An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia
Michael Dussiot et al . show that an activin receptor IIA ligand trap ameliorates anemia in a mouse model of β-thalassemia by blocking the deleterious effects of GDF11. Mechanistically, GDF11 inactivation reversed ineffective erythropoiesis by promoting terminal erythroblast differentiation and by i...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2014-04, Vol.20 (4), p.398-407 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 407 |
---|---|
container_issue | 4 |
container_start_page | 398 |
container_title | Nature medicine |
container_volume | 20 |
creator | Dussiot, Michael Maciel, Thiago T Fricot, Aurélie Chartier, Céline Negre, Olivier Veiga, Joel Grapton, Damien Paubelle, Etienne Payen, Emmanuel Beuzard, Yves Leboulch, Philippe Ribeil, Jean-Antoine Arlet, Jean-Benoit Coté, Francine Courtois, Geneviève Ginzburg, Yelena Z Daniel, Thomas O Chopra, Rajesh Sung, Victoria Hermine, Olivier Moura, Ivan C |
description | Michael Dussiot
et al
. show that an activin receptor IIA ligand trap ameliorates anemia in a mouse model of β-thalassemia by blocking the deleterious effects of GDF11. Mechanistically, GDF11 inactivation reversed ineffective erythropoiesis by promoting terminal erythroblast differentiation and by inducing apoptosis of immature erythroblasts. Also in this issue, Rajasekhar Suragani
et al
. show related findings using a modified activin receptor IIB ligand trap.
The pathophysiology of ineffective erythropoiesis in β-thalassemia is poorly understood. We report that RAP-011, an activin receptor IIA (ActRIIA) ligand trap, improved ineffective erythropoiesis, corrected anemia and limited iron overload in a mouse model of β-thalassemia intermedia. Expression of growth differentiation factor 11 (GDF11), an ActRIIA ligand, was increased in splenic erythroblasts from thalassemic mice and in erythroblasts and sera from subjects with β-thalassemia. Inactivation of GDF11 decreased oxidative stress and the amount of α-globin membrane precipitates, resulting in increased terminal erythroid differentiation. Abnormal GDF11 expression was dependent on reactive oxygen species, suggesting the existence of an autocrine amplification loop in β-thalassemia. GDF11 inactivation also corrected the abnormal ratio of immature/mature erythroblasts by inducing apoptosis of immature erythroblasts through the Fas–Fas ligand pathway. Taken together, these observations suggest that ActRIIA ligand traps may have therapeutic relevance in β-thalassemia by suppressing the deleterious effects of GDF11, a cytokine which blocks terminal erythroid maturation through an autocrine amplification loop involving oxidative stress and α-globin precipitation. |
doi_str_mv | 10.1038/nm.3468 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7730561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A369247846</galeid><sourcerecordid>A369247846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-9bb536f9095672c6b51cb3babf10d6e16f36a78327b1d0132d2e7913d4119a143</originalsourceid><addsrcrecordid>eNqNktuK1TAUhosozjiKbyAFwcNFt0mTJu2NsBk8bBgY8IRehTRdbTO0SU3SwXktH8RnMmWP4xT3heQiIf-3_iz-rCR5jNEGI1K-MuOGUFbeSY5xQVmGOfp6N54RL7OyKthR8sD7C4QQQUV1PznKKStKxPlx8m1rUqmCvtQmdaBgCtalu902HXQnTZMGJ6dUWRe14FNtoG1hwSEFdxV6ZyerwetFSn_9zEIvB-k9jFo-TO61cvDw6Ho_ST6_ffPp9H12dv5ud7o9yxRDLGRVXReEtRWKbfJcsbrAqia1rFuMGgaYtYRJXpKc17hBmORNDrzCpKEYVxJTcpK83vtOcz1Co8DEngcxOT1KdyWs1GKtGN2Lzl4KzmMaDEeDF9cGzn6fwQcxaq9gGKQBO3uBC0wpiXGhiD7do50cQGjT2uioFlxsCatyykvKIpUdoDowEJ-3MUIdr1f85gAfVxNzVAcLXq4KIhPgR-jk7L3Yffzw_-z5lzX77BbbgxxC7-0wB22NX4PP96By1nsH7U3cGIllIIUZxTKQkXxy-3duuD8T-Dd9HyXTgRMXdnYmTsw_Xr8BHP_mQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1514438070</pqid></control><display><type>article</type><title>An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dussiot, Michael ; Maciel, Thiago T ; Fricot, Aurélie ; Chartier, Céline ; Negre, Olivier ; Veiga, Joel ; Grapton, Damien ; Paubelle, Etienne ; Payen, Emmanuel ; Beuzard, Yves ; Leboulch, Philippe ; Ribeil, Jean-Antoine ; Arlet, Jean-Benoit ; Coté, Francine ; Courtois, Geneviève ; Ginzburg, Yelena Z ; Daniel, Thomas O ; Chopra, Rajesh ; Sung, Victoria ; Hermine, Olivier ; Moura, Ivan C</creator><creatorcontrib>Dussiot, Michael ; Maciel, Thiago T ; Fricot, Aurélie ; Chartier, Céline ; Negre, Olivier ; Veiga, Joel ; Grapton, Damien ; Paubelle, Etienne ; Payen, Emmanuel ; Beuzard, Yves ; Leboulch, Philippe ; Ribeil, Jean-Antoine ; Arlet, Jean-Benoit ; Coté, Francine ; Courtois, Geneviève ; Ginzburg, Yelena Z ; Daniel, Thomas O ; Chopra, Rajesh ; Sung, Victoria ; Hermine, Olivier ; Moura, Ivan C</creatorcontrib><description>Michael Dussiot
et al
. show that an activin receptor IIA ligand trap ameliorates anemia in a mouse model of β-thalassemia by blocking the deleterious effects of GDF11. Mechanistically, GDF11 inactivation reversed ineffective erythropoiesis by promoting terminal erythroblast differentiation and by inducing apoptosis of immature erythroblasts. Also in this issue, Rajasekhar Suragani
et al
. show related findings using a modified activin receptor IIB ligand trap.
The pathophysiology of ineffective erythropoiesis in β-thalassemia is poorly understood. We report that RAP-011, an activin receptor IIA (ActRIIA) ligand trap, improved ineffective erythropoiesis, corrected anemia and limited iron overload in a mouse model of β-thalassemia intermedia. Expression of growth differentiation factor 11 (GDF11), an ActRIIA ligand, was increased in splenic erythroblasts from thalassemic mice and in erythroblasts and sera from subjects with β-thalassemia. Inactivation of GDF11 decreased oxidative stress and the amount of α-globin membrane precipitates, resulting in increased terminal erythroid differentiation. Abnormal GDF11 expression was dependent on reactive oxygen species, suggesting the existence of an autocrine amplification loop in β-thalassemia. GDF11 inactivation also corrected the abnormal ratio of immature/mature erythroblasts by inducing apoptosis of immature erythroblasts through the Fas–Fas ligand pathway. Taken together, these observations suggest that ActRIIA ligand traps may have therapeutic relevance in β-thalassemia by suppressing the deleterious effects of GDF11, a cytokine which blocks terminal erythroid maturation through an autocrine amplification loop involving oxidative stress and α-globin precipitation.</description><identifier>ISSN: 1078-8956</identifier><identifier>ISSN: 1546-170X</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/nm.3468</identifier><identifier>PMID: 24658077</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/1 ; 13/2 ; 13/31 ; 13/51 ; 13/89 ; 13/95 ; 14/19 ; 38/39 ; 45 ; 64 ; 64/60 ; 692/308/1426 ; Activin Receptors, Type II - metabolism ; Animals ; Apoptosis - physiology ; Autocrine Communication - physiology ; beta-Thalassemia - metabolism ; Biomedicine ; Bone Morphogenetic Proteins - antagonists & inhibitors ; Bone Morphogenetic Proteins - metabolism ; Cancer Research ; Care and treatment ; Cell Differentiation ; Cytokines ; Development and progression ; Disease Models, Animal ; Erythroblasts - metabolism ; Erythropoiesis ; Erythropoiesis - drug effects ; Fas Ligand Protein ; fas Receptor ; Gene Amplification - physiology ; Genetic aspects ; Growth Differentiation Factors - antagonists & inhibitors ; Growth Differentiation Factors - metabolism ; Hematinics - pharmacology ; Infectious Diseases ; Ligands ; Metabolic Diseases ; Mice ; Molecular Medicine ; Neurosciences ; Oxidative Stress - physiology ; Physiological