An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia

Michael Dussiot et al . show that an activin receptor IIA ligand trap ameliorates anemia in a mouse model of β-thalassemia by blocking the deleterious effects of GDF11. Mechanistically, GDF11 inactivation reversed ineffective erythropoiesis by promoting terminal erythroblast differentiation and by i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2014-04, Vol.20 (4), p.398-407
Hauptverfasser: Dussiot, Michael, Maciel, Thiago T, Fricot, Aurélie, Chartier, Céline, Negre, Olivier, Veiga, Joel, Grapton, Damien, Paubelle, Etienne, Payen, Emmanuel, Beuzard, Yves, Leboulch, Philippe, Ribeil, Jean-Antoine, Arlet, Jean-Benoit, Coté, Francine, Courtois, Geneviève, Ginzburg, Yelena Z, Daniel, Thomas O, Chopra, Rajesh, Sung, Victoria, Hermine, Olivier, Moura, Ivan C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 4
container_start_page 398
container_title Nature medicine
container_volume 20
creator Dussiot, Michael
Maciel, Thiago T
Fricot, Aurélie
Chartier, Céline
Negre, Olivier
Veiga, Joel
Grapton, Damien
Paubelle, Etienne
Payen, Emmanuel
Beuzard, Yves
Leboulch, Philippe
Ribeil, Jean-Antoine
Arlet, Jean-Benoit
Coté, Francine
Courtois, Geneviève
Ginzburg, Yelena Z
Daniel, Thomas O
Chopra, Rajesh
Sung, Victoria
Hermine, Olivier
Moura, Ivan C
description Michael Dussiot et al . show that an activin receptor IIA ligand trap ameliorates anemia in a mouse model of β-thalassemia by blocking the deleterious effects of GDF11. Mechanistically, GDF11 inactivation reversed ineffective erythropoiesis by promoting terminal erythroblast differentiation and by inducing apoptosis of immature erythroblasts. Also in this issue, Rajasekhar Suragani et al . show related findings using a modified activin receptor IIB ligand trap. The pathophysiology of ineffective erythropoiesis in β-thalassemia is poorly understood. We report that RAP-011, an activin receptor IIA (ActRIIA) ligand trap, improved ineffective erythropoiesis, corrected anemia and limited iron overload in a mouse model of β-thalassemia intermedia. Expression of growth differentiation factor 11 (GDF11), an ActRIIA ligand, was increased in splenic erythroblasts from thalassemic mice and in erythroblasts and sera from subjects with β-thalassemia. Inactivation of GDF11 decreased oxidative stress and the amount of α-globin membrane precipitates, resulting in increased terminal erythroid differentiation. Abnormal GDF11 expression was dependent on reactive oxygen species, suggesting the existence of an autocrine amplification loop in β-thalassemia. GDF11 inactivation also corrected the abnormal ratio of immature/mature erythroblasts by inducing apoptosis of immature erythroblasts through the Fas–Fas ligand pathway. Taken together, these observations suggest that ActRIIA ligand traps may have therapeutic relevance in β-thalassemia by suppressing the deleterious effects of GDF11, a cytokine which blocks terminal erythroid maturation through an autocrine amplification loop involving oxidative stress and α-globin precipitation.
