Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM

In the context of tissue engineering, chitosan hydrogels are attractive biomaterials because they represent a family of natural polymers exhibiting several suitable features (cytocompatibility, bioresorbability, wound healing, bacteriostatic and fungistatic properties, structural similarity with gly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in biomaterials 2020-12, Vol.9 (4), p.187-201
Hauptverfasser: Ben Bouali, A., Montembault, A., David, L., Von Boxberg, Y., Viallon, M., Hamdi, B., Nothias, F., Fodil, R., Féréol, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 4
container_start_page 187
container_title Progress in biomaterials
container_volume 9
creator Ben Bouali, A.
Montembault, A.
David, L.
Von Boxberg, Y.
Viallon, M.
Hamdi, B.
Nothias, F.
Fodil, R.
Féréol, S.
description In the context of tissue engineering, chitosan hydrogels are attractive biomaterials because they represent a family of natural polymers exhibiting several suitable features (cytocompatibility, bioresorbability, wound healing, bacteriostatic and fungistatic properties, structural similarity with glycosaminoglycans), and tunable mechanical properties. Optimizing the design of these biomaterials requires fine knowledge of its physical characteristics prior to assessment of the cell–biomaterial interactions. In this work, using atomic force microscopy (AFM), we report a characterization of mechanical and topographical properties at the submicron range of chitosan hydrogels, depending on physico-chemical parameters such as their polymer concentration (1.5%, 2.5% and 3.5%), their degree of acetylation (4% and 38.5%), and the conditions of the gelation process. Well-known polyacrylamide gels were used to validate the methodology approach for the determination and analysis of elastic modulus (i.e., Young’s modulus) distribution at the gel surface. We present elastic modulus distribution and topographical and stiffness maps for different chitosan hydrogels. For each chitosan hydrogel formulation, AFM analyses reveal a specific asymmetric elastic modulus distribution that constitutes a useful hallmark for chitosan hydrogel characterization. Our results regarding the local mechanical properties and the topography of chitosan hydrogels initiate new possibilities for an interpretation of the behavior of cells in contact with such soft materials .
doi_str_mv 10.1007/s40204-020-00141-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7718388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473378693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-53c8cc62055b65183e563ca8f9475188ca21e84893bbc9123e1e359560778e563</originalsourceid><addsrcrecordid>eNp9kU1vGyEQhlHVqrFc_4GekHrJIZvC8rmXSJbV1JGc5JKeEYvH3rV2wYG1Jf_74m7kqjmUwzDA876DZhD6SsktJUR9T5yUhBc5FIRQTgv-AU1KWuUrQdXHS06qKzRLaUfyUpwwqj6jK8aokFzTCVo-WR-Ssx3gHlxjfZtzvI9hD3FoIeGwwa5ph5Csx81pHcMWuoRtwhGOkGVrXJ_w_P7xC_q0sV2C2ds-Rb_uf7wslsXq-efDYr4qnCjFUAjmtHOyJELUUlDNQEjmrN5UXOWjdrakoLmuWF27ipYMKDBRCUmU0md2iu5G3_2h7mHtwA_RdmYf297Gkwm2Nf---LYx23A0SuVqWmeDm9GgeSdbzlem9Qlib3KbJNFSHGnGr9_qxfB6gDSYvk0Ous56CIdkSi40YZLKs_O3d-guHKLP3ciUYkxpWbFMlSPlYkgpwubyCUrMebRmHK3JwfwZreFZxEZRyrDfQvxr_R_Vbxk1opU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473378693</pqid></control><display><type>article</type><title>Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ben Bouali, A. ; Montembault, A. ; David, L. ; Von Boxberg, Y. ; Viallon, M. ; Hamdi, B. ; Nothias, F. ; Fodil, R. ; Féréol, S.</creator><creatorcontrib>Ben Bouali, A. ; Montembault, A. ; David, L. ; Von Boxberg, Y. ; Viallon, M. ; Hamdi, B. ; Nothias, F. ; Fodil, R. ; Féréol, S.