aspects ; Reactive Oxygen Species ; Recombinant Fusion Proteins - pharmacology ; Signal Transduction ; Thalassemia</subject><ispartof>Nature medicine, 2014-04, Vol.20 (4), p.398-407</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-9bb536f9095672c6b51cb3babf10d6e16f36a78327b1d0132d2e7913d4119a143</citedby><cites>FETCH-LOGICAL-c606t-9bb536f9095672c6b51cb3babf10d6e16f36a78327b1d0132d2e7913d4119a143</cites><orcidid>0000-0002-8418-2803 ; 0000000284182803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nm.3468$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nm.3468$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24658077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dussiot, Michael</creatorcontrib><creatorcontrib>Maciel, Thiago T</creatorcontrib><creatorcontrib>Fricot, Aurélie</creatorcontrib><creatorcontrib>Chartier, Céline</creatorcontrib><creatorcontrib>Negre, Olivier</creatorcontrib><creatorcontrib>Veiga, Joel</creatorcontrib><creatorcontrib>Grapton, Damien</creatorcontrib><creatorcontrib>Paubelle, Etienne</creatorcontrib><creatorcontrib>Payen, Emmanuel</creatorcontrib><creatorcontrib>Beuzard, Yves</creatorcontrib><creatorcontrib>Leboulch, Philippe</creatorcontrib><creatorcontrib>Ribeil, Jean-Antoine</creatorcontrib><creatorcontrib>Arlet, Jean-Benoit</creatorcontrib><creatorcontrib>Coté, Francine</creatorcontrib><creatorcontrib>Courtois, Geneviève</creatorcontrib><creatorcontrib>Ginzburg, Yelena Z</creatorcontrib><creatorcontrib>Daniel, Thomas O</creatorcontrib><creatorcontrib>Chopra, Rajesh</creatorcontrib><creatorcontrib>Sung, Victoria</creatorcontrib><creatorcontrib>Hermine, Olivier</creatorcontrib><creatorcontrib>Moura, Ivan C</creatorcontrib><title>An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Michael Dussiot
et al
. show that an activin receptor IIA ligand trap ameliorates anemia in a mouse model of β-thalassemia by blocking the deleterious effects of GDF11. Mechanistically, GDF11 inactivation reversed ineffective erythropoiesis by promoting terminal erythroblast differentiation and by inducing apoptosis of immature erythroblasts. Also in this issue, Rajasekhar Suragani
et al
. show related findings using a modified activin receptor IIB ligand trap.
The pathophysiology of ineffective erythropoiesis in β-thalassemia is poorly understood. We report that RAP-011, an activin receptor IIA (ActRIIA) ligand trap, improved ineffective erythropoiesis, corrected anemia and limited iron overload in a mouse model of β-thalassemia intermedia. Expression of growth differentiation factor 11 (GDF11), an ActRIIA ligand, was increased in splenic erythroblasts from thalassemic mice and in erythroblasts and sera from subjects with β-thalassemia. Inactivation of GDF11 decreased oxidative stress and the amount of α-globin membrane precipitates, resulting in increased terminal erythroid differentiation. Abnormal GDF11 expression was dependent on reactive oxygen species, suggesting the existence of an autocrine amplification loop in β-thalassemia. GDF11 inactivation also corrected the abnormal ratio of immature/mature erythroblasts by inducing apoptosis of immature erythroblasts through the Fas–Fas ligand pathway. Taken together, these observations suggest that ActRIIA ligand traps may have therapeutic relevance in β-thalassemia by suppressing the deleterious effects of GDF11, a cytokine which blocks terminal erythroid maturation through an autocrine amplification loop involving oxidative stress and α-globin precipitation.