doi_str_mv 10.1038/nm.3468
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7730561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A369247846</galeid><sourcerecordid>A369247846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-9bb536f9095672c6b51cb3babf10d6e16f36a78327b1d0132d2e7913d4119a143</originalsourceid><addsrcrecordid>eNqNktuK1TAUhosozjiKbyAFwcNFt0mTJu2NsBk8bBgY8IRehTRdbTO0SU3SwXktH8RnMmWP4xT3heQiIf-3_iz-rCR5jNEGI1K-MuOGUFbeSY5xQVmGOfp6N54RL7OyKthR8sD7C4QQQUV1PznKKStKxPlx8m1rUqmCvtQmdaBgCtalu902HXQnTZMGJ6dUWRe14FNtoG1hwSEFdxV6ZyerwetFSn_9zEIvB-k9jFo-TO61cvDw6Ho_ST6_ffPp9H12dv5ud7o9yxRDLGRVXReEtRWKbfJcsbrAqia1rFuMGgaYtYRJXpKc17hBmORNDrzCpKEYVxJTcpK83vtOcz1Co8DEngcxOT1KdyWs1GKtGN2Lzl4KzmMaDEeDF9cGzn6fwQcxaq9gGKQBO3uBC0wpiXGhiD7do50cQGjT2uioFlxsCatyykvKIpUdoDowEJ-3MUIdr1f85gAfVxNzVAcLXq4KIhPgR-jk7L3Yffzw_-z5lzX77BbbgxxC7-0wB22NX4PP96By1nsH7U3cGIllIIUZxTKQkXxy-3duuD8T-Dd9HyXTgRMXdnYmTsw_Xr8BHP_mQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1514438070</pqid></control><display><type>article</type><title>An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dussiot, Michael ; Maciel, Thiago T ; Fricot, Aurélie ; Chartier, Céline ; Negre, Olivier ; Veiga, Joel ; Grapton, Damien ; Paubelle, Etienne ; Payen, Emmanuel ; Beuzard, Yves ; Leboulch, Philippe ; Ribeil, Jean-Antoine ; Arlet, Jean-Benoit ; Coté, Francine ; Courtois, Geneviève ; Ginzburg, Yelena Z ; Daniel, Thomas O ; Chopra, Rajesh ; Sung, Victoria ; Hermine, Olivier ; Moura, Ivan C</creator><creatorcontrib>Dussiot, Michael ; Maciel, Thiago T ; Fricot, Aurélie ; Chartier, Céline ; Negre, Olivier ; Veiga, Joel ; Grapton, Damien ; Paubelle, Etienne ; Payen, Emmanuel ; Beuzard, Yves ; Leboulch, Philippe ; Ribeil, Jean-Antoine ; Arlet, Jean-Benoit ; Coté, Francine ; Courtois, Geneviève ; Ginzburg, Yelena Z ; Daniel, Thomas O ; Chopra, Rajesh ; Sung, Victoria ; Hermine, Olivier ; Moura, Ivan C</creatorcontrib><description>Michael Dussiot et al . show that an activin receptor IIA ligand trap ameliorates anemia in a mouse model of β-thalassemia by blocking the deleterious effects of GDF11. Mechanistically, GDF11 inactivation reversed ineffective erythropoiesis by promoting terminal erythroblast differentiation and by inducing apoptosis of immature erythroblasts. Also in this issue, Rajasekhar Suragani et al . show related findings using a modified activin receptor IIB ligand trap. The pathophysiology of ineffective erythropoiesis in β-thalassemia is poorly understood. We report that RAP-011, an activin receptor IIA (ActRIIA) ligand trap, improved ineffective erythropoiesis, corrected anemia and limited iron overload in a mouse model of β-thalassemia intermedia. Expression of growth differentiation factor 11 (GDF11), an ActRIIA ligand, was increased in splenic erythroblasts from thalassemic mice and in erythroblasts and sera from subjects with β-thalassemia. Inactivation of GDF11 decreased oxidative stress and the amount of α-globin membrane precipitates, resulting in increased terminal erythroid differentiation. Abnormal GDF11 expression was dependent on reactive oxygen species, suggesting the existence of an autocrine amplification loop in β-thalassemia. GDF11 inactivation also corrected the abnormal ratio of immature/mature erythroblasts by inducing apoptosis of immature erythroblasts through the Fas–Fas ligand pathway. Taken together, these observations suggest that ActRIIA ligand traps may have therapeutic relevance in β-thalassemia by suppressing the deleterious effects of GDF11, a cytokine which blocks terminal erythroid maturation through an autocrine amplification loop involving oxidative stress and α-globin precipitation.