - genetics ; siRNA ; Transfection ; Transfection - methods ; β-Cyclodextrin</subject><ispartof>International journal of molecular sciences, 2020-12, Vol.21 (23), p.9306</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-fbff551e6396631396686cc1f9ce41f6efe077198d8798ffd826bd64e7a9e5383</citedby><cites>FETCH-LOGICAL-c412t-fbff551e6396631396686cc1f9ce41f6efe077198d8798ffd826bd64e7a9e5383</cites><orcidid>0000-0003-3035-6449 ; 0000-0002-7676-7721 ; 0000-0002-5249-9013 ; 0000-0002-6827-0387 ; 0000-0001-8928-3681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731237/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731237/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33291321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manzanares, Darío</creatorcontrib><creatorcontrib>Pérez-Carrión, María Dolores</creatorcontrib><creatorcontrib>Jiménez Blanco, José Luis</creatorcontrib><creatorcontrib>Ortiz Mellet, Carmen</creatorcontrib><creatorcontrib>García Fernández, José Manuel</creatorcontrib><creatorcontrib>Ceña, Valentín</creatorcontrib><title>Cyclodextrin-Based Nanostructure Efficiently Delivers siRNA to Glioblastoma Cells Preferentially via Macropinocytosis</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Small interfering ribonucleic acid (siRNA) has the potential to revolutionize therapeutics since it can knockdown very efficiently the target protein. It is starting to be widely used to interfere with cell infection by HIV. However, naked siRNAs are unable to get into the cell, requiring the use of carriers to protect them from degradation and transporting them across the cell membrane. There is no information about which is the most efficient endocytosis route for high siRNA transfection efficiency. One of the most promising carriers to efficiently deliver siRNA are cyclodextrin derivatives. We have used nanocomplexes composed of siRNA and a β-cyclodextrin derivative, AMC6, with a very high transfection efficiency to selectively knockdown clathrin heavy chain, caveolin 1, and p21 Activated Kinase 1 to specifically block clathrin-mediated, caveolin-mediated and macropinocytosis endocytic pathways. The main objective was to identify whether there is a preferential endocytic pathway associated with high siRNA transfection efficiency. We have found that macropinocytosis is the preferential entry pathway for the nanoparticle and its associated siRNA cargo. However, blockade of macropinocytosis does not affect AMC6-mediated transfection efficiency, suggesting that macropinocytosis blockade can be functionally compensated by an increase in clathrin- and caveolin-mediated endocytosis.</description><subject>Animals</subject><subject>beta-Cyclodextrins - chemistry</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - metabolism</subject><subject>Caveolin</subject><subject>Caveolin-1</subject><subject>Cell Line, Tumor</subject><subject>Cell membranes</subject><subject>Clathrin</subject><subject>Cyclodextrins</subject><subject>Efficiency</subject><subject>Endocytosis</subject><subject>Glioblastoma</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma cells</subject><subject>Humans</subject><subject>Kinases</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - metabolism</subject><subject>p21-activated kinase</subject><subject>Pinocytosis</subject><subject>Proteins</subject><subject>Rats</subject><subject>RNA, Small Interfering - genetics</subject><subject>siRNA</subject><subject>Transfection</subject><subject>Transfection - methods</subject><subject>β-Cyclodextrin</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVUUtLAzEQDqLY-rh5loBXV_PYzW4uQq1P8IXoOaTZRFPSTU2yxf57I1apl5mB-eabb-YD4ACjE0o5OrXTWSSYUE4R2wBDXBJSIMTqzbV6AHZinCJEKKn4NhhQSjimBA9BP14q51v9mYLtinMZdQsfZOdjCr1KfdDw0hirrO6SW8IL7exChwijfX4YweThtbN-4mRMfibhWDsX4VPQRoc8YKXLMwsr4b1Uwc9t59Uy-WjjHtgy0kW9v8q74PXq8mV8U9w9Xt-OR3eFKjFJhZkYU1VYM8oZo_g7NkwpbLjSJTYs70F1jXnTNjVvjGkbwiYtK3Utua5oQ3fB2Q_vvJ_MdKuyqCCdmAc7k2EpvLTif6ez7-LNL0Rd0_zSOhMcrQiC_-h1TGLq-9BlzYKUjJckf7fKqOMfVL4yxnz-3waMxLdJYt2kDD9cV_UH_nWFfgEaiZEC</recordid><startdate>20201206</startdate><enddate>20201206</enddate><creator>Manzanares, Darío</creator><creator>Pérez-Carrión, María Dolores</creator><creator>Jiménez Blanco, José Luis</creator><creator>Ortiz Mellet, Carmen</creator><creator>García Fernández, José Manuel</creator><creator>Ceña, Valentín</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3035-6449</orcidid><orcidid>https://orcid.org/0000-0002-7676-7721</orcidid><orcidid>https://orcid.org/0000-0002-5249-9013</orcidid><orcidid>https://orcid.org/0000-0002-6827-0387</orcidid><orcidid>https://orcid.org/0000-0001-8928-3681</orcidid></search><sort><creationdate>20201206</creationdate><title>Cyclodextrin-Based Nanostructure Efficiently Delivers siRNA to Glioblastoma Cells Preferentially via Macropinocytosis</title><author>Manzanares, Darío ; Pérez-Carrión, María Dolores ; Jiménez Blanco, José Luis ; Ortiz Mellet, Carmen ; García Fernández, José Manuel ; Ceña, Valentín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-fbff551e6396631396686cc1f9ce41f6efe077198d8798ffd826bd64e7a9e5383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>beta-Cyclodextrins - chemistry</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - metabolism</topic><topic>Caveolin</topic><topic>Caveolin-1</topic><topic>Cell Line, Tumor</topic><topic>Cell membranes</topic><topic>Clathrin</topic><topic>Cyclodextrins</topic><topic>Efficiency</topic><topic>Endocytosis</topic><topic>Glioblastoma</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma cells</topic><topic>Humans</topic><topic>Kinases</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - metabolism</topic><topic>p21-activated kinase</topic><topic>Pinocytosis</topic><topic>Proteins</topic><topic>Rats</topic><topic>RNA, Small Interfering - genetics</topic><topic>siRNA</topic><topic>Transfection</topic><topic>Transfection - methods</topic><topic>β-Cyclodextrin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manzanares, Darío</creatorcontrib><creatorcontrib>Pérez-Carrión, María Dolores</creatorcontrib><creatorcontrib>Jiménez Blanco, José Luis</creatorcontrib><creatorcontrib>Ortiz Mellet, Carmen</creatorcontrib><creatorcontrib>García Fernández, José Manuel</creatorcontrib><creatorcontrib>Ceña, Valentín</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manzanares, Darío</au><au>Pérez-Carrión, María Dolores</au><au>Jiménez Blanco, José Luis</au><au>Ortiz Mellet, Carmen</au><au>García Fernández, José Manuel</au><au>Ceña, Valentín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclodextrin-Based Nanostructure Efficiently Delivers siRNA to Glioblastoma Cells Preferentially via Macropinocytosis</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-12-06</date><risdate>2020</risdate><volume>21</volume><issue>23</issue><spage>9306</spage><pages>9306-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Small interfering ribonucleic acid (siRNA) has the potential to revolutionize therapeutics since it can knockdown very efficiently the target protein. It is starting to be widely used to interfere with cell infection by HIV. However, naked siRNAs are unable to get into the cell, requiring the use of carriers to protect them from degradation and transporting them across the cell membrane. There is no information about which is the most efficient endocytosis route for high siRNA transfection efficiency. One of the most promising carriers to efficiently deliver siRNA are cyclodextrin derivatives. We have used nanocomplexes composed of siRNA and a β-cyclodextrin derivative, AMC6, with a very high transfection efficiency to selectively knockdown clathrin heavy chain, caveolin 1, and p21 Activated Kinase 1 to specifically block clathrin-mediated, caveolin-mediated and macropinocytosis endocytic pathways. The main objective was to identify whether there is a preferential endocytic pathway associated with high siRNA transfection efficiency. We have found that macropinocytosis is the preferential entry pathway for the nanoparticle and its associated siRNA cargo. However, blockade of macropinocytosis does not affect AMC6-mediated transfection efficiency, suggesting that macropinocytosis blockade can be functionally compensated by an increase in clathrin- and caveolin-mediated endocytosis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33291321</pmid><doi>10.3390/ijms21239306</doi><orcidid>https://orcid.org/0000-0003-3035-6449</orcidid><orcidid>https://orcid.org/0000-0002-7676-7721</orcidid><orcidid>https://orcid.org/0000-0002-5249-9013</orcidid><orcidid>https://orcid.org/0000-0002-6827-0387</orcidid><orcidid>https://orcid.org/0000-0001-8928-3681</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-12, Vol.21 (23), p.9306
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7731237
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
beta-Cyclodextrins - chemistry
Brain cancer
Brain Neoplasms - metabolism
Caveolin
Caveolin-1
Cell Line, Tumor
Cell membranes
Clathrin
Cyclodextrins
Efficiency
Endocytosis
Glioblastoma
Glioblastoma - metabolism
Glioblastoma cells
Humans
Kinases
Nanoparticles
Nanoparticles - chemistry
Nanoparticles - metabolism
p21-activated kinase
Pinocytosis
Proteins
Rats
RNA, Small Interfering - genetics
siRNA
Transfection
Transfection - methods
β-Cyclodextrin
title Cyclodextrin-Based Nanostructure Efficiently Delivers siRNA to Glioblastoma Cells Preferentially via Macropinocytosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclodextrin-Based%20Nanostructure%20Efficiently%20Delivers%20siRNA%20to%20Glioblastoma%20Cells%20Preferentially%20via%20Macropinocytosis&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Manzanares,%20Dar%C3%ADo&rft.date=2020-12-06&rft.volume=21&rft.issue=23&rft.spage=9306&rft.pages=9306-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21239306&rft_dat=%3Cproquest_pubme%3E2469420065%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469420065&rft_id=info:pmid/33291321&rfr_iscdi=true