</description><subject>13/1</subject><subject>13/2</subject><subject>13/31</subject><subject>13/51</subject><subject>13/89</subject><subject>13/95</subject><subject>14/19</subject><subject>38/39</subject><subject>45</subject><subject>64</subject><subject>64/60</subject><subject>692/308/1426</subject><subject>Activin Receptors, Type II - metabolism</subject><subject>Animals</subject><subject>Apoptosis - physiology</subject><subject>Autocrine Communication - physiology</subject><subject>beta-Thalassemia - metabolism</subject><subject>Biomedicine</subject><subject>Bone Morphogenetic Proteins - antagonists & inhibitors</subject><subject>Bone Morphogenetic Proteins - metabolism</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>Cell Differentiation</subject><subject>Cytokines</subject><subject>Development and progression</subject><subject>Disease Models, Animal</subject><subject>Erythroblasts - metabolism</subject><subject>Erythropoiesis</subject><subject>Erythropoiesis - drug effects</subject><subject>Fas Ligand Protein</subject><subject>fas Receptor</subject><subject>Gene Amplification - physiology</subject><subject>Genetic aspects</subject><subject>Growth Differentiation Factors - antagonists & inhibitors</subject><subject>Growth Differentiation Factors - metabolism</subject><subject>Hematinics - pharmacology</subject><subject>Infectious Diseases</subject><subject>Ligands</subject><subject>Metabolic Diseases</subject><subject>Mice</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Oxidative Stress - physiology</subject><subject>Physiological aspects</subject><subject>Reactive Oxygen Species</subject><subject>Recombinant Fusion Proteins - pharmacology</subject><subject>Signal Transduction</subject><subject>Thalassemia</subject><issn>1078-8956</issn><issn>1546-170X</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNktuK1TAUhosozjiKbyAFwcNFt0mTJu2NsBk8bBgY8IRehTRdbTO0SU3SwXktH8RnMmWP4xT3heQiIf-3_iz-rCR5jNEGI1K-MuOGUFbeSY5xQVmGOfp6N54RL7OyKthR8sD7C4QQQUV1PznKKStKxPlx8m1rUqmCvtQmdaBgCtalu902HXQnTZMGJ6dUWRe14FNtoG1hwSEFdxV6ZyerwetFSn_9zEIvB-k9jFo-TO61cvDw6Ho_ST6_ffPp9H12dv5ud7o9yxRDLGRVXReEtRWKbfJcsbrAqia1rFuMGgaYtYRJXpKc17hBmORNDrzCpKEYVxJTcpK83vtOcz1Co8DEngcxOT1KdyWs1GKtGN2Lzl4KzmMaDEeDF9cGzn6fwQcxaq9gGKQBO3uBC0wpiXGhiD7do50cQGjT2uioFlxsCatyykvKIpUdoDowEJ-3MUIdr1f85gAfVxNzVAcLXq4KIhPgR-jk7L3Yffzw_-z5lzX77BbbgxxC7-0wB22NX4PP96By1nsH7U3cGIllIIUZxTKQkXxy-3duuD8T-Dd9HyXTgRMXdnYmTsw_Xr8BHP_mQw</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Dussiot, Michael</creator><creator>Maciel, Thiago T</creator><creator>Fricot, Aurélie</creator><creator>Chartier, Céline</creator><creator>Negre, Olivier</creator><creator>Veiga, Joel</creator><creator>Grapton, Damien</creator><creator>Paubelle, Etienne</creator><creator>Payen, Emmanuel</creator><creator>Beuzard, Yves</creator><creator>Leboulch, Philippe</creator><creator>Ribeil, Jean-Antoine</creator><creator>Arlet, Jean-Benoit</creator><creator>Coté, Francine</creator><creator>Courtois, Geneviève</creator><creator>Ginzburg, Yelena Z</creator><creator>Daniel, Thomas O</creator><creator>Chopra, Rajesh</creator><creator>Sung, Victoria</creator><creator>Hermine, Olivier</creator><creator>Moura, Ivan C</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8418-2803</orcidid><orcidid>https://orcid.org/0000000284182803</orcidid></search><sort><creationdate>20140401</creationdate><title>An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia</title><author>Dussiot, Michael ; Maciel, Thiago T ; Fricot, Aurélie ; Chartier, Céline ; Negre, Olivier ; Veiga, Joel ; Grapton, Damien ; Paubelle, Etienne ; Payen, Emmanuel ; Beuzard, Yves ; Leboulch, Philippe ; Ribeil, Jean-Antoine ; Arlet, Jean-Benoit ; Coté, Francine ; Courtois, Geneviève ; Ginzburg, Yelena Z ; Daniel, Thomas O ; Chopra, Rajesh ; Sung, Victoria ; Hermine, Olivier ; Moura, Ivan C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-9bb536f9095672c6b51cb3babf10d6e16f36a78327b1d0132d2e7913d4119a143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13/1</topic><topic>13/2</topic><topic>13/31</topic><topic>13/51</topic><topic>13/89</topic><topic>13/95</topic><topic>14/19</topic><topic>38/39</topic><topic>45</topic><topic>64</topic><topic>64/60</topic><topic>692/308/1426</topic><topic>Activin