</description><identifier>ISSN: 1078-8956</identifier><identifier>ISSN: 1546-170X</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/nm.3468</identifier><identifier>PMID: 24658077</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/1 ; 13/2 ; 13/31 ; 13/51 ; 13/89 ; 13/95 ; 14/19 ; 38/39 ; 45 ; 64 ; 64/60 ; 692/308/1426 ; Activin Receptors, Type II - metabolism ; Animals ; Apoptosis - physiology ; Autocrine Communication - physiology ; beta-Thalassemia - metabolism ; Biomedicine ; Bone Morphogenetic Proteins - antagonists &amp; inhibitors ; Bone Morphogenetic Proteins - metabolism ; Cancer Research ; Care and treatment ; Cell Differentiation ; Cytokines ; Development and progression ; Disease Models, Animal ; Erythroblasts - metabolism ; Erythropoiesis ; Erythropoiesis - drug effects ; Fas Ligand Protein ; fas Receptor ; Gene Amplification - physiology ; Genetic aspects ; Growth Differentiation Factors - antagonists &amp; inhibitors ; Growth Differentiation Factors - metabolism ; Hematinics - pharmacology ; Infectious Diseases ; Ligands ; Metabolic Diseases ; Mice ; Molecular Medicine ; Neurosciences ; Oxidative Stress - physiology ; Physiological aspects ; Reactive Oxygen Species ; Recombinant Fusion Proteins - pharmacology ; Signal Transduction ; Thalassemia</subject><ispartof>Nature medicine, 2014-04, Vol.20 (4), p.398-407</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-9bb536f9095672c6b51cb3babf10d6e16f36a78327b1d0132d2e7913d4119a143</citedby><cites>FETCH-LOGICAL-c606t-9bb536f9095672c6b51cb3babf10d6e16f36a78327b1d0132d2e7913d4119a143</cites><orcidid>0000-0002-8418-2803 ; 0000000284182803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nm.3468$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nm.3468$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24658077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dussiot, Michael</creatorcontrib><creatorcontrib>Maciel, Thiago T</creatorcontrib><creatorcontrib>Fricot, Aurélie</creatorcontrib><creatorcontrib>Chartier, Céline</creatorcontrib><creatorcontrib>Negre, Olivier</creatorcontrib><creatorcontrib>Veiga, Joel</creatorcontrib><creatorcontrib>Grapton, Damien</creatorcontrib><creatorcontrib>Paubelle, Etienne</creatorcontrib><creatorcontrib>Payen, Emmanuel</creatorcontrib><creatorcontrib>Beuzard, Yves</creatorcontrib><creatorcontrib>Leboulch, Philippe</creatorcontrib><creatorcontrib>Ribeil, Jean-Antoine</creatorcontrib><creatorcontrib>Arlet, Jean-Benoit</creatorcontrib><creatorcontrib>Coté, Francine</creatorcontrib><creatorcontrib>Courtois, Geneviève</creatorcontrib><creatorcontrib>Ginzburg, Yelena Z</creatorcontrib><creatorcontrib>Daniel, Thomas O</creatorcontrib><creatorcontrib>Chopra, Rajesh</creatorcontrib><creatorcontrib>Sung, Victoria</creatorcontrib><creatorcontrib>Hermine, Olivier</creatorcontrib><creatorcontrib>Moura, Ivan C</creatorcontrib><title>An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Michael Dussiot et al . show that an activin receptor IIA ligand trap ameliorates anemia in a mouse model of β-thalassemia by blocking the deleterious effects of GDF11. Mechanistically, GDF11 inactivation reversed ineffective erythropoiesis by promoting terminal erythroblast differentiation and by inducing apoptosis of immature erythroblasts. Also in this issue, Rajasekhar Suragani et al . show related findings using a modified activin receptor IIB ligand trap. The pathophysiology of ineffective erythropoiesis in β-thalassemia is poorly understood. We report that RAP-011, an activin receptor IIA (ActRIIA) ligand trap, improved ineffective erythropoiesis, corrected anemia and limited iron overload in a mouse model of β-thalassemia intermedia. Expression of growth differentiation factor 11 (GDF11), an ActRIIA ligand, was increased in splenic erythroblasts from thalassemic mice and in erythroblasts and sera from subjects with β-thalassemia. Inactivation of GDF11 decreased oxidative stress and the amount of α-globin membrane precipitates, resulting in increased terminal erythroid differentiation. Abnormal GDF11 expression was dependent on reactive oxygen species, suggesting the existence of an autocrine amplification loop in β-thalassemia. GDF11 inactivation also corrected the abnormal ratio of immature/mature erythroblasts by inducing apoptosis of immature erythroblasts through the Fas–Fas ligand pathway. Taken together, these observations suggest that ActRIIA ligand traps may have therapeutic relevance in β-thalassemia by suppressing the deleterious effects of GDF11, a cytokine which blocks terminal erythroid maturation through an autocrine amplification loop involving oxidative stress and α-globin precipitation.