Quantitative Risk Assessment: Developing a Bayesian Approach to Dichotomous Dose–Response Uncertainty

Model averaging for dichotomous dose–response estimation is preferred to estimate the benchmark dose (BMD) from a single model, but challenges remain regarding implementing these methods for general analyses before model averaging is feasible to use in many risk assessment applications, and there is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Risk analysis 2020-09, Vol.40 (9), p.1706-1722
Hauptverfasser: Wheeler, Matthew W., Blessinger, Todd, Shao, Kan, Allen, Bruce C., Olszyk, Louis, Davis, J. Allen, Gift, Jeffrey S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1722
container_issue 9
container_start_page 1706
container_title Risk analysis
container_volume 40
creator Wheeler, Matthew W.
Blessinger, Todd
Shao, Kan
Allen, Bruce C.
Olszyk, Louis
Davis, J. Allen
Gift, Jeffrey S
description Model averaging for dichotomous dose–response estimation is preferred to estimate the benchmark dose (BMD) from a single model, but challenges remain regarding implementing these methods for general analyses before model averaging is feasible to use in many risk assessment applications, and there is little work on Bayesian methods that include informative prior information for both the models and the parameters of the constituent models. This article introduces a novel approach that addresses many of the challenges seen while providing a fully Bayesian framework. Furthermore, in contrast to methods that use Monte Carlo Markov Chain, we approximate the posterior density using maximum a posteriori estimation. The approximation allows for an accurate and reproducible estimate while maintaining the speed of maximum likelihood, which is crucial in many applications such as processing massive high throughput data sets. We assess this method by applying it to empirical laboratory dose–response data and measuring the coverage of confidence limits for the BMD. We compare the coverage of this method to that of other approaches using the same set of models. Through the simulation study, the method is shown to be markedly superior to the traditional approach of selecting a single preferred model (e.g., from the U.S. EPA BMD software) for the analysis of dichotomous data and is comparable or superior to the other approaches.
doi_str_mv 10.1111/risa.13537
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7722241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444896175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4487-8f26f29952297b80eb6a8b6897afd03220ee7d19917b49362fccf6a30326fb523</originalsourceid><addsrcrecordid>eNp9kcFuEzEQhi1ERUPhwgMgS9yQttjjXXvNASk0pVSqhAj0bHk3s4lLst7a3qDc-g68IU-C27QVXJiLD_Ppm9_6CXnF2THP8y64aI-5qIR6Qia8ErqQGsqnZMJAQVEKAYfkeYxXjHHGKvWMHAqQDEDAhCy_jrZPLtnktkjnLv6g0xgxxg326T2d4RbXfnD9klr60e4wOtvT6TAEb9sVTZ7OXLvyyW_8GOnMR_x982uOcfB9RHrZtxiSdX3avSAHnV1HfHn_HpHLT6ffTz4XF1_Ozk-mF0VblrUq6g5kB1pXAFo1NcNG2rqRtVa2WzABwBDVgmvNVVNqIaFr205akVeyayoQR-TD3juMzQYXbf5FsGszBLexYWe8debfTe9WZum3RikAKHkWvLkXBH89Ykzmyo-hz5kNlDmjllxVmXq7p9rgYwzYPV7gzNyWYm5LMXelZPj135ke0YcWMsD3wE-3xt1_VGZ-_m26l_4B6tCaJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444896175</pqid></control><display><type>article</type><title>Quantitative Risk Assessment: Developing a Bayesian Approach to Dichotomous Dose–Response Uncertainty</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Wheeler, Matthew W. ; Blessinger, Todd ; Shao, Kan ; Allen, Bruce C. ; Olszyk, Louis ; Davis, J. Allen ; Gift, Jeffrey S</creator><creatorcontrib>Wheeler, Matthew W. ; Blessinger, Todd ; Shao, Kan ; Allen, Bruce C. ; Olszyk, Louis ; Davis, J. Allen ; Gift, Jeffrey S</creatorcontrib><description>Model averaging for dichotomous dose–response estimation is preferred to estimate the benchmark dose (BMD) from a single model, but challenges remain regarding implementing these methods for general analyses before model averaging is feasible to use in many risk assessment applications, and there is little work on Bayesian methods that include informative prior information for both the models and the parameters of the constituent models. This article introduces a novel approach that addresses many of the challenges seen while providing a fully Bayesian framework. Furthermore, in contrast to methods that use Monte Carlo Markov Chain, we approximate the posterior density using maximum a posteriori estimation. The approximation allows for an accurate and reproducible estimate while maintaining the speed of maximum likelihood, which is crucial in many applications such as processing massive high throughput data sets. We assess this method by applying it to empirical laboratory dose–response data and measuring the coverage of confidence limits for the BMD. We compare the coverage of this method to that of other approaches using the same set of models. Through the simulation study, the method is shown to be markedly superior to the traditional approach of selecting a single preferred model (e.g., from the U.S. EPA BMD software) for the analysis of dichotomous data and is comparable or superior to the other approaches.