</creatorcontrib><description>In the context of tissue engineering, chitosan hydrogels are attractive biomaterials because they represent a family of natural polymers exhibiting several suitable features (cytocompatibility, bioresorbability, wound healing, bacteriostatic and fungistatic properties, structural similarity with glycosaminoglycans), and tunable mechanical properties. Optimizing the design of these biomaterials requires fine knowledge of its physical characteristics prior to assessment of the cell–biomaterial interactions. In this work, using atomic force microscopy (AFM), we report a characterization of mechanical and topographical properties at the submicron range of chitosan hydrogels, depending on physico-chemical parameters such as their polymer concentration (1.5%, 2.5% and 3.5%), their degree of acetylation (4% and 38.5%), and the conditions of the gelation process. Well-known polyacrylamide gels were used to validate the methodology approach for the determination and analysis of elastic modulus (i.e., Young’s modulus) distribution at the gel surface. We present elastic modulus distribution and topographical and stiffness maps for different chitosan hydrogels. For each chitosan hydrogel formulation, AFM analyses reveal a specific asymmetric elastic modulus distribution that constitutes a useful hallmark for chitosan hydrogel characterization. Our results regarding the local mechanical properties and the topography of chitosan hydrogels initiate new possibilities for an interpretation of the behavior of cells in contact with such soft materials .</description><identifier>ISSN: 2194-0509</identifier><identifier>EISSN: 2194-0517</identifier><identifier>DOI: 10.1007/s40204-020-00141-4</identifier><identifier>PMID: 33156481</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetylation ; Atomic force microscopy ; Biocompatibility ; Biomaterials ; Biomedical materials ; Chemistry and Materials Science ; Chitosan ; Design optimization ; Elastic analysis ; Glycosaminoglycans ; Hydrogels ; Life Sciences ; Materials Science ; Mechanical properties ; Modulus of elasticity ; Natural polymers ; Original Research ; Physical characteristics ; Physical properties ; Polyacrylamide ; Polymers ; Stiffness ; Tissue engineering ; Wound healing</subject><ispartof>Progress in biomaterials, 2020-12, Vol.9 (4), p.187-201</ispartof><rights>Islamic Azad University 2020</rights><rights>Islamic Azad University 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-53c8cc62055b65183e563ca8f9475188ca21e84893bbc9123e1e359560778e563</citedby><cites>FETCH-LOGICAL-c525t-53c8cc62055b65183e563ca8f9475188ca21e84893bbc9123e1e359560778e563</cites><orcidid>0000-0003-3632-8537 ; 0000-0001-5886-6155 ; 0000-0003-4113-1106 ; 0000-0002-8871-2437 ; 0000-0003-1820-5832 ; 0000-0001-9118-0438 ; 0000-0002-2497-2096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718388/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718388/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,41486,42555,51317,53789,53791</link.rule.ids><backlink>$$Uhttps://inserm.hal.science/inserm-03160865$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben Bouali, A.</creatorcontrib><creatorcontrib>Montembault, A.</creatorcontrib><creatorcontrib>David, L.</creatorcontrib><creatorcontrib>Von Boxberg, Y.</creatorcontrib><creatorcontrib>Viallon, M.</creatorcontrib><creatorcontrib>Hamdi, B.</creatorcontrib><creatorcontrib>Nothias, F.</creatorcontrib><creatorcontrib>Fodil, R.</creatorcontrib><creatorcontrib>Féréol, S.</creatorcontrib><title>Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM</title><title>Progress in biomaterials</title><addtitle>Prog Biomater</addtitle><description>In the context of tissue engineering, chitosan hydrogels are attractive biomaterials because they represent a family of natural polymers exhibiting several suitable features (cytocompatibility, bioresorbability, wound healing, bacteriostatic and fungistatic properties, structural similarity with glycosaminoglycans), and tunable mechanical properties. Optimizing the design of these biomaterials requires fine knowledge of its physical characteristics prior to assessment of the cell–biomaterial interactions. In this work, using atomic force microscopy (AFM), we report a characterization of mechanical and