FMRP links optimal codons to mRNA stability in neurons

Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cort...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-12, Vol.117 (48), p.30400-30411
Hauptverfasser: Shu, Huan, Donnard, Elisa, Liu, Botao, Jung, Suna, Wang, Ruijia, Richter, Joel D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30411
container_issue 48
container_start_page 30400
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Shu, Huan
Donnard, Elisa
Liu, Botao
Jung, Suna
Wang, Ruijia
Richter, Joel D.
description Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cortex. We find that most changes in ribosome occupancy on hundreds of mRNAs are largely driven by dysregulation in transcript abundance. Many down-regulated mRNAs, which are mostly responsible for neuronal and synaptic functions, are highly enriched for FMRP binding targets. RNA metabolic labeling demonstrates that, in FMRP-deficient cortical neurons, mRNA down-regulation is caused by elevated degradation and is correlated with codon optimality. Moreover, FMRP preferentially binds mRNAs with optimal codons, suggesting that it stabilizes such transcripts through direct interactions via the translational machinery. Finally, we show that the paradigm of genetic rescue of FXS-like phenotypes in FMRP-deficient mice by deletion of the Cpeb1 gene is mediated by restoration of steady-state RNA levels and consequent rebalancing of translational homeostasis. Our data establish an essential role of FMRP in codon optimality-dependent mRNA stability as an important factor in FXS.
doi_str_mv 10.1073/pnas.2009161117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7720238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26971114</jstor_id><sourcerecordid>26971114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-a7231e61ddb33ca5a53183bba762001c66c2422f0a19ea318ed4f10ac1c0e08e3</originalsourceid><addsrcrecordid>eNpVkM1Lw0AQxRdRbK2ePSkBz2lndpNschFKsSrUD4qel81mo6lptu4mQv97t7RWPc3A-82bxyPkHGGIwNlo1Ug3pAAZJojID0gf_R4mUQaHpA9AeZhGNOqRE-cW4Lk4hWPSYwyzzEN9kkwf5s9BXTUfLjCrtlrKOlCmMI0LWhMs54_jwLUyr-qqXQdVEzS6s148JUelrJ0-280BeZ3evEzuwtnT7f1kPAtVDFkbSk4Z6gSLImdMyVjGDFOW55InPjSqJFE0orQEiZmWXtNFVCJIhQo0pJoNyPXWd9XlS10o3bRW1mJlfVC7FkZW4r_SVO_izXwJzilQlnqDq52BNZ-ddq1YmM42PrOgEUdgNOXoqdGWUtY4Z3W5_4AgNkWLTdHit2h_cfk32J7_adYDF1tg4Vpj9zpNMu4NIvYNjPyCyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471032871</pqid></control><display><type>article</type><title>FMRP links optimal codons to mRNA stability in neurons</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Shu, Huan ; Donnard, Elisa ; Liu, Botao ; Jung, Suna ; Wang, Ruijia ; Richter, Joel D.</creator><creatorcontrib>Shu, Huan ; Donnard, Elisa ; Liu, Botao ; Jung, Suna ; Wang, Ruijia ; Richter, Joel D.</creatorcontrib><description>Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cortex. We find that most changes in ribosome occupancy on hundreds of mRNAs are largely driven by dysregulation in transcript abundance. Many down-regulated mRNAs, which are mostly responsible for neuronal and synaptic functions, are highly enriched for FMRP binding targets. RNA metabolic labeling demonstrates that, in FMRP-deficient cortical neurons, mRNA down-regulation is caused by elevated degradation and is correlated with codon optimality. Moreover, FMRP preferentially binds mRNAs with optimal codons, suggesting that it stabilizes such transcripts through direct interactions via the translational machinery. Finally, we show that the paradigm of genetic rescue of FXS-like phenotypes in FMRP-deficient mice by deletion of the Cpeb1 gene is mediated by restoration of steady-state RNA levels and consequent rebalancing of translational homeostasis. Our data establish an essential role of FMRP in codon optimality-dependent mRNA stability as an important factor in FXS.