An Improved HMM-Based Approach for Planning Individual Routes Using Crowd Sourcing Spatiotemporal Data

With the rapid development of LBSs (location-based services) in recent years, researchers have increasingly taken an interest in trying to make travel routes more practicable and individualized. Despite the fact that many studies have been conducted on routes using LBS data, the specific routes are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-12, Vol.20 (23), p.6938
Hauptverfasser: Wu, Tao, Zeng, Zhixuan, Qin, Jianxin, Xiang, Longgang, Wan, Yiliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 6938
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Wu, Tao
Zeng, Zhixuan
Qin, Jianxin
Xiang, Longgang
Wan, Yiliang
description With the rapid development of LBSs (location-based services) in recent years, researchers have increasingly taken an interest in trying to make travel routes more practicable and individualized. Despite the fact that many studies have been conducted on routes using LBS data, the specific routes are deficient in dynamic scalability and the correlations between environmental constraints and personal choices have not been investigated. This paper proposes an improved HMM-based (hidden Markov model) method for planning personalized routes with crowd sourcing spatiotemporal data. It tries to integrate the dynamic public preferences, the individual interests and the physical road network space in the same spatiotemporal framework, ensuring that reasonable routes will be generated. A novel dual-layer mapping structure has been proposed to bridge the gap from brief individual preferences to specific entries of POIs (points-of-interest) inside realistic road networks. A case study on Changsha city has proven that the proposed method can not only flexibly plan people's travel routes under different spatiotemporal backgrounds but also is close to people's natural selection by the perception of the group.
doi_str_mv 10.3390/s20236938
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7729757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ba26a6a17fa54eec8d322108d6f04b8e</doaj_id><sourcerecordid>2468670375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-ffd383dee3972ada5a3377539fa3b84ae6a14c594901c79609cd19a6ff2407f53</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhiMEoh9w4A-gHOEQsD2OHV-Qli3QlVqBKD1bs_7Ypkri1E624t_Xy5ZVe_L49atnZvwWxTtKPgEo8jkxwkAoaF4Ux5QzXjWMkZdP6qPiJKVbkl0AzeviCIApKgCOC78YylU_xrB1tjy_vKy-YsrVYswSmpvSh1j-6nAY2mFTrgbbbls7Y1f-DvPkUnmddvoyhntbXoU5mt31asSpDZPrxxCz9QwnfFO88tgl9_bxPC2uv3_7szyvLn7-WC0XF5XhnE6V9xYasM6Bkgwt1gggZQ3KI6wbjk4g5aZWXBFqpBJEGUsVCu8ZJ9LXcFqs9lwb8FaPse0x_tUBW_1PCHGjMU6t6ZxeIxOYedJjzZ0zjQXGKGms8ISvG5dZX_ascV73zho3THmdZ9DnL0N7ozdhq6VkStYyAz48AmK4m12adN8m47r8nS7MSTMuGiEJyN3cH_dWE0NK0flDG0r0LmN9yDh73z-d6-D8Hyo8ACIiolg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468670375</pqid></control><display><type>article</type><title>An Improved HMM-Based Approach for Planning Individual Routes Using Crowd Sourcing Spatiotemporal Data</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Wu, Tao ; Zeng, Zhixuan ; Qin, Jianxin ; Xiang, Longgang ; Wan, Yiliang</creator><creatorcontrib>Wu, Tao ; Zeng, Zhixuan ; Qin, Jianxin ; Xiang, Longgang ; Wan, Yiliang</creatorcontrib><description>With the rapid development of LBSs (location-based services) in recent years, researchers have increasingly taken an interest in trying to make travel routes more practicable and individualized. Despite the fact that many studies have been conducted on routes using LBS data, the specific routes are deficient in dynamic scalability and the correlations between environmental constraints and personal choices have not been investigated. This paper proposes an improved HMM-based (hidden Markov model) method for planning personalized routes with crowd sourcing spatiotemporal data. It tries to integrate the dynamic public preferences, the individual interests and the physical road network space in the same spatiotemporal framework, ensuring that reasonable routes will be generated. A novel dual-layer mapping structure has been proposed to bridge the gap from brief individual preferences to specific entries of POIs (points-of-interest) inside realistic road networks. A case study on Changsha city has proven that the proposed method can not only flexibly plan people's travel routes under different spatiotemporal backgrounds but also is close to people's natural selection by the perception of the group.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20236938</identifier><identifier>PMID: 33291633</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>crowd sourcing spatiotemporal data ; hidden Markov model ; route planning</subject><ispartof>Sensors (Basel, Switzerland), 2020-12, Vol.20 (23), p.6938</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-ffd383dee3972ada5a3377539fa3b84ae6a14c594901c79609cd19a6ff2407f53</citedby><cites>FETCH-LOGICAL-c441t-ffd383dee3972ada5a3377539fa3b84ae6a14c594901c79609cd19a6ff2407f53</cites><orcidid>0000-0003-3455-7934 ; 0000-0001-7346-3442 ; 0000-0001-9022-6991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729757/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729757/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33291633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Zeng, Zhixuan</creatorcontrib><creatorcontrib>Qin, Jianxin</creatorcontrib><creatorcontrib>Xiang, Longgang</creatorcontrib><creatorcontrib>Wan, Yiliang</creatorcontrib><title>An Improved HMM-Based Approach for Planning Individual Routes Using Crowd Sourcing Spatiotemporal Data</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>With the rapid development of LBSs (location-based services) in recent years, researchers have increasingly taken an interest in trying to make travel routes more practicable and individualized. Despite