Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning

Purpose To generate fully automated and fast 4D‐flow MRI‐based 3D segmentations of the aorta using deep learning for reproducible quantification of aortic flow, peak velocity, and dimensions. Methods A total of 1018 subjects with aortic 4D‐flow MRI (528 with bicuspid aortic valve, 376 with tricuspid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2020-10, Vol.84 (4), p.2204-2218
Hauptverfasser: Berhane, Haben, Scott, Michael, Elbaz, Mohammed, Jarvis, Kelly, McCarthy, Patrick, Carr, James, Malaisrie, Chris, Avery, Ryan, Barker, Alex J., Robinson, Joshua D., Rigsby, Cynthia K., Markl, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2218
container_issue 4
container_start_page 2204
container_title Magnetic resonance in medicine
container_volume 84
creator Berhane, Haben
Scott, Michael
Elbaz, Mohammed
Jarvis, Kelly
McCarthy, Patrick
Carr, James
Malaisrie, Chris
Avery, Ryan
Barker, Alex J.
Robinson, Joshua D.
Rigsby, Cynthia K.
Markl, Michael
description Purpose To generate fully automated and fast 4D‐flow MRI‐based 3D segmentations of the aorta using deep learning for reproducible quantification of aortic flow, peak velocity, and dimensions. Methods A total of 1018 subjects with aortic 4D‐flow MRI (528 with bicuspid aortic valve, 376 with tricuspid aortic valve and aortic dilation, 114 healthy controls) comprised the data set. A convolutional neural network was trained to generate 3D aortic segmentations from 4D‐flow data. Manual segmentations served as the ground truth (N = 499 training, N = 101 validation, N = 418 testing). Dice scores, Hausdorff distance, and average symmetrical surface distance were calculated to assess performance. Aortic flow, peak velocity, and lumen dimensions were quantified at the ascending, arch, and descending aorta and compared using Bland‐Altman analysis. Interobserver variability of manual analysis was assessed on a subset of 40. Results Convolutional neural network segmentation required 0.438 ± 0.355 seconds versus 630 ± 254 seconds for manual analysis and demonstrated excellent performance with a median Dice score of 0.951 (0.930‐0.966), Hausdorff distance of 2.80 (2.13‐4.35), and average symmetrical surface distance of 0.176 (0.119‐0.290). Excellent agreement was found for flow, peak velocity, and dimensions with low bias and limits of agreement less than 10% difference versus manual analysis. For aortic volume, limits of agreement were moderate within 16.3%. Interobserver variability (median Dice score: 0.950; Hausdorff distance: 2.45; and average symmetrical surface distance: 0.145) and convolutional neural network–based analysis (median Dice score: 0.953‐0.959; Hausdorff distance: 2.24‐2.91; and average symmetrical surface distance: 0.145‐1.98 to observers) demonstrated similar reproducibility. Conclusions Deep learning enabled fast and automated 3D aortic segmentation from 4D‐flow MRI, demonstrating its potential for efficient clinical workflows. Future studies should investigate its utility for other vasculature and multivendor applications.
doi_str_mv 10.1002/mrm.28257
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7724647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417953223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5097-d10602b4201a6226fd605801aacdabca0038bd9277f3af76277c8cfd0a11ea7c3</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMo9ra68A9IwI1dTJuvmdzZCKW1WuhFKLoOZ_Jxm5JMrsmMZf69qbcWFVwlh_Pw8HJehN5QckIJYacxxxO2Zq18hla0ZaxhbS-eoxWRgjSc9uIAHZZyRwjpeyleogPOaCcZ4Ss0XM4hLBjmKUWYrMH8AkPKk9e42G204wSTTyNODosL7EK6x5ubK-xSxrc2JrOMECsLI4Sl-ILn4sctNtbucLCQxzq9Qi8chGJfP75H6Nvlx6_nn5vrL5-uzs-uG92SXjaGko6wQTBCoWOsc6Yj7boOoA0MGgjh68H0TErHwcmufvRaO0OAUgtS8yP0Ye_dzUO0RtfsGYLaZR8hLyqBV39vRn-rtumHkpKJTsgqeP8oyOn7bMukoi_ahgCjTXNRjEvJRb0hr-i7f9C7NOd6hEoJKvuWM_ZAHe8pnVMp2bqnMJSoh-ZUbU79aq6yb_9M_0T-rqoCp3vg3ge7_N-kNjebvfInOq-jPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417953223</pqid></control><display><type>article</type><title>Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Berhane, Haben ; Scott, Michael ; Elbaz, Mohammed ; Jarvis, Kelly ; McCarthy, Patrick ; Carr, James ; Malaisrie, Chris ; Avery, Ryan ; Barker, Alex J. ; Robinson, Joshua D. ; Rigsby, Cynthia K. ; Markl, Michael</creator><creatorcontrib>Berhane, Haben ; Scott, Michael ; Elbaz, Mohammed ; Jarvis, Kelly ; McCarthy, Patrick ; Carr, James ; Malaisrie, Chris ; Avery, Ryan ; Barker, Alex J. ; Robinson, Joshua D. ; Rigsby, Cynthia