DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning
To automate the segmentation of retinal layers, we propose DeepRetina, a method based on deep neural networks. DeepRetina uses the improved Xception65 to extract and learn the characteristics of retinal layers. The Xception65-extracted feature maps are inputted to an atrous spatial pyramid pooling m...
Gespeichert in:
Veröffentlicht in: | Translational vision science & technology 2020-12, Vol.9 (2), p.61-61 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | 2 |
container_start_page | 61 |
container_title | Translational vision science & technology |
container_volume | 9 |
creator | Li, Qiaoliang Li, Shiyu He, Zhuoying Guan, Huimin Chen, Runmin Xu, Ying Wang, Tao Qi, Suwen Mei, Jun Wang, Wei |
description | To automate the segmentation of retinal layers, we propose DeepRetina, a method based on deep neural networks.
DeepRetina uses the improved Xception65 to extract and learn the characteristics of retinal layers. The Xception65-extracted feature maps are inputted to an atrous spatial pyramid pooling module to obtain multiscale feature information. This information is then recovered to capture clearer retinal layer boundaries in the encoder-decoder module, thus completing retinal layer auto-segmentation of the retinal optical coherence tomography (OCT) images.
We validated this method using a retinal OCT image database containing 280 volumes (40 B-scans per volume) to demonstrate its effectiveness. The results showed that the method exhibits excellent performance in terms of the mean intersection over union and sensitivity (Se), which are as high as 90.41 and 92.15%, respectively. The intersection over union and Se values of the nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, outer limiting membrane, photoreceptor inner segment, photoreceptor outer segment, and pigment epithelium layer were found to be above 88%.
DeepRetina can automate the segmentation of retinal layers and has great potential for the early diagnosis of fundus retinal diseases. In addition, our approach will provide a segmentation model framework for other types of tissues and cells in clinical practice.
Automating the segmentation of retinal layers can help effectively diagnose and monitor clinical retinal diseases. In addition, it requires only a small amount of manual segmentation, significantly improving work efficiency. |
doi_str_mv | 10.1167/tvst.9.2.61 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7726589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470898749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-addf18fea8db64382b65351f2b0baf4b50330d8332409a4ad36c68dafe92a6193</originalsourceid><addsrcrecordid>eNpVUU1Lw0AQXUSxUnvyLnsUJHG_stn1IEj9qgQK2p6XSbKJkXzUbFrovzehtdS5zAzvzZvHDEJXlPiUyvCu27jO1z7zJT1BF4xK4bFA09OjeoQmzn2TPqQKhJDnaMQ5Z1oLcoHen6xdfdiuqOEeR7C1Lf60eWXrDrqiqXGT4R2KixrPpws8qyC3Di9dUed4GMaRhbbuu0t0lkHp7GSfx2j58ryYvnnR_HU2fYy8hCvaeZCmGVWZBZXGUnDFYhnwgGYsJjFkIg4I5yRVvUNBNAhIuUykSiGzmoGkmo_Rw053tY4rmya91xZKs2qLCtqtaaAw_5G6-DJ5szFhyGSgBoGbvUDb_Kyt60xVuMSWJdS2WTvDREiUVqEYqLc7atI2zrU2O6yhxAwPMMMDjDbMSNqzr4-dHbh_5-a_TSaB_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470898749</pqid></control><display><type>article</type><title>DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Qiaoliang ; Li, Shiyu ; He, Zhuoying ; Guan, Huimin ; Chen, Runmin ; Xu, Ying ; Wang, Tao ; Qi, Suwen ; Mei, Jun ; Wang, Wei</creator><creatorcontrib>Li, Qiaoliang ; Li, Shiyu ; He, Zhuoying ; Guan, Huimin ; Chen, Runmin ; Xu, Ying ; Wang, Tao ; Qi, Suwen ; Mei, Jun ; Wang, Wei</creatorcontrib><description>To automate the segmentation of retinal layers, we propose DeepRetina, a method based on deep neural networks.
DeepRetina uses the improved Xception65 to extract and learn the characteristics of retinal layers. The Xception65-extracted feature maps are inputted to an atrous spatial pyramid pooling module to obtain multiscale feature information. This information is then recovered to capture clearer retinal layer boundaries in the encoder-decoder module, thus completing retinal layer auto-segmentation of the retinal optical coherence tomography (OCT) images.