the fact that many studies have been conducted on routes using LBS data, the specific routes are deficient in dynamic scalability and the correlations between environmental constraints and personal choices have not been investigated. This paper proposes an improved HMM-based (hidden Markov model) method for planning personalized routes with crowd sourcing spatiotemporal data. It tries to integrate the dynamic public preferences, the individual interests and the physical road network space in the same spatiotemporal framework, ensuring that reasonable routes will be generated. A novel dual-layer mapping structure has been proposed to bridge the gap from brief individual preferences to specific entries of POIs (points-of-interest) inside realistic road networks. A case study on Changsha city has proven that the proposed method can not only flexibly plan people's travel routes under different spatiotemporal backgrounds but also is close to people's natural selection by the perception of the group.</description><subject>crowd sourcing spatiotemporal data</subject><subject>hidden Markov model</subject><subject>route planning</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1v1DAQhiMEoh9w4A-gHOEQsD2OHV-Qli3QlVqBKD1bs_7Ypkri1E624t_Xy5ZVe_L49atnZvwWxTtKPgEo8jkxwkAoaF4Ux5QzXjWMkZdP6qPiJKVbkl0AzeviCIApKgCOC78YylU_xrB1tjy_vKy-YsrVYswSmpvSh1j-6nAY2mFTrgbbbls7Y1f-DvPkUnmddvoyhntbXoU5mt31asSpDZPrxxCz9QwnfFO88tgl9_bxPC2uv3_7szyvLn7-WC0XF5XhnE6V9xYasM6Bkgwt1gggZQ3KI6wbjk4g5aZWXBFqpBJEGUsVCu8ZJ9LXcFqs9lwb8FaPse0x_tUBW_1PCHGjMU6t6ZxeIxOYedJjzZ0zjQXGKGms8ISvG5dZX_ascV73zho3THmdZ9DnL0N7ozdhq6VkStYyAz48AmK4m12adN8m47r8nS7MSTMuGiEJyN3cH_dWE0NK0flDG0r0LmN9yDh73z-d6-D8Hyo8ACIiolg</recordid><startdate>20201204</startdate><enddate>20201204</enddate><creator>Wu, Tao</creator><creator>Zeng, Zhixuan</creator><creator>Qin, Jianxin</creator><creator>Xiang, Longgang</creator><creator>Wan, Yiliang</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3455-7934</orcidid><orcidid>https://orcid.org/0000-0001-7346-3442</orcidid><orcidid>https://orcid.org/0000-0001-9022-6991</orcidid></search><sort><creationdate>20201204</creationdate><title>An Improved HMM-Based Approach for Planning Individual Routes Using Crowd Sourcing Spatiotemporal Data</title><author>Wu, Tao ; Zeng, Zhixuan ; Qin, Jianxin ; Xiang, Longgang ; Wan, Yiliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-ffd383dee3972ada5a3377539fa3b84ae6a14c594901c79609cd19a6ff2407f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>crowd sourcing spatiotemporal data</topic><topic>hidden Markov model</topic><topic>route planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Zeng, Zhixuan</creatorcontrib><creatorcontrib>Qin, Jianxin</creatorcontrib><creatorcontrib>Xiang, Longgang</creatorcontrib><creatorcontrib>Wan, Yiliang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tao</au><au>Zeng, Zhixuan</au><au>Qin, Jianxin</au><au>Xiang, Longgang</au><au>Wan, Yiliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved HMM-Based Approach for Planning Individual Routes Using Crowd Sourcing Spatiotemporal Data</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-12-04</date><risdate>2020</risdate><volume>20</volume><issue>23</issue><spage>6938</spage><pages>6938-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>With the rapid development of LBSs (location-based services) in recent years, researchers have increasingly taken an interest in trying to make travel routes more practicable and individualized. Despite the fact that many studies have been conducted on routes using LBS data, the specific routes are deficient in dynamic scalability and the correlations between environmental constraints and personal choices have not been investigated. This paper proposes an improved HMM-based (hidden Markov model) method for planning personalized routes with crowd sourcing spatiotemporal data. It tries to integrate the dynamic public preferences, the individual interests and the physical road network space in the same spatiotemporal framework, ensuring that reasonable routes will be generated. A novel dual-layer mapping structure has been proposed to bridge the gap from brief individual preferences to specific entries of POIs (points-of-interest) inside realistic road networks. A case study on Changsha city has proven that the proposed method can not only flexibly plan people's travel routes under different spatiotemporal backgrounds but also is close to people's natural selection by the perception of the group.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>33291633</pmid><doi>10.3390/s20236938</doi><orcidid>https://orcid.org/0000-0003-3455-7934</orcidid><orcidid>https://orcid.org/0000-0001-7346-3442</orcidid><orcidid>https://orcid.org/0000-0001-9022-6991</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-12, Vol.20 (23), p.6938
issn 1424-8220
1424-8220
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7729757
source Full-Text Journals in Chemistry (Open access); Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; EZB Electronic Journals Library
subjects crowd sourcing spatiotemporal data
hidden Markov model
route planning
title An Improved HMM-Based Approach for Planning Individual Routes Using Crowd Sourcing Spatiotemporal Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T14%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20HMM-Based%20Approach%20for%20Planning%20Individual%20Routes%20Using%20Crowd%20Sourcing%20Spatiotemporal%20Data&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Wu,%20Tao&rft.date=2020-12-04&rft.volume=20&rft.issue=23&rft.spage=6938&rft.pages=6938-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20236938&rft_dat=%3Cproquest_doaj_%3E2468670375%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468670375&rft_id=info:pmid/33291633&rft_doaj_id=oai_doaj_org_article_ba26a6a17fa54eec8d322108d6f04b8e&rfr_iscdi=true