FMRP links optimal codons to mRNA stability in neurons
Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cort...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-12, Vol.117 (48), p.30400-30411 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30411 |
---|---|
container_issue | 48 |
container_start_page | 30400 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Shu, Huan Donnard, Elisa Liu, Botao Jung, Suna Wang, Ruijia Richter, Joel D. |
description | Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cortex. We find that most changes in ribosome occupancy on hundreds of mRNAs are largely driven by dysregulation in transcript abundance. Many down-regulated mRNAs, which are mostly responsible for neuronal and synaptic functions, are highly enriched for FMRP binding targets. RNA metabolic labeling demonstrates that, in FMRP-deficient cortical neurons, mRNA down-regulation is caused by elevated degradation and is correlated with codon optimality. Moreover, FMRP preferentially binds mRNAs with optimal codons, suggesting that it stabilizes such transcripts through direct interactions via the translational machinery. Finally, we show that the paradigm of genetic rescue of FXS-like phenotypes in FMRP-deficient mice by deletion of the Cpeb1 gene is mediated by restoration of steady-state RNA levels and consequent rebalancing of translational homeostasis. Our data establish an essential role of FMRP in codon optimality-dependent mRNA stability as an important factor in FXS. |
doi_str_mv | 10.1073/pnas.2009161117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7720238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26971114</jstor_id><sourcerecordid>26971114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-a7231e61ddb33ca5a53183bba762001c66c2422f0a19ea318ed4f10ac1c0e08e3</originalsourceid><addsrcrecordid>eNpVkM1Lw0AQxRdRbK2ePSkBz2lndpNschFKsSrUD4qel81mo6lptu4mQv97t7RWPc3A-82bxyPkHGGIwNlo1Ug3pAAZJojID0gf_R4mUQaHpA9AeZhGNOqRE-cW4Lk4hWPSYwyzzEN9kkwf5s9BXTUfLjCrtlrKOlCmMI0LWhMs54_jwLUyr-qqXQdVEzS6s148JUelrJ0-280BeZ3evEzuwtnT7f1kPAtVDFkbSk4Z6gSLImdMyVjGDFOW55InPjSqJFE0orQEiZmWXtNFVCJIhQo0pJoNyPXWd9XlS10o3bRW1mJlfVC7FkZW4r_SVO_izXwJzilQlnqDq52BNZ-ddq1YmM42PrOgEUdgNOXoqdGWUtY4Z3W5_4AgNkWLTdHit2h_cfk32J7_adYDF1tg4Vpj9zpNMu4NIvYNjPyCyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471032871</pqid></control><display><type>article</type><title>FMRP links optimal codons to mRNA stability in neurons</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Shu, Huan ; Donnard, Elisa ; Liu, Botao ; Jung, Suna ; Wang, Ruijia ; Richter, Joel D.</creator><creatorcontrib>Shu, Huan ; Donnard, Elisa ; Liu, Botao ; Jung, Suna ; Wang, Ruijia ; Richter, Joel D.</creatorcontrib><description>Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cortex. We find that most changes in ribosome occupancy on hundreds of mRNAs are largely driven by dysregulation in transcript abundance. Many down-regulated mRNAs, which are mostly responsible for neuronal and synaptic functions, are highly enriched for FMRP binding targets. RNA metabolic labeling demonstrates that, in FMRP-deficient cortical neurons, mRNA down-regulation is caused by elevated degradation and is correlated with codon optimality. Moreover, FMRP preferentially binds mRNAs with optimal codons, suggesting that it stabilizes such transcripts through direct interactions via the translational machinery. Finally, we show that the paradigm of genetic rescue of FXS-like phenotypes in FMRP-deficient mice by deletion of the Cpeb1 gene is mediated by restoration of steady-state RNA levels and consequent rebalancing of translational homeostasis. Our data establish an essential role of FMRP in codon optimality-dependent mRNA stability as an important factor in FXS.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2009161117</identifier><identifier>PMID: 33199649</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cerebral Cortex - metabolism ; Codon ; Codons ; FMR1 gene ; FMR1 protein ; Fragile X Mental Retardation Protein - metabolism ; Fragile X syndrome ; Fragile X Syndrome - etiology ; Fragile X Syndrome - metabolism ; Gene deletion ; Gene Expression Profiling ; Gene sequencing ; Homeostasis ; Inactivation ; Intellectual disabilities ; Mice ; Models, Biological ; mRNA stability ; Neurons ; Neurons - metabolism ; Occupancy ; Optimization ; Phenotypes ; Protein Biosynthesis ; Ribonucleic acid ; Ribosomes - metabolism ; RNA ; RNA Stability ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA-binding protein ; Stability ; Transcription ; Translation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-12, Vol.117 (48), p.30400-30411</ispartof><rights>Copyright National Academy of Sciences Dec 1, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-a7231e61ddb33ca5a53183bba762001c66c2422f0a19ea318ed4f10ac1c0e08e3</citedby><cites>FETCH-LOGICAL-c509t-a7231e61ddb33ca5a53183bba762001c66c2422f0a19ea318ed4f10ac1c0e08e3</cites><orcidid>0000-0002-8834-8110 ; 0000-0003-2753-2501 ; 0000-0002-3395-2409 ; 0000-0002-4014-0337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26971114$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26971114$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33199649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shu, Huan</creatorcontrib><creatorcontrib>Donnard, Elisa</creatorcontrib><creatorcontrib>Liu, Botao</creatorcontrib><creatorcontrib>Jung, Suna</creatorcontrib><creatorcontrib>Wang, Ruijia</creatorcontrib><creatorcontrib>Richter, Joel D.</creatorcontrib><title>FMRP links optimal codons to mRNA stability in neurons</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cortex. We find that most changes in ribosome occupancy on hundreds of mRNAs are largely driven by dysregulation in transcript abundance. Many down-regulated mRNAs, which are mostly responsible for neuronal and synaptic functions, are highly enriched for FMRP binding targets. RNA metabolic labeling demonstrates that, in FMRP-deficient cortical neurons, mRNA down-regulation is caused by elevated degradation and is correlated with codon optimality. Moreover, FMRP preferentially binds mRNAs with optimal codons, suggesting that it stabilizes such transcripts through direct interactions via the translational machinery. Finally, we show that the paradigm of genetic rescue of FXS-like phenotypes in FMRP-deficient mice by deletion of the Cpeb1 gene is mediated by restoration of steady-state RNA levels and consequent rebalancing of translational homeostasis. Our data establish an essential role of FMRP in codon optimality-dependent mRNA stability as an important factor in FXS.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cerebral Cortex - metabolism</subject><subject>Codon</subject><subject>Codons</subject><subject>FMR1 gene</subject><subject>FMR1 protein</subject><subject>Fragile X Mental Retardation Protein - metabolism</subject><subject>Fragile X syndrome</subject><subject>Fragile X Syndrome - etiology</subject><subject>Fragile X Syndrome - metabolism</subject><subject>Gene deletion</subject><subject>Gene Expression Profiling</subject><subject>Gene sequencing</subject><subject>Homeostasis</subject><subject>Inactivation</subject><subject>Intellectual disabilities</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>mRNA stability</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Occupancy</subject><subject>Optimization</subject><subject>Phenotypes</subject><subject>Protein Biosynthesis</subject><subject>Ribonucleic acid</subject><subject>Ribosomes - metabolism</subject><subject>RNA</subject><subject>RNA Stability</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA-binding protein</subject><subject>Stability</subject><subject>Transcription</subject><subject>Translation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1Lw0AQxRdRbK2ePSkBz2lndpNschFKsSrUD4qel81mo6lptu4mQv97t7RWPc3A-82bxyPkHGGIwNlo1Ug3pAAZJojID0gf_R4mUQaHpA9AeZhGNOqRE-cW4Lk4hWPSYwyzzEN9kkwf5s9BXTUfLjCrtlrKOlCmMI0LWhMs54_jwLUyr-qqXQdVEzS6s148JUelrJ0-280BeZ3evEzuwtnT7f1kPAtVDFkbSk4Z6gSLImdMyVjGDFOW55InPjSqJFE0orQEiZmWXtNFVCJIhQo0pJoNyPXWd9XlS10o3bRW1mJlfVC7FkZW4r_SVO_izXwJzilQlnqDq52BNZ-ddq1YmM42PrOgEUdgNOXoqdGWUtY4Z3W5_4AgNkWLTdHit2h_cfk32J7_adYDF1tg4Vpj9zpNMu4NIvYNjPyCyQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Shu, Huan</creator><creator>Donnard, Elisa</creator><creator>Liu, Botao</creator><creator>Jung, Suna</creator><creator>Wang, Ruijia</creator><creator>Richter, Joel D.