</description><subject>13/1</subject><subject>13/2</subject><subject>13/31</subject><subject>13/51</subject><subject>13/89</subject><subject>13/95</subject><subject>14/19</subject><subject>38/39</subject><subject>45</subject><subject>64</subject><subject>64/60</subject><subject>692/308/1426</subject><subject>Activin Receptors, Type II - metabolism</subject><subject>Animals</subject><subject>Apoptosis - physiology</subject><subject>Autocrine Communication - physiology</subject><subject>beta-Thalassemia - metabolism</subject><subject>Biomedicine</subject><subject>Bone Morphogenetic Proteins - antagonists &amp; inhibitors</subject><subject>Bone Morphogenetic Proteins - metabolism</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>Cell Differentiation</subject><subject>Cytokines</subject><subject>Development and progression</subject><subject>Disease Models, Animal</subject><subject>Erythroblasts - metabolism</subject><subject>Erythropoiesis</subject><subject>Erythropoiesis - drug effects</subject><subject>Fas Ligand Protein</subject><subject>fas Receptor</subject><subject>Gene Amplification - physiology</subject><subject>Genetic aspects</subject><subject>Growth Differentiation Factors - antagonists &amp; inhibitors</subject><subject>Growth Differentiation Factors - metabolism</subject><subject>Hematinics - pharmacology</subject><subject>Infectious Diseases</subject><subject>Ligands</subject><subject>Metabolic Diseases</subject><subject>Mice</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Oxidative Stress - physiology</subject><subject>Physiological aspects</subject><subject>Reactive Oxygen Species</subject><subject>Recombinant Fusion Proteins - pharmacology</subject><subject>Signal Transduction</subject><subject>Thalassemia</subject><issn>1078-8956</issn><issn>1546-170X</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNktuK1TAUhosozjiKbyAFwcNFt0mTJu2NsBk8bBgY8IRehTRdbTO0SU3SwXktH8RnMmWP4xT3heQiIf-3_iz-rCR5jNEGI1K-MuOGUFbeSY5xQVmGOfp6N54RL7OyKthR8sD7C4QQQUV1PznKKStKxPlx8m1rUqmCvtQmdaBgCtalu902HXQnTZMGJ6dUWRe14FNtoG1hwSEFdxV6ZyerwetFSn_9zEIvB-k9jFo-TO61cvDw6Ho_ST6_ffPp9H12dv5ud7o9yxRDLGRVXReEtRWKbfJcsbrAqia1rFuMGgaYtYRJXpKc17hBmORNDrzCpKEYVxJTcpK83vtOcz1Co8DEngcxOT1KdyWs1GKtGN2Lzl4KzmMaDEeDF9cGzn6fwQcxaq9gGKQBO3uBC0wpiXGhiD7do50cQGjT2uioFlxsCatyykvKIpUdoDowEJ-3MUIdr1f85gAfVxNzVAcLXq4KIhPgR-jk7L3Yffzw_-z5lzX77BbbgxxC7-0wB22NX4PP96By1nsH7U3cGIllIIUZxTKQkXxy-3duuD8T-Dd9HyXTgRMXdnYmTsw_Xr8BHP_mQw</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Dussiot, Michael</creator><creator>Maciel, Thiago T</creator><creator>Fricot, Aurélie</creator><creator>Chartier, Céline</creator><creator>Negre, Olivier</creator><creator>Veiga, Joel</creator><creator>Grapton, Damien</creator><creator>Paubelle, Etienne</creator><creator>Payen, Emmanuel</creator><creator>Beuzard, Yves</creator><creator>Leboulch, Philippe</creator><creator>Ribeil, Jean-Antoine</creator><creator>Arlet, Jean-Benoit</creator><creator>Coté, Francine</creator><creator>Courtois, Geneviève</creator><creator>Ginzburg, Yelena Z</creator><creator>Daniel, Thomas O</creator><creator>Chopra, Rajesh</creator><creator>Sung, Victoria</creator><creator>Hermine, Olivier</creator><creator>Moura, Ivan