We validated this method using a retinal OCT image database containing 280 volumes (40 B-scans per volume) to demonstrate its effectiveness. The results showed that the method exhibits excellent performance in terms of the mean intersection over union and sensitivity (Se), which are as high as 90.41 and 92.15%, respectively. The intersection over union and Se values of the nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, outer limiting membrane, photoreceptor inner segment, photoreceptor outer segment, and pigment epithelium layer were found to be above 88%.
DeepRetina can automate the segmentation of retinal layers and has great potential for the early diagnosis of fundus retinal diseases. In addition, our approach will provide a segmentation model framework for other types of tissues and cells in clinical practice.
Automating the segmentation of retinal layers can help effectively diagnose and monitor clinical retinal diseases. In addition, it requires only a small amount of manual segmentation, significantly improving work efficiency.</description><identifier>ISSN: 2164-2591</identifier><identifier>EISSN: 2164-2591</identifier><identifier>DOI: 10.1167/tvst.9.2.61</identifier><identifier>PMID: 33329940</identifier><language>eng</language><publisher>United States: The Association for Research in Vision and Ophthalmology</publisher><subject>Deep Learning ; Humans ; Retina - diagnostic imaging ; Retinal Diseases ; Special Issue ; Tomography, Optical Coherence</subject><ispartof>Translational vision science & technology, 2020-12, Vol.9 (2), p.61-61</ispartof><rights>Copyright 2020 The Authors.</rights><rights>Copyright 2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-addf18fea8db64382b65351f2b0baf4b50330d8332409a4ad36c68dafe92a6193</citedby><cites>FETCH-LOGICAL-c381t-addf18fea8db64382b65351f2b0baf4b50330d8332409a4ad36c68dafe92a6193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726589/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726589/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33329940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qiaoliang</creatorcontrib><creatorcontrib>Li, Shiyu</creatorcontrib><creatorcontrib>He, Zhuoying</creatorcontrib><creatorcontrib>Guan, Huimin</creatorcontrib><creatorcontrib>Chen, Runmin</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Qi, Suwen</creatorcontrib><creatorcontrib>Mei, Jun</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><title>DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning</title><title>Translational vision science & technology</title><addtitle>Transl Vis Sci Technol</addtitle><description>To automate the segmentation of retinal layers, we propose DeepRetina, a method based on deep neural networks.
DeepRetina uses the improved Xception65 to extract and learn the characteristics of retinal layers. The Xception65-extracted feature maps are inputted to an atrous spatial pyramid pooling module to obtain multiscale feature information. This information is then recovered to capture clearer retinal layer boundaries in the encoder-decoder module, thus completing retinal layer auto-segmentation of the retinal optical coherence tomography (OCT) images.
We validated this method using a retinal OCT image database containing 280 volumes (40 B-scans per volume) to demonstrate its effectiveness. The results showed that the method exhibits excellent performance in terms of the mean intersection over union and sensitivity (Se), which are as high as 90.41 and 92.15%, respectively. The intersection over union and Se values of the nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, outer limiting membrane, photoreceptor inner segment, photoreceptor outer segment, and pigment epithelium layer were found to be above 88%.
DeepRetina can automate the segmentation of retinal layers and has great potential for the early diagnosis of fundus retinal diseases. In addition, our approach will provide a segmentation model framework for other types of tissues and cells in clinical practice.
Automating the segmentation of retinal layers can help effectively diagnose and monitor clinical retinal diseases. In addition, it requires only a small amount of manual segmentation, significantly improving work efficiency.