Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge

Purpose To advance research in the field of machine learning for MR image reconstruction with an open challenge. Methods We provided participants with a dataset of raw k‐space data from 1,594 consecutive clinical exams of the knee. The goal of the challenge was to reconstruct images from these data....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2020-12, Vol.84 (6), p.3054-3070
Hauptverfasser: Knoll, Florian, Murrell, Tullie, Sriram, Anuroop, Yakubova, Nafissa, Zbontar, Jure, Rabbat, Michael, Defazio, Aaron, Muckley, Matthew J., Sodickson, Daniel K., Zitnick, C. Lawrence, Recht, Michael P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3070
container_issue 6
container_start_page 3054
container_title Magnetic resonance in medicine
container_volume 84
creator Knoll, Florian
Murrell, Tullie
Sriram, Anuroop
Yakubova, Nafissa
Zbontar, Jure
Rabbat, Michael
Defazio, Aaron
Muckley, Matthew J.
Sodickson, Daniel K.
Zitnick, C. Lawrence
Recht, Michael P.
description Purpose To advance research in the field of machine learning for MR image reconstruction with an open challenge. Methods We provided participants with a dataset of raw k‐space data from 1,594 consecutive clinical exams of the knee. The goal of the challenge was to reconstruct images from these data. In order to strike a balance between realistic data and a shallow learning curve for those not already familiar with MR image reconstruction, we ran multiple tracks for multi‐coil and single‐coil data. We performed a two‐stage evaluation based on quantitative image metrics followed by evaluation by a panel of radiologists. The challenge ran from June to December of 2019. Results We received a total of 33 challenge submissions. All participants chose to submit results from supervised machine learning approaches. Conclusions The challenge led to new developments in machine learning for image reconstruction, provided insight into the current state of the art in the field, and highlighted remaining hurdles for clinical adoption.
doi_str_mv 10.1002/mrm.28338
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7719611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410730283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4088-d70a4b03000663dcad6f9259a4895bb76b56081630f7a6b7c6f43a8af6a6a51d3</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoModl298A9IwBu9mDaZZJIZL4RS_Ch0KSx6Hc5kzuykzCRrMrtL_71ZtxYVvArkPDy857yEvObsnDNWXkxxOi9rIeonZMGrsizKqpFPyYJpyQrBG3lGXqR0xxhrGi2fkzNRVkypql6Qw2W3B2-d39AJ7OA80hEh-uNHHyJdrambYIM0og0-zXFnZxc8Pbh5oOBp2KKnNkxbnN1x8IHe7jHuHR5o6Ok8IC0Zb2gPaV6tr6kdYBzRb_AledbDmPDVw7sk3z9_-nb1tbi5_XJ9dXlTWMnquug0A9kykaMrJToLneqbvB3IuqnaVqu2UqzmSrBeg2q1Vb0UUEOvQEHFO7EkH0_e7a6dsLPo5wij2ca8Vbw3AZz5e-LdYDZhb7TmjeI8C949CGL4scM0m8kli-MIHsMumVJypgU7nn9J3v6D3oVd9Hm9TMms0xnK1PsTZWNIKWL_GIYzc6zT5DrNrzoz--bP9I_k7_4ycHECDm7E-_-bzGq9Oil_AktFqks</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441967833</pqid></control><display><type>article</type><title>Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Knoll, Florian ; Murrell, Tullie ; Sriram, Anuroop ; Yakubova, Nafissa ; Zbontar, Jure ; Rabbat, Michael ; Defazio, Aaron ; Muckley, Matthew J. ; Sodickson, Daniel K. ; Zitnick, C. Lawrence ; Recht, Michael P.</creator><creatorcontrib>Knoll, Florian ; Murrell, Tullie ; Sriram, Anuroop ; Yakubova, Nafissa ; Zbontar, Jure ; Rabbat, Michael ; Defazio, Aaron ; Muckley, Matthew J. ; Sodickson, Daniel K. ; Zitnick, C. Lawrence ; Recht, Michael P.</creatorcontrib><description>Purpose To advance research in the field of machine learning for MR image reconstruction with an open challenge. Methods We provided participants with a dataset of raw k‐space data from 1,594 consecutive clinical exams of the knee. The goal of the challenge was to reconstruct images from these data. In order to strike a balance between realistic data and a shallow learning curve for those not already familiar with MR image reconstruction, we ran multiple tracks for multi‐coil and single‐coil data. We performed a two‐stage evaluation based on quantitative image metrics followed by evaluation by a panel of radiologists. The challenge ran from June to December of 2019. Results We received a total of 33 challenge submissions. All participants chose to submit results from supervised machine learning approaches. Conclusions The challenge led to new developments in machine learning for image reconstruction, provided insight into the current state of the art in the field, and highlighted remaining hurdles for clinical adoption.