topographical properties at the submicron range of chitosan hydrogels, depending on physico-chemical parameters such as their polymer concentration (1.5%, 2.5% and 3.5%), their degree of acetylation (4% and 38.5%), and the conditions of the gelation process. Well-known polyacrylamide gels were used to validate the methodology approach for the determination and analysis of elastic modulus (i.e., Young’s modulus) distribution at the gel surface. We present elastic modulus distribution and topographical and stiffness maps for different chitosan hydrogels. For each chitosan hydrogel formulation, AFM analyses reveal a specific asymmetric elastic modulus distribution that constitutes a useful hallmark for chitosan hydrogel characterization. Our results regarding the local mechanical properties and the topography of chitosan hydrogels initiate new possibilities for an interpretation of the behavior of cells in contact with such soft materials .</description><subject>Acetylation</subject><subject>Atomic force microscopy</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Design optimization</subject><subject>Elastic analysis</subject><subject>Glycosaminoglycans</subject><subject>Hydrogels</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Natural polymers</subject><subject>Original Research</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Polyacrylamide</subject><subject>Polymers</subject><subject>Stiffness</subject><subject>Tissue engineering</subject><subject>Wound healing</subject><issn>2194-0509</issn><issn>2194-0517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1vGyEQhlHVqrFc_4GekHrJIZvC8rmXSJbV1JGc5JKeEYvH3rV2wYG1Jf_74m7kqjmUwzDA876DZhD6SsktJUR9T5yUhBc5FIRQTgv-AU1KWuUrQdXHS06qKzRLaUfyUpwwqj6jK8aokFzTCVo-WR-Ssx3gHlxjfZtzvI9hD3FoIeGwwa5ph5Csx81pHcMWuoRtwhGOkGVrXJ_w_P7xC_q0sV2C2ds-Rb_uf7wslsXq-efDYr4qnCjFUAjmtHOyJELUUlDNQEjmrN5UXOWjdrakoLmuWF27ipYMKDBRCUmU0md2iu5G3_2h7mHtwA_RdmYf297Gkwm2Nf---LYx23A0SuVqWmeDm9GgeSdbzlem9Qlib3KbJNFSHGnGr9_qxfB6gDSYvk0Ous56CIdkSi40YZLKs_O3d-guHKLP3ciUYkxpWbFMlSPlYkgpwubyCUrMebRmHK3JwfwZreFZxEZRyrDfQvxr_R_Vbxk1opU</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Ben Bouali, A.</creator><creator>Montembault, A.</creator><creator>David, L.</creator><creator>Von Boxberg, Y.</creator><creator>Viallon, M.</creator><creator>Hamdi, B.</creator><creator>Nothias, F.</creator><creator>Fodil, R.</creator><creator>Féréol, S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3632-8537</orcidid><orcidid>https://orcid.org/0000-0001-5886-6155</orcidid><orcidid>https://orcid.org/0000-0003-4113-1106</orcidid><orcidid>https://orcid.org/0000-0002-8871-2437</orcidid><orcidid>https://orcid.org/0000-0003-1820-5832</orcidid><orcidid>https://orcid.org/0000-0001-9118-0438</orcidid><orcidid>https://orcid.org/0000-0002-2497-2096</orcidid></search><sort><creationdate>20201201</creationdate><title>Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM</title><author>Ben Bouali, A. ; Montembault, A. ; David, L. ; Von Boxberg, Y. ; Viallon, M. ; Hamdi, B. ; Nothias, F. ; Fodil, R. ; Féréol, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-53c8cc62055b65183e563ca8f9475188ca21e84893bbc9123e1e359560778e563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetylation</topic><topic>Atomic force microscopy</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Design optimization</topic><topic>Elastic analysis</topic><topic>Glycosaminoglycans</topic><topic>Hydrogels</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Natural polymers</topic><topic>Original Research</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Polyacrylamide</topic><topic>Polymers</topic><topic>Stiffness</topic><topic>Tissue engineering</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Bouali, A.</creatorcontrib><creatorcontrib>Montembault, A.</creatorcontrib><creatorcontrib>David, L.</creatorcontrib><creatorcontrib>Von Boxberg, Y.</creatorcontrib><creatorcontrib>Viallon, M.</creatorcontrib><creatorcontrib>Hamdi, B.