DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning

To automate the segmentation of retinal layers, we propose DeepRetina, a method based on deep neural networks. DeepRetina uses the improved Xception65 to extract and learn the characteristics of retinal layers. The Xception65-extracted feature maps are inputted to an atrous spatial pyramid pooling m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Translational vision science & technology 2020-12, Vol.9 (2), p.61-61
Hauptverfasser: Li, Qiaoliang, Li, Shiyu, He, Zhuoying, Guan, Huimin, Chen, Runmin, Xu, Ying, Wang, Tao, Qi, Suwen, Mei, Jun, Wang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue 2
container_start_page 61
container_title Translational vision science & technology
container_volume 9
creator Li, Qiaoliang
Li, Shiyu
He, Zhuoying
Guan, Huimin
Chen, Runmin
Xu, Ying
Wang, Tao
Qi, Suwen
Mei, Jun
Wang, Wei
description To automate the segmentation of retinal layers, we propose DeepRetina, a method based on deep neural networks. DeepRetina uses the improved Xception65 to extract and learn the characteristics of retinal layers. The Xception65-extracted feature maps are inputted to an atrous spatial pyramid pooling module to obtain multiscale feature information. This information is then recovered to capture clearer retinal layer boundaries in the encoder-decoder module, thus completing retinal layer auto-segmentation of the retinal optical coherence tomography (OCT) images. We validated this method using a retinal OCT image database containing 280 volumes (40 B-scans per volume) to demonstrate its effectiveness. The results showed that the method exhibits excellent performance in terms of the mean intersection over union and sensitivity (Se), which are as high as 90.41 and 92.15%, respectively. The intersection over union and Se values of the nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, outer limiting membrane, photoreceptor inner segment, photoreceptor outer segment, and pigment epithelium layer were found to be above 88%. DeepRetina can automate the segmentation of retinal layers and has great potential for the early diagnosis of fundus retinal diseases. In addition, our approach will provide a segmentation model framework for other types of tissues and cells in clinical practice. Automating the segmentation of retinal layers can help effectively diagnose and monitor clinical retinal diseases. In addition, it requires only a small amount of manual segmentation, significantly improving work efficiency.
doi_str_mv 10.1167/tvst.9.2.61
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7726589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470898749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-addf18fea8db64382b65351f2b0baf4b50330d8332409a4ad36c68dafe92a6193</originalsourceid><addsrcrecordid>eNpVUU1Lw0AQXUSxUnvyLnsUJHG_stn1IEj9qgQK2p6XSbKJkXzUbFrovzehtdS5zAzvzZvHDEJXlPiUyvCu27jO1z7zJT1BF4xK4bFA09OjeoQmzn2TPqQKhJDnaMQ5Z1oLcoHen6xdfdiuqOEeR7C1Lf60eWXrDrqiqXGT4R2KixrPpws8qyC3Di9dUed4GMaRhbbuu0t0lkHp7GSfx2j58ryYvnnR_HU2fYy8hCvaeZCmGVWZBZXGUnDFYhnwgGYsJjFkIg4I5yRVvUNBNAhIuUykSiGzmoGkmo_Rw053tY4rmya91xZKs2qLCtqtaaAw_5G6-DJ5szFhyGSgBoGbvUDb_Kyt60xVuMSWJdS2WTvDREiUVqEYqLc7atI2zrU2O6yhxAwPMMMDjDbMSNqzr4-dHbh_5-a_TSaB_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470898749</pqid></control><display><type>article</type><title>DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Qiaoliang ; Li, Shiyu ; He, Zhuoying ; Guan, Huimin ; Chen, Runmin ; Xu, Ying ; Wang, Tao ; Qi, Suwen ; Mei, Jun ; Wang, Wei</creator><creatorcontrib>Li, Qiaoliang ; Li, Shiyu ; He, Zhuoying ; Guan, Huimin ; Chen, Runmin ; Xu, Ying ; Wang, Tao ; Qi, Suwen ; Mei, Jun ; Wang, Wei</creatorcontrib><description>To automate the segmentation of retinal layers, we propose DeepRetina, a method based on deep neural networks. DeepRetina uses the improved Xception65 to extract and learn the characteristics of retinal layers. The Xception65-extracted feature maps are inputted to an atrous spatial pyramid pooling module to obtain multiscale feature information. This information is then recovered to capture clearer retinal layer boundaries in the encoder-decoder module, thus completing retinal layer auto-segmentation of the retinal optical coherence tomography (OCT) images. We validated this method using a retinal OCT image database containing 280 volumes (40 B-scans per volume) to demonstrate its effectiveness. The results showed that the method exhibits excellent performance in terms of the mean intersection over union and sensitivity (Se), which are as high as 90.41 and 92.15%, respectively. The intersection over union and Se values of the nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, outer limiting membrane, photoreceptor inner segment, photoreceptor outer segment, and pigment epithelium layer were found to be above 88%. DeepRetina can automate the segmentation of retinal layers and has great potential for the early diagnosis of fundus retinal diseases. In addition, our approach will provide a segmentation model framework for other types of tissues and cells in clinical practice. Automating the segmentation of retinal layers can help effectively diagnose and monitor clinical retinal diseases. In addition, it requires only a small amount of manual segmentation, significantly improving work efficiency.