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2009161117</identifier><identifier>PMID: 33199649</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cerebral Cortex - metabolism ; Codon ; Codons ; FMR1 gene ; FMR1 protein ; Fragile X Mental Retardation Protein - metabolism ; Fragile X syndrome ; Fragile X Syndrome - etiology ; Fragile X Syndrome - metabolism ; Gene deletion ; Gene Expression Profiling ; Gene sequencing ; Homeostasis ; Inactivation ; Intellectual disabilities ; Mice ; Models, Biological ; mRNA stability ; Neurons ; Neurons - metabolism ; Occupancy ; Optimization ; Phenotypes ; Protein Biosynthesis ; Ribonucleic acid ; Ribosomes - metabolism ; RNA ; RNA Stability ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA-binding protein ; Stability ; Transcription ; Translation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-12, Vol.117 (48), p.30400-30411</ispartof><rights>Copyright National Academy of Sciences Dec 1, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-a7231e61ddb33ca5a53183bba762001c66c2422f0a19ea318ed4f10ac1c0e08e3</citedby><cites>FETCH-LOGICAL-c509t-a7231e61ddb33ca5a53183bba762001c66c2422f0a19ea318ed4f10ac1c0e08e3</cites><orcidid>0000-0002-8834-8110 ; 0000-0003-2753-2501 ; 0000-0002-3395-2409 ; 0000-0002-4014-0337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26971114$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26971114$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33199649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shu, Huan</creatorcontrib><creatorcontrib>Donnard, Elisa</creatorcontrib><creatorcontrib>Liu, Botao</creatorcontrib><creatorcontrib>Jung, Suna</creatorcontrib><creatorcontrib>Wang, Ruijia</creatorcontrib><creatorcontrib>Richter, Joel D.</creatorcontrib><title>FMRP links optimal codons to mRNA stability in neurons</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cortex. We find that most changes in ribosome occupancy on hundreds of mRNAs are largely driven by dysregulation in transcript abundance. Many down-regulated mRNAs, which are mostly responsible for neuronal and synaptic functions, are highly enriched for FMRP binding targets. RNA metabolic labeling demonstrates that, in FMRP-deficient cortical neurons, mRNA down-regulation is caused by elevated degradation and is correlated with codon optimality. Moreover, FMRP preferentially binds mRNAs with optimal codons, suggesting that it stabilizes such transcripts through direct interactions via the translational machinery. Finally, we show that the paradigm of genetic rescue of FXS-like phenotypes in FMRP-deficient mice by deletion of the Cpeb1 gene is mediated by restoration of steady-state RNA levels and consequent rebalancing of translational homeostasis. Our data establish an essential role of FMRP in codon optimality-dependent mRNA stability as an important factor in FXS.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cerebral Cortex - metabolism</subject><subject>Codon</subject><subject>Codons</subject><subject>FMR1 gene</subject><subject>FMR1 protein</subject><subject>Fragile X Mental Retardation Protein - metabolism</subject><subject>Fragile X syndrome</subject><subject>Fragile X Syndrome - etiology</subject><subject>Fragile X Syndrome - metabolism</subject><subject>Gene deletion</subject><subject>Gene Expression Profiling</subject><subject>Gene sequencing</subject><subject>Homeostasis</subject><subject>Inactivation</subject><subject>Intellectual disabilities</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>mRNA stability</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Occupancy</subject><subject>Optimization</subject><subject>Phenotypes</subject><subject>Protein Biosynthesis</subject><subject>Ribonucleic acid</subject><subject>Ribosomes - metabolism</subject><subject>RNA</subject><subject>RNA Stability</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA-binding protein</subject><subject>Stability</subject><subject>Transcription</subject><subject>Translation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1Lw0AQxRdRbK2ePSkBz2lndpNschFKsSrUD4qel81mo6lptu4mQv97t7RWPc3A-82bxyPkHGGIwNlo1Ug3pAAZJojID0gf_R4mUQaHpA9AeZhGNOqRE-cW4Lk4hWPSYwyzzEN9kkwf5s9BXTUfLjCrtlrKOlCmMI0LWhMs54_jwLUyr-qqXQdVEzS6s148JUelrJ0-280BeZ3evEzuwtnT7f1kPAtVDFkbSk4Z6gSLImdMyVjGDFOW55InPjSqJFE0orQEiZmWXtNFVCJIhQo0pJoNyPXWd9XlS10o3bRW1mJlfVC7FkZW4r_SVO_izXwJzilQlnqDq52BNZ-ddq1YmM42PrOgEUdgNOXoqdGWUtY4Z3W5_4AgNkWLTdHit2h_cfk32J7_adYDF1tg4Vpj9zpNMu4NIvYNjPyCyQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Shu, Huan</creator><creator>Donnard, Elisa</creator><creator>Liu, Botao</creator><creator>Jung, Suna</creator><creator>Wang, Ruijia</creator><creator>Richter, Joel D.