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28338</identifier><identifier>PMID: 32506658</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>challenge ; compressed sensing ; fast imaging ; Image processing ; Image Processing, Computer-Assisted ; Image reconstruction ; Knee Joint ; Learning algorithms ; Learning curves ; Machine Learning ; machine learning, optimization ; Magnetic Resonance Imaging ; parallel imaging ; public dataset ; Supervised Machine Learning</subject><ispartof>Magnetic resonance in medicine, 2020-12, Vol.84 (6), p.3054-3070</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2020 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4088-d70a4b03000663dcad6f9259a4895bb76b56081630f7a6b7c6f43a8af6a6a51d3</citedby><cites>FETCH-LOGICAL-c4088-d70a4b03000663dcad6f9259a4895bb76b56081630f7a6b7c6f43a8af6a6a51d3</cites><orcidid>0000-0002-6525-8817 ; 0000-0001-5357-8656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.28338$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.28338$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32506658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knoll, Florian</creatorcontrib><creatorcontrib>Murrell, Tullie</creatorcontrib><creatorcontrib>Sriram, Anuroop</creatorcontrib><creatorcontrib>Yakubova, Nafissa</creatorcontrib><creatorcontrib>Zbontar, Jure</creatorcontrib><creatorcontrib>Rabbat, Michael</creatorcontrib><creatorcontrib>Defazio, Aaron</creatorcontrib><creatorcontrib>Muckley, Matthew J.</creatorcontrib><creatorcontrib>Sodickson, Daniel K.</creatorcontrib><creatorcontrib>Zitnick, C. Lawrence</creatorcontrib><creatorcontrib>Recht, Michael P.</creatorcontrib><title>Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose To advance research in the field of machine learning for MR image reconstruction with an open challenge. Methods We provided participants with a dataset of raw k‐space data from 1,594 consecutive clinical exams of the knee. The goal of the challenge was to reconstruct images from these data. In order to strike a balance between realistic data and a shallow learning curve for those not already familiar with MR image reconstruction, we ran multiple tracks for multi‐coil and single‐coil data. We performed a two‐stage evaluation based on quantitative image metrics followed by evaluation by a panel of radiologists. The challenge ran from June to December of 2019. Results We received a total of 33 challenge submissions. All participants chose to submit results from supervised machine learning approaches. Conclusions The challenge led to new developments in machine learning for image reconstruction, provided insight into the current state of the art in the field, and highlighted remaining hurdles for clinical adoption.</description><subject>challenge</subject><subject>compressed sensing</subject><subject>fast imaging</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image reconstruction</subject><subject>Knee Joint</subject><subject>Learning algorithms</subject><subject>Learning curves</subject><subject>Machine Learning</subject><subject>machine learning, optimization</subject><subject>Magnetic Resonance Imaging</subject><subject>parallel imaging</subject><subject>public dataset</subject><subject>Supervised Machine Learning</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1rFDEUhoModl298A9IwBu9mDaZZJIZL4RS_Ch0KSx6Hc5kzuykzCRrMrtL_71ZtxYVvArkPDy857yEvObsnDNWXkxxOi9rIeonZMGrsizKqpFPyYJpyQrBG3lGXqR0xxhrGi2fkzNRVkypql6Qw2W3B2-d39AJ7OA80hEh-uNHHyJdrambYIM0og0-zXFnZxc8Pbh5oOBp2KKnNkxbnN1x8IHe7jHuHR5o6Ok8IC0Zb2gPaV6tr6kdYBzRb_AledbDmPDVw7sk3z9_-nb1tbi5_XJ9dXlTWMnquug0A9kykaMrJToLneqbvB3IuqnaVqu2UqzmSrBeg2q1Vb0UUEOvQEHFO7EkH0_e7a6dsLPo5wij2ca8Vbw3AZz5e-LdYDZhb7TmjeI8C949CGL4scM0m8kli-MIHsMumVJypgU7nn9J3v6D3oVd9Hm9TMms0xnK1PsTZWNIKWL_GIYzc6zT5DrNrzoz--bP9I_k7_4ycHECDm7E-_-bzGq9Oil_AktFqks</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Knoll, Florian</creator><creator>Murrell, Tullie</creator><creator>Sriram, Anuroop</creator><creator>Yakubova, Nafissa</creator><creator>Zbontar, Jure</creator><creator>Rabbat, Michael</creator><creator>Defazio, Aaron</creator><creator>Muckley, Matthew J.</creator><creator>Sodickson, Daniel K.</creator><creator>Zitnick, C. Lawrence</creator><creator>Recht, Michael P.