An Improved HMM-Based Approach for Planning Individual Routes Using Crowd Sourcing Spatiotemporal Data
With the rapid development of LBSs (location-based services) in recent years, researchers have increasingly taken an interest in trying to make travel routes more practicable and individualized. Despite the fact that many studies have been conducted on routes using LBS data, the specific routes are...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2020-12, Vol.20 (23), p.6938 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 6938 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 20 |
creator | Wu, Tao Zeng, Zhixuan Qin, Jianxin Xiang, Longgang Wan, Yiliang |
description | With the rapid development of LBSs (location-based services) in recent years, researchers have increasingly taken an interest in trying to make travel routes more practicable and individualized. Despite the fact that many studies have been conducted on routes using LBS data, the specific routes are deficient in dynamic scalability and the correlations between environmental constraints and personal choices have not been investigated. This paper proposes an improved HMM-based (hidden Markov model) method for planning personalized routes with crowd sourcing spatiotemporal data. It tries to integrate the dynamic public preferences, the individual interests and the physical road network space in the same spatiotemporal framework, ensuring that reasonable routes will be generated. A novel dual-layer mapping structure has been proposed to bridge the gap from brief individual preferences to specific entries of POIs (points-of-interest) inside realistic road networks. A case study on Changsha city has proven that the proposed method can not only flexibly plan people's travel routes under different spatiotemporal backgrounds but also is close to people's natural selection by the perception of the group. |
doi_str_mv | 10.3390/s20236938 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7729757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ba26a6a17fa54eec8d322108d6f04b8e</doaj_id><sourcerecordid>2468670375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-ffd383dee3972ada5a3377539fa3b84ae6a14c594901c79609cd19a6ff2407f53</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhiMEoh9w4A-gHOEQsD2OHV-Qli3QlVqBKD1bs_7Ypkri1E624t_Xy5ZVe_L49atnZvwWxTtKPgEo8jkxwkAoaF4Ux5QzXjWMkZdP6qPiJKVbkl0AzeviCIApKgCOC78YylU_xrB1tjy_vKy-YsrVYswSmpvSh1j-6nAY2mFTrgbbbls7Y1f-DvPkUnmddvoyhntbXoU5mt31asSpDZPrxxCz9QwnfFO88tgl9_bxPC2uv3_7szyvLn7-WC0XF5XhnE6V9xYasM6Bkgwt1gggZQ3KI6wbjk4g5aZWXBFqpBJEGUsVCu8ZJ9LXcFqs9lwb8FaPse0x_tUBW_1PCHGjMU6t6ZxeIxOYedJjzZ0zjQXGKGms8ISvG5dZX_ascV73zho3THmdZ9DnL0N7ozdhq6VkStYyAz48AmK4m12adN8m47r8nS7MSTMuGiEJyN3cH_dWE0NK0flDG0r0LmN9yDh73z-d6-D8Hyo8ACIiolg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468670375</pqid></control><display><type>article</type><title>An Improved HMM-Based Approach for Planning Individual Routes Using Crowd Sourcing Spatiotemporal Data</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Wu, Tao ; Zeng, Zhixuan ; Qin, Jianxin ; Xiang, Longgang ; Wan, Yiliang</creator><creatorcontrib>Wu, Tao ; Zeng, Zhixuan ; Qin, Jianxin ; Xiang, Longgang ; Wan, Yiliang</creatorcontrib><description>With the rapid development of LBSs (location-based services) in recent years, researchers have increasingly taken an interest in trying to make travel routes more practicable and individualized. Despite the fact that many studies have been conducted on routes using LBS data, the specific routes are deficient in dynamic scalability and the correlations between environmental constraints and personal choices have not been investigated. This paper proposes an improved HMM-based (hidden Markov model) method for planning personalized routes with crowd sourcing spatiotemporal data. It tries to integrate the dynamic public preferences, the individual interests and the physical road network space in the same spatiotemporal framework, ensuring that reasonable routes will be generated. A novel dual-layer mapping structure has been proposed to bridge the gap from brief individual preferences to specific entries of POIs (points-of-interest) inside realistic road networks. A case study on Changsha city has proven that the proposed method can not only flexibly plan people's travel routes under different spatiotemporal backgrounds but also is close to people's natural selection by the perception of the group.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20236938</identifier><identifier>PMID: 33291633</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>crowd sourcing spatiotemporal data ; hidden Markov model ; route planning</subject><ispartof>Sensors (Basel, Switzerland), 2020-12, Vol.20 (23), p.6938</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-ffd383dee3972ada5a3377539fa3b84ae6a14c594901c79609cd19a6ff2407f53</citedby><cites>FETCH-LOGICAL-c441t-ffd383dee3972ada5a3377539fa3b84ae6a14c594901c79609cd19a6ff2407f53</cites><orcidid>0000-0003-3455-7934 ; 0000-0001-7346-3442 ; 0000-0001-9022-6991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729757/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729757/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33291633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Zeng, Zhixuan</creatorcontrib><creatorcontrib>Qin, Jianxin</creatorcontrib><creatorcontrib>Xiang, Longgang</creatorcontrib><creatorcontrib>Wan, Yiliang</creatorcontrib><title>An Improved HMM-Based Approach for Planning Individual Routes Using Crowd Sourcing Spatiotemporal Data</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>With the rapid development of LBSs (location-based services) in recent years, researchers have increasingly taken an interest in trying to make travel routes more practicable and individualized. Despite the fact that many studies have