C</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8418-2803</orcidid><orcidid>https://orcid.org/0000000284182803</orcidid></search><sort><creationdate>20140401</creationdate><title>An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia</title><author>Dussiot, Michael ; Maciel, Thiago T ; Fricot, Aurélie ; Chartier, Céline ; Negre, Olivier ; Veiga, Joel ; Grapton, Damien ; Paubelle, Etienne ; Payen, Emmanuel ; Beuzard, Yves ; Leboulch, Philippe ; Ribeil, Jean-Antoine ; Arlet, Jean-Benoit ; Coté, Francine ; Courtois, Geneviève ; Ginzburg, Yelena Z ; Daniel, Thomas O ; Chopra, Rajesh ; Sung, Victoria ; Hermine, Olivier ; Moura, Ivan C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-9bb536f9095672c6b51cb3babf10d6e16f36a78327b1d0132d2e7913d4119a143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13/1</topic><topic>13/2</topic><topic>13/31</topic><topic>13/51</topic><topic>13/89</topic><topic>13/95</topic><topic>14/19</topic><topic>38/39</topic><topic>45</topic><topic>64</topic><topic>64/60</topic><topic>692/308/1426</topic><topic>Activin Receptors, Type II - metabolism</topic><topic>Animals</topic><topic>Apoptosis - physiology</topic><topic>Autocrine Communication - physiology</topic><topic>beta-Thalassemia - metabolism</topic><topic>Biomedicine</topic><topic>Bone Morphogenetic Proteins - antagonists &amp; inhibitors</topic><topic>Bone Morphogenetic Proteins - metabolism</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>Cell Differentiation</topic><topic>Cytokines</topic><topic>Development and progression</topic><topic>Disease Models, Animal</topic><topic>Erythroblasts - metabolism</topic><topic>Erythropoiesis</topic><topic>Erythropoiesis - drug effects</topic><topic>Fas Ligand Protein</topic><topic>fas Receptor</topic><topic>Gene Amplification - physiology</topic><topic>Genetic aspects</topic><topic>Growth Differentiation Factors - antagonists &amp; inhibitors</topic><topic>Growth Differentiation Factors - metabolism</topic><topic>Hematinics - pharmacology</topic><topic>Infectious Diseases</topic><topic>Ligands</topic><topic>Metabolic Diseases</topic><topic>Mice</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Oxidative Stress - physiology</topic><topic>Physiological aspects</topic><topic>Reactive Oxygen Species</topic><topic>Recombinant Fusion Proteins - pharmacology</topic><topic>Signal Transduction</topic><topic>Thalassemia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dussiot, Michael</creatorcontrib><creatorcontrib>Maciel, Thiago T</creatorcontrib><creatorcontrib>Fricot, Aurélie</creatorcontrib><creatorcontrib>Chartier, Céline</creatorcontrib><creatorcontrib>Negre, Olivier</creatorcontrib><creatorcontrib>Veiga, Joel</creatorcontrib><creatorcontrib>Grapton, Damien</creatorcontrib><creatorcontrib>Paubelle, Etienne</creatorcontrib><creatorcontrib>Payen, Emmanuel</creatorcontrib><creatorcontrib>Beuzard, Yves</creatorcontrib><creatorcontrib>Leboulch, Philippe</creatorcontrib><creatorcontrib>Ribeil, Jean-Antoine</creatorcontrib><creatorcontrib>Arlet, Jean-Benoit</creatorcontrib><creatorcontrib>Coté, Francine</creatorcontrib><creatorcontrib>Courtois, Geneviève</creatorcontrib><creatorcontrib>Ginzburg, Yelena Z</creatorcontrib><creatorcontrib>Daniel, Thomas O</creatorcontrib><creatorcontrib>Chopra, Rajesh</creatorcontrib><creatorcontrib>Sung, Victoria</creatorcontrib><creatorcontrib>Hermine, Olivier</creatorcontrib><creatorcontrib>Moura, Ivan C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dussiot, Michael</au><au>Maciel, Thiago T</au><au>Fricot, Aurélie</au><au>Chartier, Céline</au><au>Negre, Olivier</au><au>Veiga, Joel</au><au>Grapton, Damien</au><au>Paubelle, Etienne</au><au>Payen, Emmanuel</au><au>Beuzard, Yves</au><au>Leboulch, Philippe</au><au>Ribeil, Jean-Antoine</au><au>Arlet, Jean-Benoit</au><au>Coté, Francine</au><au>Courtois, Geneviève</au><au>Ginzburg, Yelena Z</au><au>Daniel, Thomas O</au><au>Chopra, Rajesh</au><au>Sung, Victoria</au><au>Hermine, Olivier</au><au>Moura, Ivan