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8834-8110</orcidid><orcidid>https://orcid.org/0000-0003-2753-2501</orcidid><orcidid>https://orcid.org/0000-0002-3395-2409</orcidid><orcidid>https://orcid.org/0000-0002-4014-0337</orcidid></search><sort><creationdate>20201201</creationdate><title>FMRP links optimal codons to mRNA stability in neurons</title><author>Shu, Huan ; Donnard, Elisa ; Liu, Botao ; Jung, Suna ; Wang, Ruijia ; Richter, Joel D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-a7231e61ddb33ca5a53183bba762001c66c2422f0a19ea318ed4f10ac1c0e08e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cerebral Cortex - metabolism</topic><topic>Codon</topic><topic>Codons</topic><topic>FMR1 gene</topic><topic>FMR1 protein</topic><topic>Fragile X Mental Retardation Protein - metabolism</topic><topic>Fragile X syndrome</topic><topic>Fragile X Syndrome - etiology</topic><topic>Fragile X Syndrome - metabolism</topic><topic>Gene deletion</topic><topic>Gene Expression Profiling</topic><topic>Gene sequencing</topic><topic>Homeostasis</topic><topic>Inactivation</topic><topic>Intellectual disabilities</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>mRNA stability</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Occupancy</topic><topic>Optimization</topic><topic>Phenotypes</topic><topic>Protein Biosynthesis</topic><topic>Ribonucleic acid</topic><topic>Ribosomes - metabolism</topic><topic>RNA</topic><topic>RNA Stability</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA-binding protein</topic><topic>Stability</topic><topic>Transcription</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Huan</creatorcontrib><creatorcontrib>Donnard, Elisa</creatorcontrib><creatorcontrib>Liu, Botao</creatorcontrib><creatorcontrib>Jung, Suna</creatorcontrib><creatorcontrib>Wang, Ruijia</creatorcontrib><creatorcontrib>Richter, Joel D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Huan</au><au>Donnard, Elisa</au><au>Liu, Botao</au><au>Jung, Suna</au><au>Wang, Ruijia</au><au>Richter, Joel D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FMRP links optimal codons to mRNA stability in neurons</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>117</volume><issue>48</issue><spage>30400</spage><epage>30411</epage><pages>30400-30411</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cortex. We find that most changes in ribosome occupancy on hundreds of mRNAs are largely driven by dysregulation in transcript abundance. Many down-regulated mRNAs, which are mostly responsible for neuronal and synaptic functions, are highly enriched for FMRP binding targets. RNA metabolic labeling demonstrates that, in FMRP-deficient cortical neurons, mRNA down-regulation is caused by elevated degradation and is correlated with codon optimality. Moreover, FMRP preferentially binds mRNAs with optimal codons, suggesting that it stabilizes such transcripts through direct interactions via the translational machinery. Finally, we show that the paradigm of genetic rescue of FXS-like phenotypes in FMRP-deficient mice by deletion of the Cpeb1 gene is mediated by restoration of steady-state RNA levels and consequent rebalancing of translational homeostasis. Our data establish an essential role of FMRP in codon optimality-dependent mRNA stability as an important factor in FXS.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33199649</pmid><doi>10.1073/pnas.2009161117</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8834-8110</orcidid><orcidid>https://orcid.org/0000-0003-2753-2501</orcidid><orcidid>https://orcid.org/0000-0002-3395-2409</orcidid><orcidid>https://orcid.org/0000-0002-4014-0337</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-12, Vol.117 (48), p.30400-30411 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7720238 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Cerebral Cortex - metabolism Codon Codons FMR1 gene FMR1 protein Fragile X Mental Retardation Protein - metabolism Fragile X syndrome Fragile X Syndrome - etiology Fragile X Syndrome - metabolism Gene deletion Gene Expression Profiling Gene sequencing Homeostasis Inactivation Intellectual disabilities Mice Models, Biological mRNA stability Neurons Neurons - metabolism Occupancy Optimization Phenotypes Protein Biosynthesis Ribonucleic acid Ribosomes - metabolism RNA RNA Stability RNA, Messenger - genetics RNA, Messenger - metabolism RNA-binding protein Stability Transcription Translation |
title | FMRP links optimal codons to mRNA stability in neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FMRP%20links%20optimal%20codons%20to%20mRNA%20stability%20in%20neurons&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Shu,%20Huan&rft.date=2020-12-01&rft.volume=117&rft.issue=48&rft.spage=30400&rft.epage=30411&rft.pages=30400-30411&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2009161117&rft_dat=%3Cjstor_pubme%3E26971114%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471032871&rft_id=info:pmid/33199649&rft_jstor_id=26971114&rfr_iscdi=true |