</description><identifier>ISSN: 2164-2591</identifier><identifier>EISSN: 2164-2591</identifier><identifier>DOI: 10.1167/tvst.9.2.61</identifier><identifier>PMID: 33329940</identifier><language>eng</language><publisher>United States: The Association for Research in Vision and Ophthalmology</publisher><subject>Deep Learning ; Humans ; Retina - diagnostic imaging ; Retinal Diseases ; Special Issue ; Tomography, Optical Coherence</subject><ispartof>Translational vision science &amp; technology, 2020-12, Vol.9 (2), p.61-61</ispartof><rights>Copyright 2020 The Authors.</rights><rights>Copyright 2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-addf18fea8db64382b65351f2b0baf4b50330d8332409a4ad36c68dafe92a6193</citedby><cites>FETCH-LOGICAL-c381t-addf18fea8db64382b65351f2b0baf4b50330d8332409a4ad36c68dafe92a6193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726589/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726589/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33329940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qiaoliang</creatorcontrib><creatorcontrib>Li, Shiyu</creatorcontrib><creatorcontrib>He, Zhuoying</creatorcontrib><creatorcontrib>Guan, Huimin</creatorcontrib><creatorcontrib>Chen, Runmin</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Qi, Suwen</creatorcontrib><creatorcontrib>Mei, Jun</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><title>DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning</title><title>Translational vision science &amp; technology</title><addtitle>Transl Vis Sci Technol</addtitle><description>To automate the segmentation of retinal layers, we propose DeepRetina, a method based on deep neural networks. DeepRetina uses the improved Xception65 to extract and learn the characteristics of retinal layers. The Xception65-extracted feature maps are inputted to an atrous spatial pyramid pooling module to obtain multiscale feature information. This information is then recovered to capture clearer retinal layer boundaries in the encoder-decoder module, thus completing retinal layer auto-segmentation of the retinal optical coherence tomography (OCT) images. We validated this method using a retinal OCT image database containing 280 volumes (40 B-scans per volume) to demonstrate its effectiveness. The results showed that the method exhibits excellent performance in terms of the mean intersection over union and sensitivity (Se), which are as high as 90.41 and 92.15%, respectively. The intersection over union and Se values of the nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, outer limiting membrane, photoreceptor inner segment, photoreceptor outer segment, and pigment epithelium layer were found to be above 88%. DeepRetina can automate the segmentation of retinal layers and has great potential for the early diagnosis of fundus retinal diseases. In addition, our approach will provide a segmentation model framework for other types of tissues and cells in clinical practice. Automating the segmentation of retinal layers can help effectively diagnose and monitor clinical retinal diseases. In addition, it requires only a small amount of manual segmentation, significantly improving work efficiency.</description><subject>Deep Learning</subject><subject>Humans</subject><subject>Retina - diagnostic imaging</subject><subject>Retinal Diseases</subject><subject>Special Issue</subject><subject>Tomography, Optical Coherence</subject><issn>2164-2591</issn><issn>2164-2591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1Lw0AQXUSxUnvyLnsUJHG_stn1IEj9qgQK2p6XSbKJkXzUbFrovzehtdS5zAzvzZvHDEJXlPiUyvCu27jO1z7zJT1BF4xK4bFA09OjeoQmzn2TPqQKhJDnaMQ5Z1oLcoHen6xdfdiuqOEeR7C1Lf60eWXrDrqiqXGT4R2KixrPpws8qyC3Di9dUed4GMaRhbbuu0t0lkHp7GSfx2j58ryYvnnR_HU2fYy8hCvaeZCmGVWZBZXGUnDFYhnwgGYsJjFkIg4I5yRVvUNBNAhIuUykSiGzmoGkmo_Rw053tY4rmya91xZKs2qLCtqtaaAw_5G6-DJ5szFhyGSgBoGbvUDb_Kyt60xVuMSWJdS2WTvDREiUVqEYqLc7atI2zrU2O6yhxAwPMMMDjDbMSNqzr4-dHbh_5-a_TSaB_A</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>Li, Qiaoliang</creator><creator>Li, Shiyu</creator><creator>He, Zhuoying</creator><creator>Guan, Huimin</creator><creator>Chen, Runmin</creator><creator>Xu, Ying</creator><creator>Wang, Tao</creator><creator>Qi, Suwen</creator><creator>Mei, Jun</creator><creator>Wang, Wei</creator><general>The