Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge
Purpose To advance research in the field of machine learning for MR image reconstruction with an open challenge. Methods We provided participants with a dataset of raw k‐space data from 1,594 consecutive clinical exams of the knee. The goal of the challenge was to reconstruct images from these data....
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2020-12, Vol.84 (6), p.3054-3070 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3070 |
---|---|
container_issue | 6 |
container_start_page | 3054 |
container_title | Magnetic resonance in medicine |
container_volume | 84 |
creator | Knoll, Florian Murrell, Tullie Sriram, Anuroop Yakubova, Nafissa Zbontar, Jure Rabbat, Michael Defazio, Aaron Muckley, Matthew J. Sodickson, Daniel K. Zitnick, C. Lawrence Recht, Michael P. |
description | Purpose
To advance research in the field of machine learning for MR image reconstruction with an open challenge.
Methods
We provided participants with a dataset of raw k‐space data from 1,594 consecutive clinical exams of the knee. The goal of the challenge was to reconstruct images from these data. In order to strike a balance between realistic data and a shallow learning curve for those not already familiar with MR image reconstruction, we ran multiple tracks for multi‐coil and single‐coil data. We performed a two‐stage evaluation based on quantitative image metrics followed by evaluation by a panel of radiologists. The challenge ran from June to December of 2019.
Results
We received a total of 33 challenge submissions. All participants chose to submit results from supervised machine learning approaches.
Conclusions
The challenge led to new developments in machine learning for image reconstruction, provided insight into the current state of the art in the field, and highlighted remaining hurdles for clinical adoption. |
doi_str_mv | 10.1002/mrm.28338 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7719611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410730283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4088-d70a4b03000663dcad6f9259a4895bb76b56081630f7a6b7c6f43a8af6a6a51d3</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoModl298A9IwBu9mDaZZJIZL4RS_Ch0KSx6Hc5kzuykzCRrMrtL_71ZtxYVvArkPDy857yEvObsnDNWXkxxOi9rIeonZMGrsizKqpFPyYJpyQrBG3lGXqR0xxhrGi2fkzNRVkypql6Qw2W3B2-d39AJ7OA80hEh-uNHHyJdrambYIM0og0-zXFnZxc8Pbh5oOBp2KKnNkxbnN1x8IHe7jHuHR5o6Ok8IC0Zb2gPaV6tr6kdYBzRb_AledbDmPDVw7sk3z9_-nb1tbi5_XJ9dXlTWMnquug0A9kykaMrJToLneqbvB3IuqnaVqu2UqzmSrBeg2q1Vb0UUEOvQEHFO7EkH0_e7a6dsLPo5wij2ca8Vbw3AZz5e-LdYDZhb7TmjeI8C949CGL4scM0m8kli-MIHsMumVJypgU7nn9J3v6D3oVd9Hm9TMms0xnK1PsTZWNIKWL_GIYzc6zT5DrNrzoz--bP9I_k7_4ycHECDm7E-_-bzGq9Oil_AktFqks</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441967833</pqid></control><display><type>article</type><title>Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Knoll, Florian ; Murrell, Tullie ; Sriram, Anuroop ; Yakubova, Nafissa ; Zbontar, Jure ; Rabbat, Michael ; Defazio, Aaron ; Muckley, Matthew J. ; Sodickson, Daniel K. ; Zitnick, C. Lawrence ; Recht, Michael P.</creator><creatorcontrib>Knoll, Florian ; Murrell, Tullie ; Sriram, Anuroop ; Yakubova, Nafissa ; Zbontar, Jure ; Rabbat, Michael ; Defazio, Aaron ; Muckley, Matthew J. ; Sodickson, Daniel K. ; Zitnick, C. Lawrence ; Recht, Michael P.</creatorcontrib><description>Purpose
To advance research in the field of machine learning for MR image reconstruction with an open challenge.
Methods
We provided participants with a dataset of raw k‐space data from 1,594 consecutive clinical exams of the knee. The goal of the challenge was to reconstruct images from these data. In order to strike a balance between realistic data and a shallow learning curve for those not already familiar with MR image reconstruction, we ran multiple tracks for multi‐coil and single‐coil data. We performed a two‐stage evaluation based on quantitative image metrics followed by evaluation by a panel of radiologists. The challenge ran from June to December of 2019.
Results
We received a total of 33 challenge submissions. All participants chose to submit results from supervised machine learning approaches.