Receptors, Type II - metabolism</topic><topic>Animals</topic><topic>Apoptosis - physiology</topic><topic>Autocrine Communication - physiology</topic><topic>beta-Thalassemia - metabolism</topic><topic>Biomedicine</topic><topic>Bone Morphogenetic Proteins - antagonists & inhibitors</topic><topic>Bone Morphogenetic Proteins - metabolism</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>Cell Differentiation</topic><topic>Cytokines</topic><topic>Development and progression</topic><topic>Disease Models, Animal</topic><topic>Erythroblasts - metabolism</topic><topic>Erythropoiesis</topic><topic>Erythropoiesis - drug effects</topic><topic>Fas Ligand Protein</topic><topic>fas Receptor</topic><topic>Gene Amplification - physiology</topic><topic>Genetic aspects</topic><topic>Growth Differentiation Factors - antagonists & inhibitors</topic><topic>Growth Differentiation Factors - metabolism</topic><topic>Hematinics - pharmacology</topic><topic>Infectious Diseases</topic><topic>Ligands</topic><topic>Metabolic Diseases</topic><topic>Mice</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Oxidative Stress - physiology</topic><topic>Physiological aspects</topic><topic>Reactive Oxygen Species</topic><topic>Recombinant Fusion Proteins - pharmacology</topic><topic>Signal Transduction</topic><topic>Thalassemia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dussiot, Michael</creatorcontrib><creatorcontrib>Maciel, Thiago T</creatorcontrib><creatorcontrib>Fricot, Aurélie</creatorcontrib><creatorcontrib>Chartier, Céline</creatorcontrib><creatorcontrib>Negre, Olivier</creatorcontrib><creatorcontrib>Veiga, Joel</creatorcontrib><creatorcontrib>Grapton, Damien</creatorcontrib><creatorcontrib>Paubelle, Etienne</creatorcontrib><creatorcontrib>Payen, Emmanuel</creatorcontrib><creatorcontrib>Beuzard, Yves</creatorcontrib><creatorcontrib>Leboulch, Philippe</creatorcontrib><creatorcontrib>Ribeil, Jean-Antoine</creatorcontrib><creatorcontrib>Arlet, Jean-Benoit</creatorcontrib><creatorcontrib>Coté, Francine</creatorcontrib><creatorcontrib>Courtois, Geneviève</creatorcontrib><creatorcontrib>Ginzburg, Yelena Z</creatorcontrib><creatorcontrib>Daniel, Thomas O</creatorcontrib><creatorcontrib>Chopra, Rajesh</creatorcontrib><creatorcontrib>Sung, Victoria</creatorcontrib><creatorcontrib>Hermine, Olivier</creatorcontrib><creatorcontrib>Moura, Ivan C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dussiot, Michael</au><au>Maciel, Thiago T</au><au>Fricot, Aurélie</au><au>Chartier, Céline</au><au>Negre, Olivier</au><au>Veiga, Joel</au><au>Grapton, Damien</au><au>Paubelle, Etienne</au><au>Payen, Emmanuel</au><au>Beuzard, Yves</au><au>Leboulch, Philippe</au><au>Ribeil, Jean-Antoine</au><au>Arlet, Jean-Benoit</au><au>Coté, Francine</au><au>Courtois, Geneviève</au><au>Ginzburg, Yelena Z</au><au>Daniel, Thomas O</au><au>Chopra, Rajesh</au><au>Sung, Victoria</au><au>Hermine, Olivier</au><au>Moura, Ivan C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>20</volume><issue>4</issue><spage>398</spage><epage>407</epage><pages>398-407</pages><issn>1078-8956</issn><issn>1546-170X</issn><eissn>1546-170X</eissn><abstract>Michael Dussiot
et al
. show that an activin receptor IIA ligand trap ameliorates anemia in a mouse model of β-thalassemia by blocking the deleterious effects of GDF11. Mechanistically, GDF11 inactivation reversed ineffective erythropoiesis by promoting terminal erythroblast differentiation and by inducing apoptosis of immature erythroblasts. Also in this issue, Rajasekhar Suragani
et al
. show related findings using a modified activin receptor IIB ligand trap.