</description><subject>Deep Learning</subject><subject>Humans</subject><subject>Retina - diagnostic imaging</subject><subject>Retinal Diseases</subject><subject>Special Issue</subject><subject>Tomography, Optical Coherence</subject><issn>2164-2591</issn><issn>2164-2591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1Lw0AQXUSxUnvyLnsUJHG_stn1IEj9qgQK2p6XSbKJkXzUbFrovzehtdS5zAzvzZvHDEJXlPiUyvCu27jO1z7zJT1BF4xK4bFA09OjeoQmzn2TPqQKhJDnaMQ5Z1oLcoHen6xdfdiuqOEeR7C1Lf60eWXrDrqiqXGT4R2KixrPpws8qyC3Di9dUed4GMaRhbbuu0t0lkHp7GSfx2j58ryYvnnR_HU2fYy8hCvaeZCmGVWZBZXGUnDFYhnwgGYsJjFkIg4I5yRVvUNBNAhIuUykSiGzmoGkmo_Rw053tY4rmya91xZKs2qLCtqtaaAw_5G6-DJ5szFhyGSgBoGbvUDb_Kyt60xVuMSWJdS2WTvDREiUVqEYqLc7atI2zrU2O6yhxAwPMMMDjDbMSNqzr4-dHbh_5-a_TSaB_A</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>Li, Qiaoliang</creator><creator>Li, Shiyu</creator><creator>He, Zhuoying</creator><creator>Guan, Huimin</creator><creator>Chen, Runmin</creator><creator>Xu, Ying</creator><creator>Wang, Tao</creator><creator>Qi, Suwen</creator><creator>Mei, Jun</creator><creator>Wang, Wei</creator><general>The Association for Research in Vision and Ophthalmology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201209</creationdate><title>DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning</title><author>Li, Qiaoliang ; Li, Shiyu ; He, Zhuoying ; Guan, Huimin ; Chen, Runmin ; Xu, Ying ; Wang, Tao ; Qi, Suwen ; Mei, Jun ; Wang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-addf18fea8db64382b65351f2b0baf4b50330d8332409a4ad36c68dafe92a6193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deep Learning</topic><topic>Humans</topic><topic>Retina - diagnostic imaging</topic><topic>Retinal Diseases</topic><topic>Special Issue</topic><topic>Tomography, Optical Coherence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiaoliang</creatorcontrib><creatorcontrib>Li, Shiyu</creatorcontrib><creatorcontrib>He, Zhuoying</creatorcontrib><creatorcontrib>Guan, Huimin</creatorcontrib><creatorcontrib>Chen, Runmin</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Qi, Suwen</creatorcontrib><creatorcontrib>Mei, Jun</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Translational vision science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qiaoliang</au><au>Li, Shiyu</au><au>He, Zhuoying</au><au>Guan, Huimin</au><au>Chen, Runmin</au><au>Xu, Ying</au><au>Wang, Tao</au><au>Qi, Suwen</au><au>Mei, Jun</au><au>Wang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning</atitle><jtitle>Translational vision science & technology</jtitle><addtitle>Transl Vis Sci Technol</addtitle><date>2020-12-09</date><risdate>2020</risdate><volume>9</volume><issue>2</issue><spage>61</spage><epage>61</epage><pages>61-61</pages><issn>2164-2591</issn><eissn>2164-2591</eissn><abstract>To automate the segmentation of retinal layers, we propose DeepRetina, a method based on deep neural networks.
DeepRetina uses the improved Xception65 to extract and learn the characteristics of retinal layers. The Xception65-extracted feature maps are inputted to an atrous spatial pyramid pooling module to obtain multiscale feature information. This information is then recovered to capture clearer retinal layer boundaries in the encoder-decoder module, thus completing retinal layer auto-segmentation of the retinal optical coherence tomography (OCT) images.
We validated this method using a retinal OCT image database containing 280 volumes (40 B-scans per volume) to demonstrate its effectiveness. The results showed that the method exhibits excellent performance in terms of the mean intersection over union and sensitivity (Se), which are as high as 90.41 and 92.15%, respectively. The intersection over union and Se values of the nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, outer limiting membrane, photoreceptor inner segment, photoreceptor outer segment, and pigment epithelium layer were found to be above 88%.
DeepRetina can automate the segmentation of retinal layers and has great potential for the early diagnosis of fundus retinal diseases. In addition, our approach will provide a segmentation model framework for other types of tissues and cells in clinical practice.
Automating the segmentation of retinal layers can help effectively diagnose and monitor clinical retinal diseases. In addition, it requires only a small amount of manual segmentation, significantly improving work efficiency.</abstract><cop>United States</cop><pub>The Association for Research in Vision and Ophthalmology</pub><pmid>33329940</pmid><doi>10.1167/tvst.9.2.61</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2164-2591 |
ispartof | Translational vision science & technology, 2020-12, Vol.9 (2), p.61-61 |
issn | 2164-2591 2164-2591 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7726589 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Deep Learning Humans Retina - diagnostic imaging Retinal Diseases Special Issue Tomography, Optical Coherence |
title | DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepRetina:%20Layer%20Segmentation%20of%20Retina%20in%20OCT%20Images%20Using%20Deep%20Learning&rft.jtitle=Translational%20vision%20science%20&%20technology&rft.au=Li,%20Qiaoliang&rft.date=2020-12-09&rft.volume=9&rft.issue=2&rft.spage=61&rft.epage=61&rft.pages=61-61&rft.issn=2164-2591&rft.eissn=2164-2591&rft_id=info:doi/10.1167/tvst.9.2.61&rft_dat=%3Cproquest_pubme%3E2470898749%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470898749&rft_id=info:pmid/33329940&rfr_iscdi=true |