Conclusions
The challenge led to new developments in machine learning for image reconstruction, provided insight into the current state of the art in the field, and highlighted remaining hurdles for clinical adoption.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.28338</identifier><identifier>PMID: 32506658</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>challenge ; compressed sensing ; fast imaging ; Image processing ; Image Processing, Computer-Assisted ; Image reconstruction ; Knee Joint ; Learning algorithms ; Learning curves ; Machine Learning ; machine learning, optimization ; Magnetic Resonance Imaging ; parallel imaging ; public dataset ; Supervised Machine Learning</subject><ispartof>Magnetic resonance in medicine, 2020-12, Vol.84 (6), p.3054-3070</ispartof><rights>2020 International Society for Magnetic Resonance in Medicine</rights><rights>2020 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4088-d70a4b03000663dcad6f9259a4895bb76b56081630f7a6b7c6f43a8af6a6a51d3</citedby><cites>FETCH-LOGICAL-c4088-d70a4b03000663dcad6f9259a4895bb76b56081630f7a6b7c6f43a8af6a6a51d3</cites><orcidid>0000-0002-6525-8817 ; 0000-0001-5357-8656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.28338$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.28338$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32506658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knoll, Florian</creatorcontrib><creatorcontrib>Murrell, Tullie</creatorcontrib><creatorcontrib>Sriram, Anuroop</creatorcontrib><creatorcontrib>Yakubova, Nafissa</creatorcontrib><creatorcontrib>Zbontar, Jure</creatorcontrib><creatorcontrib>Rabbat, Michael</creatorcontrib><creatorcontrib>Defazio, Aaron</creatorcontrib><creatorcontrib>Muckley, Matthew J.</creatorcontrib><creatorcontrib>Sodickson, Daniel K.</creatorcontrib><creatorcontrib>Zitnick, C. Lawrence</creatorcontrib><creatorcontrib>Recht, Michael P.</creatorcontrib><title>Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
To advance research in the field of machine learning for MR image reconstruction with an open challenge.
Methods
We provided participants with a dataset of raw k‐space data from 1,594 consecutive clinical exams of the knee. The goal of the challenge was to reconstruct images from these data. In order to strike a balance between realistic data and a shallow learning curve for those not already familiar with MR image reconstruction, we ran multiple tracks for multi‐coil and single‐coil data. We performed a two‐stage evaluation based on quantitative image metrics followed by evaluation by a panel of radiologists. The challenge ran from June to December of 2019.
Results
We received a total of 33 challenge submissions. All participants chose to submit results from supervised machine learning approaches.
Conclusions
The challenge led to new developments in machine learning for image reconstruction, provided insight into the current state of the art in the field, and highlighted remaining hurdles for clinical adoption.</description><subject>challenge</subject><subject>compressed sensing</subject><subject>fast imaging</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image reconstruction</subject><subject>Knee Joint</subject><subject>Learning algorithms</subject><subject>Learning curves</subject><subject>Machine Learning</subject><subject>machine learning, optimization</subject><subject>Magnetic Resonance Imaging</subject><subject>parallel imaging</subject><subject>public dataset</subject><subject>Supervised Machine Learning</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1rFDEUhoModl298A9IwBu9mDaZZJIZL4RS_Ch0KSx6Hc5kzuykzCRrMrtL_71ZtxYVvArkPDy857yEvObsnDNWXkxxOi9rIeonZMGrsizKqpFPyYJpyQrBG3lGXqR0xxhrGi2fkzNRVkypql6Qw2W3B2-d39AJ7OA80hEh-uNHHyJdrambYIM0og0-zXFnZxc8Pbh5oOBp2KKnNkxbnN1x8IHe7jHuHR5o6Ok8IC0Zb2gPaV6tr6kdYBzRb_AledbDmPDVw7sk3z9_-nb1tbi5_XJ9dXlTWMnquug0A9kykaMrJToLneqbvB3IuqnaVqu2UqzmSrBeg2q1Vb0UUEOvQEHFO7EkH0_e7a6dsLPo5wij2ca8Vbw3AZz5e-LdYDZhb7TmjeI8C949CGL4scM0m8kli-MIHsMumVJypgU7nn9J3v6D3oVd9Hm9TMms0xnK1PsTZWNIKWL_GIYzc6zT5DrNrzoz--bP9I_k7_4ycHECDm7E-_-bzGq9Oil_AktFqks</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Knoll, Florian</creator><creator>Murrell, Tullie</creator><creator>Sriram, Anuroop</creator><creator>Yakubova, Nafissa</creator><creator>Zbontar, Jure</creator><creator>Rabbat, Michael</creator><creator>Defazio, Aaron</creator><creator>Muckley, Matthew J.</creator><creator>Sodickson, Daniel K.</creator><creator>Zitnick, C. Lawrence</creator><creator>Recht, Michael P.