The pathophysiology of ineffective erythropoiesis in β-thalassemia is poorly understood. We report that RAP-011, an activin receptor IIA (ActRIIA) ligand trap, improved ineffective erythropoiesis, corrected anemia and limited iron overload in a mouse model of β-thalassemia intermedia. Expression of growth differentiation factor 11 (GDF11), an ActRIIA ligand, was increased in splenic erythroblasts from thalassemic mice and in erythroblasts and sera from subjects with β-thalassemia. Inactivation of GDF11 decreased oxidative stress and the amount of α-globin membrane precipitates, resulting in increased terminal erythroid differentiation. Abnormal GDF11 expression was dependent on reactive oxygen species, suggesting the existence of an autocrine amplification loop in β-thalassemia. GDF11 inactivation also corrected the abnormal ratio of immature/mature erythroblasts by inducing apoptosis of immature erythroblasts through the Fas–Fas ligand pathway. Taken together, these observations suggest that ActRIIA ligand traps may have therapeutic relevance in β-thalassemia by suppressing the deleterious effects of GDF11, a cytokine which blocks terminal erythroid maturation through an autocrine amplification loop involving oxidative stress and α-globin precipitation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>24658077</pmid><doi>10.1038/nm.3468</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8418-2803</orcidid><orcidid>https://orcid.org/0000000284182803</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2014-04, Vol.20 (4), p.398-407 |
issn | 1078-8956 1546-170X 1546-170X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7730561 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 13/1 13/2 13/31 13/51 13/89 13/95 14/19 38/39 45 64 64/60 692/308/1426 Activin Receptors, Type II - metabolism Animals Apoptosis - physiology Autocrine Communication - physiology beta-Thalassemia - metabolism Biomedicine Bone Morphogenetic Proteins - antagonists & inhibitors Bone Morphogenetic Proteins - metabolism Cancer Research Care and treatment Cell Differentiation Cytokines Development and progression Disease Models, Animal Erythroblasts - metabolism Erythropoiesis Erythropoiesis - drug effects Fas Ligand Protein fas Receptor Gene Amplification - physiology Genetic aspects Growth Differentiation Factors - antagonists & inhibitors Growth Differentiation Factors - metabolism Hematinics - pharmacology Infectious Diseases Ligands Metabolic Diseases Mice Molecular Medicine Neurosciences Oxidative Stress - physiology Physiological aspects Reactive Oxygen Species Recombinant Fusion Proteins - pharmacology Signal Transduction Thalassemia |
title | An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20activin%20receptor%20IIA%20ligand%20trap%20corrects%20ineffective%20erythropoiesis%20in%20%CE%B2-thalassemia&rft.jtitle=Nature%20medicine&rft.au=Dussiot,%20Michael&rft.date=2014-04-01&rft.volume=20&rft.issue=4&rft.spage=398&rft.epage=407&rft.pages=398-407&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/nm.3468&rft_dat=%3Cgale_pubme%3EA369247846%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1514438070&rft_id=info:pmid/24658077&rft_galeid=A369247846&rfr_iscdi=true |