K. ; Markl, Michael</creatorcontrib><description>Purpose To generate fully automated and fast 4D‐flow MRI‐based 3D segmentations of the aorta using deep learning for reproducible quantification of aortic flow, peak velocity, and dimensions. Methods A total of 1018 subjects with aortic 4D‐flow MRI (528 with bicuspid aortic valve, 376 with tricuspid aortic valve and aortic dilation, 114 healthy controls) comprised the data set. A convolutional neural network was trained to generate 3D aortic segmentations from 4D‐flow data. Manual segmentations served as the ground truth (N = 499 training, N = 101 validation, N = 418 testing). Dice scores, Hausdorff distance, and average symmetrical surface distance were calculated to assess performance. Aortic flow, peak velocity, and lumen dimensions were quantified at the ascending, arch, and descending aorta and compared using Bland‐Altman analysis. Interobserver variability of manual analysis was assessed on a subset of 40. Results Convolutional neural network segmentation required 0.438 ± 0.355 seconds versus 630 ± 254 seconds for manual analysis and demonstrated excellent performance with a median Dice score of 0.951 (0.930‐0.966), Hausdorff distance of 2.80 (2.13‐4.35), and average symmetrical surface distance of 0.176 (0.119‐0.290). Excellent agreement was found for flow, peak velocity, and dimensions with low bias and limits of agreement less than 10% difference versus manual analysis. For aortic volume, limits of agreement were moderate within 16.3%. Interobserver variability (median Dice score: 0.950; Hausdorff distance: 2.45; and average symmetrical surface distance: 0.145) and convolutional neural network–based analysis (median Dice score: 0.953‐0.959; Hausdorff distance: 2.24‐2.91; and average symmetrical surface distance: 0.145‐1.98 to observers) demonstrated similar reproducibility. Conclusions Deep learning enabled fast and automated 3D aortic segmentation from 4D‐flow MRI, demonstrating its potential for efficient clinical workflows. Future studies should investigate its utility for other vasculature and multivendor applications.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28257</identifier><identifier>PMID: 32167203</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>4D flow MRI ; Aorta ; Aorta - diagnostic imaging ; Aortic valve ; Artificial neural networks ; Automation ; Coronary vessels ; Deep Learning ; Ground truth ; Heart valves ; Hemodynamics ; Humans ; Image processing ; Image segmentation ; Machine learning ; Magnetic Resonance Imaging ; Metric space ; MRI ; Neural networks ; Reproducibility ; Reproducibility of Results ; thoracic aorta ; Three dimensional flow ; Velocity</subject><ispartof>Magnetic resonance in medicine, 2020-10, Vol.84 (4), p.2204-2218</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2020 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5097-d10602b4201a6226fd605801aacdabca0038bd9277f3af76277c8cfd0a11ea7c3</citedby><cites>FETCH-LOGICAL-c5097-d10602b4201a6226fd605801aacdabca0038bd9277f3af76277c8cfd0a11ea7c3</cites><orcidid>0000-0002-7913-0574 ; 0000-0001-7160-4248 ; 0000-0002-0419-5541 ; 0000-0002-1381-7373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.28257$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.28257$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32167203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berhane, Haben</creatorcontrib><creatorcontrib>Scott, Michael</creatorcontrib><creatorcontrib>Elbaz, Mohammed</creatorcontrib><creatorcontrib>Jarvis, Kelly</creatorcontrib><creatorcontrib>McCarthy, Patrick</creatorcontrib><creatorcontrib>Carr, James</creatorcontrib><creatorcontrib>Malaisrie, Chris</creatorcontrib><creatorcontrib>Avery, Ryan</creatorcontrib><creatorcontrib>Barker, Alex J.</creatorcontrib><creatorcontrib>Robinson, Joshua D.</creatorcontrib><creatorcontrib>Rigsby, Cynthia K.