C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>20</volume><issue>4</issue><spage>398</spage><epage>407</epage><pages>398-407</pages><issn>1078-8956</issn><issn>1546-170X</issn><eissn>1546-170X</eissn><abstract>Michael Dussiot et al . show that an activin receptor IIA ligand trap ameliorates anemia in a mouse model of β-thalassemia by blocking the deleterious effects of GDF11. Mechanistically, GDF11 inactivation reversed ineffective erythropoiesis by promoting terminal erythroblast differentiation and by inducing apoptosis of immature erythroblasts. Also in this issue, Rajasekhar Suragani et al . show related findings using a modified activin receptor IIB ligand trap. The pathophysiology of ineffective erythropoiesis in β-thalassemia is poorly understood. We report that RAP-011, an activin receptor IIA (ActRIIA) ligand trap, improved ineffective erythropoiesis, corrected anemia and limited iron overload in a mouse model of β-thalassemia intermedia. Expression of growth differentiation factor 11 (GDF11), an ActRIIA ligand, was increased in splenic erythroblasts from thalassemic mice and in erythroblasts and sera from subjects with β-thalassemia. Inactivation of GDF11 decreased oxidative stress and the amount of α-globin membrane precipitates, resulting in increased terminal erythroid differentiation. Abnormal GDF11 expression was dependent on reactive oxygen species, suggesting the existence of an autocrine amplification loop in β-thalassemia. GDF11 inactivation also corrected the abnormal ratio of immature/mature erythroblasts by inducing apoptosis of immature erythroblasts through the Fas–Fas ligand pathway. Taken together, these observations suggest that ActRIIA ligand traps may have therapeutic relevance in β-thalassemia by suppressing the deleterious effects of GDF11, a cytokine which blocks terminal erythroid maturation through an autocrine amplification loop involving oxidative stress and α-globin precipitation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>24658077</pmid><doi>10.1038/nm.3468</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8418-2803</orcidid><orcidid>https://orcid.org/0000000284182803</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2014-04, Vol.20 (4), p.398-407
issn 1078-8956
1546-170X
1546-170X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7730561
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 13/1
13/2
13/31
13/51
13/89
13/95
14/19
38/39
45
64
64/60
692/308/1426
Activin Receptors, Type II - metabolism
Animals
Apoptosis - physiology
Autocrine Communication - physiology
beta-Thalassemia - metabolism
Biomedicine
Bone Morphogenetic Proteins - antagonists & inhibitors
Bone Morphogenetic Proteins - metabolism
Cancer Research
Care and treatment
Cell Differentiation
Cytokines
Development and progression
Disease Models, Animal
Erythroblasts - metabolism
Erythropoiesis
Erythropoiesis - drug effects
Fas Ligand Protein
fas Receptor
Gene Amplification - physiology
Genetic aspects
Growth Differentiation Factors - antagonists & inhibitors
Growth Differentiation Factors - metabolism
Hematinics - pharmacology
Infectious Diseases
Ligands
Metabolic Diseases
Mice
Molecular Medicine
Neurosciences
Oxidative Stress - physiology
Physiological aspects
Reactive Oxygen Species
Recombinant Fusion Proteins - pharmacology
Signal Transduction
Thalassemia
title An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20activin%20receptor%20IIA%20ligand%20trap%20corrects%20ineffective%20erythropoiesis%20in%20%CE%B2-thalassemia&rft.jtitle=Nature%20medicine&rft.au=Dussiot,%20Michael&rft.date=2014-04-01&rft.volume=20&rft.issue=4&rft.spage=398&rft.epage=407&rft.pages=398-407&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/nm.3468&rft_dat=%3Cgale_pubme%3EA369247846%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1514438070&rft_id=info:pmid/24658077&rft_galeid=A369247846&rfr_iscdi=true