</description><identifier>ISSN: 0272-4332</identifier><identifier>EISSN: 1539-6924</identifier><identifier>DOI: 10.1111/risa.13537</identifier><identifier>PMID: 32602232</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Bayesian analysis ; Benchmark dose estimation ; Bone mineral density ; Computer simulation ; Confidence limits ; Density ; Empirical analysis ; Markov analysis ; Markov chains ; Mathematical models ; maximum a posteriori estimation ; Monte Carlo simulation ; quantitative risk estimation ; Risk assessment ; Simulation ; Uncertainty</subject><ispartof>Risk analysis, 2020-09, Vol.40 (9), p.1706-1722</ispartof><rights>2020 Society for Risk Analysis</rights><rights>2020 Society for Risk Analysis.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4487-8f26f29952297b80eb6a8b6897afd03220ee7d19917b49362fccf6a30326fb523</citedby><cites>FETCH-LOGICAL-c4487-8f26f29952297b80eb6a8b6897afd03220ee7d19917b49362fccf6a30326fb523</cites><orcidid>0000-0002-8242-2391 ; 0000-0002-5512-2377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frisa.13537$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frisa.13537$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32602232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wheeler, Matthew W.</creatorcontrib><creatorcontrib>Blessinger, Todd</creatorcontrib><creatorcontrib>Shao, Kan</creatorcontrib><creatorcontrib>Allen, Bruce C.</creatorcontrib><creatorcontrib>Olszyk, Louis</creatorcontrib><creatorcontrib>Davis, J. Allen</creatorcontrib><creatorcontrib>Gift, Jeffrey S</creatorcontrib><title>Quantitative Risk Assessment: Developing a Bayesian Approach to Dichotomous Dose–Response Uncertainty</title><title>Risk analysis</title><addtitle>Risk Anal</addtitle><description>Model averaging for dichotomous dose–response estimation is preferred to estimate the benchmark dose (BMD) from a single model, but challenges remain regarding implementing these methods for general analyses before model averaging is feasible to use in many risk assessment applications, and there is little work on Bayesian methods that include informative prior information for both the models and the parameters of the constituent models. This article introduces a novel approach that addresses many of the challenges seen while providing a fully Bayesian framework. Furthermore, in contrast to methods that use Monte Carlo Markov Chain, we approximate the posterior density using maximum a posteriori estimation. The approximation allows for an accurate and reproducible estimate while maintaining the speed of maximum likelihood, which is crucial in many applications such as processing massive high throughput data sets. We assess this method by applying it to empirical laboratory dose–response data and measuring the coverage of confidence limits for the BMD. We compare the coverage of this method to that of other approaches using the same set of models. Through the simulation study, the method is shown to be markedly superior to the traditional approach of selecting a single preferred model (e.g., from the U.S. EPA BMD software) for the analysis of dichotomous data and is comparable or superior to the other approaches.</description><subject>Bayesian analysis</subject><subject>Benchmark dose estimation</subject><subject>Bone mineral density</subject><subject>Computer simulation</subject><subject>Confidence limits</subject><subject>Density</subject><subject>Empirical analysis</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>maximum a posteriori estimation</subject><subject>Monte Carlo simulation</subject><subject>quantitative risk estimation</subject><subject>Risk assessment</subject><subject>Simulation</subject><subject>Uncertainty</subject><issn>0272-4332</issn><issn>1539-6924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kcFuEzEQhi1ERUPhwgMgS9yQttjjXXvNASk0pVSqhAj0bHk3s4lLst7a3qDc-g68IU-C27QVXJiLD_Ppm9_6CXnF2THP8y64aI-5qIR6Qia8ErqQGsqnZMJAQVEKAYfkeYxXjHHGKvWMHAqQDEDAhCy_jrZPLtnktkjnLv6g0xgxxg326T2d4RbXfnD9klr60e4wOtvT6TAEb9sVTZ7OXLvyyW_8GOnMR_x982uOcfB9RHrZtxiSdX3avSAHnV1HfHn_HpHLT6ffTz4XF1_Ozk-mF0VblrUq6g5kB1pXAFo1NcNG2rqRtVa2WzABwBDVgmvNVVNqIaFr205akVeyayoQR-TD3juMzQYXbf5FsGszBLexYWe8debfTe9WZum3RikAKHkWvLkXBH89Ykzmyo-hz5kNlDmjllxVmXq7p9rgYwzYPV7gzNyWYm5LMXelZPj135ke0YcWMsD3wE-3xt1_VGZ-_m26l_4B6tCaJg</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Wheeler, Matthew W.</creator><creator>Blessinger, Todd</creator><creator>Shao, Kan</creator><creator>Allen, Bruce C.