Association for Research in Vision and Ophthalmology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201209</creationdate><title>DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning</title><author>Li, Qiaoliang ; Li, Shiyu ; He, Zhuoying ; Guan, Huimin ; Chen, Runmin ; Xu, Ying ; Wang, Tao ; Qi, Suwen ; Mei, Jun ; Wang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-addf18fea8db64382b65351f2b0baf4b50330d8332409a4ad36c68dafe92a6193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deep Learning</topic><topic>Humans</topic><topic>Retina - diagnostic imaging</topic><topic>Retinal Diseases</topic><topic>Special Issue</topic><topic>Tomography, Optical Coherence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiaoliang</creatorcontrib><creatorcontrib>Li, Shiyu</creatorcontrib><creatorcontrib>He, Zhuoying</creatorcontrib><creatorcontrib>Guan, Huimin</creatorcontrib><creatorcontrib>Chen, Runmin</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Qi, Suwen</creatorcontrib><creatorcontrib>Mei, Jun</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Translational vision science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qiaoliang</au><au>Li, Shiyu</au><au>He, Zhuoying</au><au>Guan, Huimin</au><au>Chen, Runmin</au><au>Xu, Ying</au><au>Wang, Tao</au><au>Qi, Suwen</au><au>Mei, Jun</au><au>Wang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning</atitle><jtitle>Translational vision science &amp; technology</jtitle><addtitle>Transl Vis Sci Technol</addtitle><date>2020-12-09</date><risdate>2020</risdate><volume>9</volume><issue>2</issue><spage>61</spage><epage>61</epage><pages>61-61</pages><issn>2164-2591</issn><eissn>2164-2591</eissn><abstract>To automate the segmentation of retinal layers, we propose DeepRetina, a method based on deep neural networks. DeepRetina uses the improved Xception65 to extract and learn the characteristics of retinal layers. The Xception65-extracted feature maps are inputted to an atrous spatial pyramid pooling module to obtain multiscale feature information. This information is then recovered to capture clearer retinal layer boundaries in the encoder-decoder module, thus completing retinal layer auto-segmentation of the retinal optical coherence tomography (OCT) images. We validated this method using a retinal OCT image database containing 280 volumes (40 B-scans per volume) to demonstrate its effectiveness. The results showed that the method exhibits excellent performance in terms of the mean intersection over union and sensitivity (Se), which are as high as 90.41 and 92.15%, respectively. The intersection over union and Se values of the nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, outer limiting membrane, photoreceptor inner segment, photoreceptor outer segment, and pigment epithelium layer were found to be above 88%. DeepRetina can automate the segmentation of retinal layers and has great potential for the early diagnosis of fundus retinal diseases. In addition, our approach will provide a segmentation model framework for other types of tissues and cells in clinical practice. Automating the segmentation of retinal layers can help effectively diagnose and monitor clinical retinal diseases. In addition, it requires only a small amount of manual segmentation, significantly improving work efficiency.</abstract><cop>United States</cop><pub>The Association for Research in Vision and Ophthalmology</pub><pmid>33329940</pmid><doi>10.1167/tvst.9.2.61</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2164-2591
ispartof Translational vision science & technology, 2020-12, Vol.9 (2), p.61-61
issn 2164-2591
2164-2591
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7726589
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Deep Learning
Humans
Retina - diagnostic imaging
Retinal Diseases
Special Issue
Tomography, Optical Coherence
title DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeepRetina:%20Layer%20Segmentation%20of%20Retina%20in%20OCT%20Images%20Using%20Deep%20Learning&rft.jtitle=Translational%20vision%20science%20&%20technology&rft.au=Li,%20Qiaoliang&rft.date=2020-12-09&rft.volume=9&rft.issue=2&rft.spage=61&rft.epage=61&rft.pages=61-61&rft.issn=2164-2591&rft.eissn=2164-2591&rft_id=info:doi/10.1167/tvst.9.2.61&rft_dat=%3Cproquest_pubme%3E2470898749%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470898749&rft_id=info:pmid/33329940&rfr_iscdi=true