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8834-8110</orcidid><orcidid>https://orcid.org/0000-0003-2753-2501</orcidid><orcidid>https://orcid.org/0000-0002-3395-2409</orcidid><orcidid>https://orcid.org/0000-0002-4014-0337</orcidid></search><sort><creationdate>20201201</creationdate><title>FMRP links optimal codons to mRNA stability in neurons</title><author>Shu, Huan ; Donnard, Elisa ; Liu, Botao ; Jung, Suna ; Wang, Ruijia ; Richter, Joel D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-a7231e61ddb33ca5a53183bba762001c66c2422f0a19ea318ed4f10ac1c0e08e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cerebral Cortex - metabolism</topic><topic>Codon</topic><topic>Codons</topic><topic>FMR1 gene</topic><topic>FMR1 protein</topic><topic>Fragile X Mental Retardation Protein - metabolism</topic><topic>Fragile X syndrome</topic><topic>Fragile X Syndrome - etiology</topic><topic>Fragile X Syndrome - metabolism</topic><topic>Gene deletion</topic><topic>Gene Expression Profiling</topic><topic>Gene sequencing</topic><topic>Homeostasis</topic><topic>Inactivation</topic><topic>Intellectual disabilities</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>mRNA stability</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Occupancy</topic><topic>Optimization</topic><topic>Phenotypes</topic><topic>Protein Biosynthesis</topic><topic>Ribonucleic acid</topic><topic>Ribosomes - metabolism</topic><topic>RNA</topic><topic>RNA Stability</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA-binding protein</topic><topic>Stability</topic><topic>Transcription</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Huan</creatorcontrib><creatorcontrib>Donnard, Elisa</creatorcontrib><creatorcontrib>Liu, Botao</creatorcontrib><creatorcontrib>Jung, Suna</creatorcontrib><creatorcontrib>Wang, Ruijia</creatorcontrib><creatorcontrib>Richter, Joel D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Huan</au><au>Donnard, Elisa</au><au>Liu, Botao</au><au>Jung, Suna</au><au>Wang, Ruijia</au><au>Richter, Joel D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FMRP links optimal codons to mRNA stability in neurons</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>117</volume><issue>48</issue><spage>30400</spage><epage>30411</epage><pages>30400-30411</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cortex. We find that most changes in ribosome occupancy on hundreds of mRNAs are largely driven by dysregulation in transcript abundance. Many down-regulated mRNAs, which are mostly responsible for neuronal and synaptic functions, are highly enriched for FMRP binding targets. RNA metabolic labeling demonstrates that, in FMRP-deficient cortical neurons, mRNA down-regulation is caused by elevated degradation and is correlated with codon optimality. Moreover, FMRP preferentially binds mRNAs with optimal codons, suggesting that it stabilizes such transcripts through direct interactions via the translational machinery. Finally, we show that the paradigm of genetic rescue of FXS-like phenotypes in FMRP-deficient mice by deletion of the Cpeb1 gene is mediated by restoration of steady-state RNA levels and consequent rebalancing of translational homeostasis. Our data establish an essential role of FMRP in codon optimality-dependent mRNA stability as an important factor in FXS.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33199649</pmid><doi>10.1073/pnas.2009161117</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8834-8110</orcidid><orcidid>https://orcid.org/0000-0003-2753-2501</orcidid><orcidid>https://orcid.org/0000-0002-3395-2409</orcidid><orcidid>https://orcid.org/0000-0002-4014-0337</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-12, Vol.117 (48), p.30400-30411
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7720238
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Cerebral Cortex - metabolism
Codon
Codons
FMR1 gene
FMR1 protein
Fragile X Mental Retardation Protein - metabolism
Fragile X syndrome
Fragile X Syndrome - etiology
Fragile X Syndrome - metabolism
Gene deletion
Gene Expression Profiling
Gene sequencing
Homeostasis
Inactivation
Intellectual disabilities
Mice
Models, Biological
mRNA stability
Neurons
Neurons - metabolism
Occupancy
Optimization
Phenotypes
Protein Biosynthesis
Ribonucleic acid
Ribosomes - metabolism
RNA
RNA Stability
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA-binding protein
Stability
Transcription
Translation
title FMRP links optimal codons to mRNA stability in neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FMRP%20links%20optimal%20codons%20to%20mRNA%20stability%20in%20neurons&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Shu,%20Huan&rft.date=2020-12-01&rft.volume=117&rft.issue=48&rft.spage=30400&rft.epage=30411&rft.pages=30400-30411&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2009161117&rft_dat=%3Cjstor_pubme%3E26971114%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471032871&rft_id=info:pmid/33199649&rft_jstor_id=26971114&rfr_iscdi=true