</creator><creator>Olszyk, Louis</creator><creator>Davis, J. Allen</creator><creator>Gift, Jeffrey S</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>7U9</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>FQK</scope><scope>FR3</scope><scope>H94</scope><scope>JBE</scope><scope>JQ2</scope><scope>KR7</scope><scope>M7N</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8242-2391</orcidid><orcidid>https://orcid.org/0000-0002-5512-2377</orcidid></search><sort><creationdate>202009</creationdate><title>Quantitative Risk Assessment: Developing a Bayesian Approach to Dichotomous Dose–Response Uncertainty</title><author>Wheeler, Matthew W. ; Blessinger, Todd ; Shao, Kan ; Allen, Bruce C. ; Olszyk, Louis ; Davis, J. Allen ; Gift, Jeffrey S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4487-8f26f29952297b80eb6a8b6897afd03220ee7d19917b49362fccf6a30326fb523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Benchmark dose estimation</topic><topic>Bone mineral density</topic><topic>Computer simulation</topic><topic>Confidence limits</topic><topic>Density</topic><topic>Empirical analysis</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>maximum a posteriori estimation</topic><topic>Monte Carlo simulation</topic><topic>quantitative risk estimation</topic><topic>Risk assessment</topic><topic>Simulation</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wheeler, Matthew W.</creatorcontrib><creatorcontrib>Blessinger, Todd</creatorcontrib><creatorcontrib>Shao, Kan</creatorcontrib><creatorcontrib>Allen, Bruce C.</creatorcontrib><creatorcontrib>Olszyk, Louis</creatorcontrib><creatorcontrib>Davis, J. Allen</creatorcontrib><creatorcontrib>Gift, Jeffrey S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Risk analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wheeler, Matthew W.</au><au>Blessinger, Todd</au><au>Shao, Kan</au><au>Allen, Bruce C.</au><au>Olszyk, Louis</au><au>Davis, J. Allen</au><au>Gift, Jeffrey S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Risk Assessment: Developing a Bayesian Approach to Dichotomous Dose–Response Uncertainty</atitle><jtitle>Risk analysis</jtitle><addtitle>Risk Anal</addtitle><date>2020-09</date><risdate>2020</risdate><volume>40</volume><issue>9</issue><spage>1706</spage><epage>1722</epage><pages>1706-1722</pages><issn>0272-4332</issn><eissn>1539-6924</eissn><abstract>Model averaging for dichotomous dose–response estimation is preferred to estimate the benchmark dose (BMD) from a single model, but challenges remain regarding implementing these methods for general analyses before model averaging is feasible to use in many risk assessment applications, and there is little work on Bayesian methods that include informative prior information for both the models and the parameters of the constituent models. This article introduces a novel approach that addresses many of the challenges seen while providing a fully Bayesian framework. Furthermore, in contrast to methods that use Monte Carlo Markov Chain, we approximate the posterior density using maximum a posteriori estimation. The approximation allows for an accurate and reproducible estimate while maintaining the speed of maximum likelihood, which is crucial in many applications such as processing massive high throughput data sets. We assess this method by applying it to empirical laboratory dose–response data and measuring the coverage of confidence limits for the BMD. We compare the coverage of this method to that of other approaches using the same set of models. Through the simulation study, the method is shown to be markedly superior to the traditional approach of selecting a single preferred model (e.g., from the U.S. EPA BMD software) for the analysis of dichotomous data and is comparable or superior to the other approaches.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>32602232</pmid><doi>10.1111/risa.13537</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8242-2391</orcidid><orcidid>https://orcid.org/0000-0002-5512-2377</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-4332
ispartof Risk analysis, 2020-09, Vol.40 (9), p.1706-1722
issn 0272-4332
1539-6924
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7722241
source Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete
subjects Bayesian analysis
Benchmark dose estimation
Bone mineral density
Computer simulation
Confidence limits
Density
Empirical analysis
Markov analysis
Markov chains
Mathematical models
maximum a posteriori estimation
Monte Carlo simulation
quantitative risk estimation
Risk assessment
Simulation
Uncertainty
title Quantitative Risk Assessment: Developing a Bayesian Approach to Dichotomous Dose–Response Uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Risk%20Assessment:%20Developing%20a%20Bayesian%20Approach%20to%20Dichotomous%20Dose%E2%80%93Response%20Uncertainty&rft.jtitle=Risk%20analysis&rft.au=Wheeler,%20Matthew%20W.&rft.date=2020-09&rft.volume=40&rft.issue=9&rft.spage=1706&rft.epage=1722&rft.pages=1706-1722&rft.issn=0272-4332&rft.eissn=1539-6924&rft_id=info:doi/10.1111/risa.13537&rft_dat=%3Cproquest_pubme%3E2444896175%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444896175&rft_id=info:pmid/32602232&rfr_iscdi=true