</creatorcontrib><creatorcontrib>Markl, Michael</creatorcontrib><title>Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose To generate fully automated and fast 4D‐flow MRI‐based 3D segmentations of the aorta using deep learning for reproducible quantification of aortic flow, peak velocity, and dimensions. Methods A total of 1018 subjects with aortic 4D‐flow MRI (528 with bicuspid aortic valve, 376 with tricuspid aortic valve and aortic dilation, 114 healthy controls) comprised the data set. A convolutional neural network was trained to generate 3D aortic segmentations from 4D‐flow data. Manual segmentations served as the ground truth (N = 499 training, N = 101 validation, N = 418 testing). Dice scores, Hausdorff distance, and average symmetrical surface distance were calculated to assess performance. Aortic flow, peak velocity, and lumen dimensions were quantified at the ascending, arch, and descending aorta and compared using Bland‐Altman analysis. Interobserver variability of manual analysis was assessed on a subset of 40. Results Convolutional neural network segmentation required 0.438 ± 0.355 seconds versus 630 ± 254 seconds for manual analysis and demonstrated excellent performance with a median Dice score of 0.951 (0.930‐0.966), Hausdorff distance of 2.80 (2.13‐4.35), and average symmetrical surface distance of 0.176 (0.119‐0.290). Excellent agreement was found for flow, peak velocity, and dimensions with low bias and limits of agreement less than 10% difference versus manual analysis. For aortic volume, limits of agreement were moderate within 16.3%. Interobserver variability (median Dice score: 0.950; Hausdorff distance: 2.45; and average symmetrical surface distance: 0.145) and convolutional neural network–based analysis (median Dice score: 0.953‐0.959; Hausdorff distance: 2.24‐2.91; and average symmetrical surface distance: 0.145‐1.98 to observers) demonstrated similar reproducibility. Conclusions Deep learning enabled fast and automated 3D aortic segmentation from 4D‐flow MRI, demonstrating its potential for efficient clinical workflows. Future studies should investigate its utility for other vasculature and multivendor applications.</description><subject>4D flow MRI</subject><subject>Aorta</subject><subject>Aorta - diagnostic imaging</subject><subject>Aortic valve</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Coronary vessels</subject><subject>Deep Learning</subject><subject>Ground truth</subject><subject>Heart valves</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Metric space</subject><subject>MRI</subject><subject>Neural networks</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>thoracic aorta</subject><subject>Three dimensional flow</subject><subject>Velocity</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1rFTEUhoMo9ra68A9IwI1dTJuvmdzZCKW1WuhFKLoOZ_Jxm5JMrsmMZf69qbcWFVwlh_Pw8HJehN5QckIJYacxxxO2Zq18hla0ZaxhbS-eoxWRgjSc9uIAHZZyRwjpeyleogPOaCcZ4Ss0XM4hLBjmKUWYrMH8AkPKk9e42G204wSTTyNODosL7EK6x5ubK-xSxrc2JrOMECsLI4Sl-ILn4sctNtbucLCQxzq9Qi8chGJfP75H6Nvlx6_nn5vrL5-uzs-uG92SXjaGko6wQTBCoWOsc6Yj7boOoA0MGgjh68H0TErHwcmufvRaO0OAUgtS8yP0Ye_dzUO0RtfsGYLaZR8hLyqBV39vRn-rtumHkpKJTsgqeP8oyOn7bMukoi_ahgCjTXNRjEvJRb0hr-i7f9C7NOd6hEoJKvuWM_ZAHe8pnVMp2bqnMJSoh-ZUbU79aq6yb_9M_0T-rqoCp3vg3ge7_N-kNjebvfInOq-jPA</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Berhane, Haben</creator><creator>Scott, Michael</creator><creator>Elbaz, Mohammed</creator><creator>Jarvis, Kelly</creator><creator>McCarthy, Patrick</creator><creator>Carr, James</creator><creator>Malaisrie, Chris</creator><creator>Avery, Ryan</creator><creator>Barker, Alex J.</creator><creator>Robinson, Joshua D.</creator><creator>Rigsby, Cynthia K.</creator><creator>Markl, Michael</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7913-0574</orcidid><orcidid>https://orcid.org/0000-0001-7160-4248</orcidid><orcidid>https://orcid.org/0000-0002-0419-5541</orcidid><orcidid>https://orcid.org/0000-0002-1381-7373</orcidid></search><sort><creationdate>202010</creationdate><title>Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning</title><author>Berhane, Haben ; Scott, Michael ; Elbaz, Mohammed ; Jarvis, Kelly ; McCarthy, Patrick ; Carr, James ; Malaisrie, Chris ; Avery, Ryan ; Barker, Alex J. ; Robinson, Joshua D. ; Rigsby, Cynthia K. ; Markl, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5097-d10602b4201a6226fd605801aacdabca0038bd9277f3af76277c8cfd0a11ea7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>4D flow MRI</topic><topic>Aorta</topic><topic>Aorta - diagnostic imaging</topic><topic>Aortic valve</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Coronary vessels</topic><topic>Deep Learning</topic><topic>Ground truth</topic><topic>Heart valves</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Metric space</topic><topic>MRI</topic><topic>Neural networks</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>thoracic aorta</topic><topic>Three dimensional flow</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berhane, Haben</creatorcontrib><creatorcontrib>Scott, Michael</creatorcontrib><creatorcontrib>Elbaz, Mohammed</creatorcontrib><creatorcontrib>Jarvis, Kelly</creatorcontrib><creatorcontrib>McCarthy, Patrick</creatorcontrib><creatorcontrib>Carr, James</creatorcontrib><creatorcontrib>Malaisrie, Chris</creatorcontrib><creatorcontrib>Avery, Ryan</creatorcontrib><creatorcontrib>Barker, Alex J.