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6525-8817</orcidid><orcidid>https://orcid.org/0000-0001-5357-8656</orcidid></search><sort><creationdate>202012</creationdate><title>Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge</title><author>Knoll, Florian ; Murrell, Tullie ; Sriram, Anuroop ; Yakubova, Nafissa ; Zbontar, Jure ; Rabbat, Michael ; Defazio, Aaron ; Muckley, Matthew J. ; Sodickson, Daniel K. ; Zitnick, C. Lawrence ; Recht, Michael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4088-d70a4b03000663dcad6f9259a4895bb76b56081630f7a6b7c6f43a8af6a6a51d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>challenge</topic><topic>compressed sensing</topic><topic>fast imaging</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image reconstruction</topic><topic>Knee Joint</topic><topic>Learning algorithms</topic><topic>Learning curves</topic><topic>Machine Learning</topic><topic>machine learning, optimization</topic><topic>Magnetic Resonance Imaging</topic><topic>parallel imaging</topic><topic>public dataset</topic><topic>Supervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knoll, Florian</creatorcontrib><creatorcontrib>Murrell, Tullie</creatorcontrib><creatorcontrib>Sriram, Anuroop</creatorcontrib><creatorcontrib>Yakubova, Nafissa</creatorcontrib><creatorcontrib>Zbontar, Jure</creatorcontrib><creatorcontrib>Rabbat, Michael</creatorcontrib><creatorcontrib>Defazio, Aaron</creatorcontrib><creatorcontrib>Muckley, Matthew J.</creatorcontrib><creatorcontrib>Sodickson, Daniel K.</creatorcontrib><creatorcontrib>Zitnick, C. Lawrence</creatorcontrib><creatorcontrib>Recht, Michael P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knoll, Florian</au><au>Murrell, Tullie</au><au>Sriram, Anuroop</au><au>Yakubova, Nafissa</au><au>Zbontar, Jure</au><au>Rabbat, Michael</au><au>Defazio, Aaron</au><au>Muckley, Matthew J.</au><au>Sodickson, Daniel K.</au><au>Zitnick, C. Lawrence</au><au>Recht, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2020-12</date><risdate>2020</risdate><volume>84</volume><issue>6</issue><spage>3054</spage><epage>3070</epage><pages>3054-3070</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
To advance research in the field of machine learning for MR image reconstruction with an open challenge.
Methods
We provided participants with a dataset of raw k‐space data from 1,594 consecutive clinical exams of the knee. The goal of the challenge was to reconstruct images from these data. In order to strike a balance between realistic data and a shallow learning curve for those not already familiar with MR image reconstruction, we ran multiple tracks for multi‐coil and single‐coil data. We performed a two‐stage evaluation based on quantitative image metrics followed by evaluation by a panel of radiologists. The challenge ran from June to December of 2019.
Results
We received a total of 33 challenge submissions. All participants chose to submit results from supervised machine learning approaches.
Conclusions
The challenge led to new developments in machine learning for image reconstruction, provided insight into the current state of the art in the field, and highlighted remaining hurdles for clinical adoption.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32506658</pmid><doi>10.1002/mrm.28338</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6525-8817</orcidid><orcidid>https://orcid.org/0000-0001-5357-8656</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2020-12, Vol.84 (6), p.3054-3070 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7719611 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | challenge compressed sensing fast imaging Image processing Image Processing, Computer-Assisted Image reconstruction Knee Joint Learning algorithms Learning curves Machine Learning machine learning, optimization Magnetic Resonance Imaging parallel imaging public dataset Supervised Machine Learning |
title | Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20machine%20learning%20for%20MR%20image%20reconstruction%20with%20an%20open%20competition:%20Overview%20of%20the%202019%20fastMRI%20challenge&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Knoll,%20Florian&rft.date=2020-12&rft.volume=84&rft.issue=6&rft.spage=3054&rft.epage=3070&rft.pages=3054-3070&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.28338&rft_dat=%3Cproquest_pubme%3E2410730283%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441967833&rft_id=info:pmid/32506658&rfr_iscdi=true |