been conducted on routes using LBS data, the specific routes are deficient in dynamic scalability and the correlations between environmental constraints and personal choices have not been investigated. This paper proposes an improved HMM-based (hidden Markov model) method for planning personalized routes with crowd sourcing spatiotemporal data. It tries to integrate the dynamic public preferences, the individual interests and the physical road network space in the same spatiotemporal framework, ensuring that reasonable routes will be generated. A novel dual-layer mapping structure has been proposed to bridge the gap from brief individual preferences to specific entries of POIs (points-of-interest) inside realistic road networks. A case study on Changsha city has proven that the proposed method can not only flexibly plan people's travel routes under different spatiotemporal backgrounds but also is close to people's natural selection by the perception of the group.</description><subject>crowd sourcing spatiotemporal data</subject><subject>hidden Markov model</subject><subject>route planning</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1v1DAQhiMEoh9w4A-gHOEQsD2OHV-Qli3QlVqBKD1bs_7Ypkri1E624t_Xy5ZVe_L49atnZvwWxTtKPgEo8jkxwkAoaF4Ux5QzXjWMkZdP6qPiJKVbkl0AzeviCIApKgCOC78YylU_xrB1tjy_vKy-YsrVYswSmpvSh1j-6nAY2mFTrgbbbls7Y1f-DvPkUnmddvoyhntbXoU5mt31asSpDZPrxxCz9QwnfFO88tgl9_bxPC2uv3_7szyvLn7-WC0XF5XhnE6V9xYasM6Bkgwt1gggZQ3KI6wbjk4g5aZWXBFqpBJEGUsVCu8ZJ9LXcFqs9lwb8FaPse0x_tUBW_1PCHGjMU6t6ZxeIxOYedJjzZ0zjQXGKGms8ISvG5dZX_ascV73zho3THmdZ9DnL0N7ozdhq6VkStYyAz48AmK4m12adN8m47r8nS7MSTMuGiEJyN3cH_dWE0NK0flDG0r0LmN9yDh73z-d6-D8Hyo8ACIiolg</recordid><startdate>20201204</startdate><enddate>20201204</enddate><creator>Wu, Tao</creator><creator>Zeng, Zhixuan</creator><creator>Qin, Jianxin</creator><creator>Xiang, Longgang</creator><creator>Wan, Yiliang</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3455-7934</orcidid><orcidid>https://orcid.org/0000-0001-7346-3442</orcidid><orcidid>https://orcid.org/0000-0001-9022-6991</orcidid></search><sort><creationdate>20201204</creationdate><title>An Improved HMM-Based Approach for Planning Individual Routes Using Crowd Sourcing Spatiotemporal Data</title><author>Wu, Tao ; Zeng, Zhixuan ; Qin, Jianxin ; Xiang, Longgang ; Wan, Yiliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-ffd383dee3972ada5a3377539fa3b84ae6a14c594901c79609cd19a6ff2407f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>crowd sourcing spatiotemporal data</topic><topic>hidden Markov model</topic><topic>route planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tao</creatorcontrib><creatorcontrib>Zeng, Zhixuan</creatorcontrib><creatorcontrib>Qin, Jianxin</creatorcontrib><creatorcontrib>Xiang, Longgang</creatorcontrib><creatorcontrib>Wan, Yiliang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Tao</au><au>Zeng, Zhixuan</au><au>Qin, Jianxin</au><au>Xiang, Longgang</au><au>Wan, Yiliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved HMM-Based Approach for Planning Individual Routes Using Crowd Sourcing Spatiotemporal Data</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-12-04</date><risdate>2020</risdate><volume>20</volume><issue>23</issue><spage>6938</spage><pages>6938-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>With the rapid development of LBSs (location-based services) in recent years, researchers have increasingly taken an interest in trying to make travel routes more practicable and individualized. Despite the fact that many studies have been conducted on routes using LBS data, the specific routes are deficient in dynamic scalability and the correlations between environmental constraints and personal choices have not been investigated. This paper proposes an improved HMM-based (hidden Markov model) method for planning personalized routes with crowd sourcing spatiotemporal data. It tries to integrate the dynamic public preferences, the individual interests and the physical road network space in the same spatiotemporal framework, ensuring that reasonable routes will be generated. A novel dual-layer mapping structure has been proposed to bridge the gap from brief individual preferences to specific entries of POIs (points-of-interest) inside realistic road networks. A case study on Changsha city has proven that the proposed method can not only flexibly plan people's travel routes under different spatiotemporal backgrounds but also is close to people's natural selection by the perception of the group.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>33291633</pmid><doi>10.3390/s20236938</doi><orcidid>https://orcid.org/0000-0003-3455-7934</orcidid><orcidid>https://orcid.org/0000-0001-7346-3442</orcidid><orcidid>https://orcid.org/0000-0001-9022-6991</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-12, Vol.20 (23), p.6938 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7729757 |
source | Full-Text Journals in Chemistry (Open access); Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; EZB Electronic Journals Library |
subjects | crowd sourcing spatiotemporal data hidden Markov model route planning |
title | An Improved HMM-Based Approach for Planning Individual Routes Using Crowd Sourcing Spatiotemporal Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T14%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20HMM-Based%20Approach%20for%20Planning%20Individual%20Routes%20Using%20Crowd%20Sourcing%20Spatiotemporal%20Data&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Wu,%20Tao&rft.date=2020-12-04&rft.volume=20&rft.issue=23&rft.spage=6938&rft.pages=6938-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20236938&rft_dat=%3Cproquest_doaj_%3E2468670375%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468670375&rft_id=info:pmid/33291633&rft_doaj_id=oai_doaj_org_article_ba26a6a17fa54eec8d322108d6f04b8e&rfr_iscdi=true |