</creatorcontrib><creatorcontrib>Robinson, Joshua D.</creatorcontrib><creatorcontrib>Rigsby, Cynthia K.</creatorcontrib><creatorcontrib>Markl, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berhane, Haben</au><au>Scott, Michael</au><au>Elbaz, Mohammed</au><au>Jarvis, Kelly</au><au>McCarthy, Patrick</au><au>Carr, James</au><au>Malaisrie, Chris</au><au>Avery, Ryan</au><au>Barker, Alex J.</au><au>Robinson, Joshua D.</au><au>Rigsby, Cynthia K.</au><au>Markl, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2020-10</date><risdate>2020</risdate><volume>84</volume><issue>4</issue><spage>2204</spage><epage>2218</epage><pages>2204-2218</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose To generate fully automated and fast 4D‐flow MRI‐based 3D segmentations of the aorta using deep learning for reproducible quantification of aortic flow, peak velocity, and dimensions. Methods A total of 1018 subjects with aortic 4D‐flow MRI (528 with bicuspid aortic valve, 376 with tricuspid aortic valve and aortic dilation, 114 healthy controls) comprised the data set. A convolutional neural network was trained to generate 3D aortic segmentations from 4D‐flow data. Manual segmentations served as the ground truth (N = 499 training, N = 101 validation, N = 418 testing). Dice scores, Hausdorff distance, and average symmetrical surface distance were calculated to assess performance. Aortic flow, peak velocity, and lumen dimensions were quantified at the ascending, arch, and descending aorta and compared using Bland‐Altman analysis. Interobserver variability of manual analysis was assessed on a subset of 40. Results Convolutional neural network segmentation required 0.438 ± 0.355 seconds versus 630 ± 254 seconds for manual analysis and demonstrated excellent performance with a median Dice score of 0.951 (0.930‐0.966), Hausdorff distance of 2.80 (2.13‐4.35), and average symmetrical surface distance of 0.176 (0.119‐0.290). Excellent agreement was found for flow, peak velocity, and dimensions with low bias and limits of agreement less than 10% difference versus manual analysis. For aortic volume, limits of agreement were moderate within 16.3%. Interobserver variability (median Dice score: 0.950; Hausdorff distance: 2.45; and average symmetrical surface distance: 0.145) and convolutional neural network–based analysis (median Dice score: 0.953‐0.959; Hausdorff distance: 2.24‐2.91; and average symmetrical surface distance: 0.145‐1.98 to observers) demonstrated similar reproducibility. Conclusions Deep learning enabled fast and automated 3D aortic segmentation from 4D‐flow MRI, demonstrating its potential for efficient clinical workflows. Future studies should investigate its utility for other vasculature and multivendor applications.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32167203</pmid><doi>10.1002/mrm.28257</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7913-0574</orcidid><orcidid>https://orcid.org/0000-0001-7160-4248</orcidid><orcidid>https://orcid.org/0000-0002-0419-5541</orcidid><orcidid>https://orcid.org/0000-0002-1381-7373</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2020-10, Vol.84 (4), p.2204-2218
issn 0740-3194
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7724647
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 4D flow MRI
Aorta
Aorta - diagnostic imaging
Aortic valve
Artificial neural networks
Automation
Coronary vessels
Deep Learning
Ground truth
Heart valves
Hemodynamics
Humans
Image processing
Image segmentation
Machine learning
Magnetic Resonance Imaging
Metric space
MRI
Neural networks
Reproducibility
Reproducibility of Results
thoracic aorta
Three dimensional flow
Velocity
title Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20automated%203D%20aortic%20segmentation%20of%204D%20flow%20MRI%20for%20hemodynamic%20analysis%20using%20deep%20learning&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Berhane,%20Haben&rft.date=2020-10&rft.volume=84&rft.issue=4&rft.spage=2204&rft.epage=2218&rft.pages=2204-2218&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28257&rft_dat=%3Cproquest_pubme%3E2417953223%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417953223&rft_id=info:pmid/32167203&rfr_iscdi=true