</creatorcontrib><creatorcontrib>Nothias, F.</creatorcontrib><creatorcontrib>Fodil, R.</creatorcontrib><creatorcontrib>Féréol, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Progress in biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Bouali, A.</au><au>Montembault, A.</au><au>David, L.</au><au>Von Boxberg, Y.</au><au>Viallon, M.</au><au>Hamdi, B.</au><au>Nothias, F.</au><au>Fodil, R.</au><au>Féréol, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM</atitle><jtitle>Progress in biomaterials</jtitle><stitle>Prog Biomater</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>9</volume><issue>4</issue><spage>187</spage><epage>201</epage><pages>187-201</pages><issn>2194-0509</issn><eissn>2194-0517</eissn><abstract>In the context of tissue engineering, chitosan hydrogels are attractive biomaterials because they represent a family of natural polymers exhibiting several suitable features (cytocompatibility, bioresorbability, wound healing, bacteriostatic and fungistatic properties, structural similarity with glycosaminoglycans), and tunable mechanical properties. Optimizing the design of these biomaterials requires fine knowledge of its physical characteristics prior to assessment of the cell–biomaterial interactions. In this work, using atomic force microscopy (AFM), we report a characterization of mechanical and topographical properties at the submicron range of chitosan hydrogels, depending on physico-chemical parameters such as their polymer concentration (1.5%, 2.5% and 3.5%), their degree of acetylation (4% and 38.5%), and the conditions of the gelation process. Well-known polyacrylamide gels were used to validate the methodology approach for the determination and analysis of elastic modulus (i.e., Young’s modulus) distribution at the gel surface. We present elastic modulus distribution and topographical and stiffness maps for different chitosan hydrogels. For each chitosan hydrogel formulation, AFM analyses reveal a specific asymmetric elastic modulus distribution that constitutes a useful hallmark for chitosan hydrogel characterization. Our results regarding the local mechanical properties and the topography of chitosan hydrogels initiate new possibilities for an interpretation of the behavior of cells in contact with such soft materials .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33156481</pmid><doi>10.1007/s40204-020-00141-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3632-8537</orcidid><orcidid>https://orcid.org/0000-0001-5886-6155</orcidid><orcidid>https://orcid.org/0000-0003-4113-1106</orcidid><orcidid>https://orcid.org/0000-0002-8871-2437</orcidid><orcidid>https://orcid.org/0000-0003-1820-5832</orcidid><orcidid>https://orcid.org/0000-0001-9118-0438</orcidid><orcidid>https://orcid.org/0000-0002-2497-2096</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-0509
ispartof Progress in biomaterials, 2020-12, Vol.9 (4), p.187-201
issn 2194-0509
2194-0517
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7718388
source EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Acetylation
Atomic force microscopy
Biocompatibility
Biomaterials
Biomedical materials
Chemistry and Materials Science
Chitosan
Design optimization
Elastic analysis
Glycosaminoglycans
Hydrogels
Life Sciences
Materials Science
Mechanical properties
Modulus of elasticity
Natural polymers
Original Research
Physical characteristics
Physical properties
Polyacrylamide
Polymers
Stiffness
Tissue engineering
Wound healing
title Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20mechanical%20properties%20of%20chitosan%20hydrogels%20as%20revealed%20by%20AFM&rft.jtitle=Progress%20in%20biomaterials&rft.au=Ben%20Bouali,%20A.&rft.date=2020-12-01&rft.volume=9&rft.issue=4&rft.spage=187&rft.epage=201&rft.pages=187-201&rft.issn=2194-0509&rft.eissn=2194-0517&rft_id=info:doi/10.1007/s40204-020-00141-4&rft_dat=%3Cproquest_pubme%3E2473378693%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473378693&rft_id=info:pmid/33156481&rfr_iscdi=true