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6525-8817</orcidid><orcidid>https://orcid.org/0000-0001-5357-8656</orcidid></search><sort><creationdate>202012</creationdate><title>Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge</title><author>Knoll, Florian ; Murrell, Tullie ; Sriram, Anuroop ; Yakubova, Nafissa ; Zbontar, Jure ; Rabbat, Michael ; Defazio, Aaron ; Muckley, Matthew J. ; Sodickson, Daniel K. ; Zitnick, C. Lawrence ; Recht, Michael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4088-d70a4b03000663dcad6f9259a4895bb76b56081630f7a6b7c6f43a8af6a6a51d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>challenge</topic><topic>compressed sensing</topic><topic>fast imaging</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image reconstruction</topic><topic>Knee Joint</topic><topic>Learning algorithms</topic><topic>Learning curves</topic><topic>Machine Learning</topic><topic>machine learning, optimization</topic><topic>Magnetic Resonance Imaging</topic><topic>parallel imaging</topic><topic>public dataset</topic><topic>Supervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knoll, Florian</creatorcontrib><creatorcontrib>Murrell, Tullie</creatorcontrib><creatorcontrib>Sriram, Anuroop</creatorcontrib><creatorcontrib>Yakubova, Nafissa</creatorcontrib><creatorcontrib>Zbontar, Jure</creatorcontrib><creatorcontrib>Rabbat, Michael</creatorcontrib><creatorcontrib>Defazio, Aaron</creatorcontrib><creatorcontrib>Muckley, Matthew J.</creatorcontrib><creatorcontrib>Sodickson, Daniel K.</creatorcontrib><creatorcontrib>Zitnick, C. Lawrence</creatorcontrib><creatorcontrib>Recht, Michael P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knoll, Florian</au><au>Murrell, Tullie</au><au>Sriram, Anuroop</au><au>Yakubova, Nafissa</au><au>Zbontar, Jure</au><au>Rabbat, Michael</au><au>Defazio, Aaron</au><au>Muckley, Matthew J.</au><au>Sodickson, Daniel K.</au><au>Zitnick, C. Lawrence</au><au>Recht, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2020-12</date><risdate>2020</risdate><volume>84</volume><issue>6</issue><spage>3054</spage><epage>3070</epage><pages>3054-3070</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose To advance research in the field of machine learning for MR image reconstruction with an open challenge. Methods We provided participants with a dataset of raw k‐space data from 1,594 consecutive clinical exams of the knee. The goal of the challenge was to reconstruct images from these data. In order to strike a balance between realistic data and a shallow learning curve for those not already familiar with MR image reconstruction, we ran multiple tracks for multi‐coil and single‐coil data. We performed a two‐stage evaluation based on quantitative image metrics followed by evaluation by a panel of radiologists. The challenge ran from June to December of 2019. Results We received a total of 33 challenge submissions. All participants chose to submit results from supervised machine learning approaches. Conclusions The challenge led to new developments in machine learning for image reconstruction, provided insight into the current state of the art in the field, and highlighted remaining hurdles for clinical adoption.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32506658</pmid><doi>10.1002/mrm.28338</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6525-8817</orcidid><orcidid>https://orcid.org/0000-0001-5357-8656</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2020-12, Vol.84 (6), p.3054-3070
issn 0740-3194
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7719611
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects challenge
compressed sensing
fast imaging
Image processing
Image Processing, Computer-Assisted
Image reconstruction
Knee Joint
Learning algorithms
Learning curves
Machine Learning
machine learning, optimization
Magnetic Resonance Imaging
parallel imaging
public dataset
Supervised Machine Learning
title Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20machine%20learning%20for%20MR%20image%20reconstruction%20with%20an%20open%20competition:%20Overview%20of%20the%202019%20fastMRI%20challenge&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Knoll,%20Florian&rft.date=2020-12&rft.volume=84&rft.issue=6&rft.spage=3054&rft.epage=3070&rft.pages=3054-3070&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28338&rft_dat=%3Cproquest_pubme%3E2410730283%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441967833&rft_id=info:pmid/32506658&rfr_iscdi=true