Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM
In the context of tissue engineering, chitosan hydrogels are attractive biomaterials because they represent a family of natural polymers exhibiting several suitable features (cytocompatibility, bioresorbability, wound healing, bacteriostatic and fungistatic properties, structural similarity with gly...
Gespeichert in:
Veröffentlicht in: | Progress in biomaterials 2020-12, Vol.9 (4), p.187-201 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 4 |
container_start_page | 187 |
container_title | Progress in biomaterials |
container_volume | 9 |
creator | Ben Bouali, A. Montembault, A. David, L. Von Boxberg, Y. Viallon, M. Hamdi, B. Nothias, F. Fodil, R. Féréol, S. |
description | In the context of tissue engineering, chitosan hydrogels are attractive biomaterials because they represent a family of natural polymers exhibiting several suitable features (cytocompatibility, bioresorbability, wound healing, bacteriostatic and fungistatic properties, structural similarity with glycosaminoglycans), and tunable mechanical properties. Optimizing the design of these biomaterials requires fine knowledge of its physical characteristics prior to assessment of the cell–biomaterial interactions. In this work, using atomic force microscopy (AFM), we report a characterization of mechanical and topographical properties at the submicron range of chitosan hydrogels, depending on physico-chemical parameters such as their polymer concentration (1.5%, 2.5% and 3.5%), their degree of acetylation (4% and 38.5%), and the conditions of the gelation process. Well-known polyacrylamide gels were used to validate the methodology approach for the determination and analysis of elastic modulus (i.e., Young’s modulus) distribution at the gel surface. We present elastic modulus distribution and topographical and stiffness maps for different chitosan hydrogels. For each chitosan hydrogel formulation, AFM analyses reveal a specific asymmetric elastic modulus distribution that constitutes a useful hallmark for chitosan hydrogel characterization. Our results regarding the local mechanical properties and the topography of chitosan hydrogels initiate new possibilities for an interpretation of the behavior of cells in contact with such soft materials
. |
doi_str_mv | 10.1007/s40204-020-00141-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7718388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473378693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-53c8cc62055b65183e563ca8f9475188ca21e84893bbc9123e1e359560778e563</originalsourceid><addsrcrecordid>eNp9kU1vGyEQhlHVqrFc_4GekHrJIZvC8rmXSJbV1JGc5JKeEYvH3rV2wYG1Jf_74m7kqjmUwzDA876DZhD6SsktJUR9T5yUhBc5FIRQTgv-AU1KWuUrQdXHS06qKzRLaUfyUpwwqj6jK8aokFzTCVo-WR-Ssx3gHlxjfZtzvI9hD3FoIeGwwa5ph5Csx81pHcMWuoRtwhGOkGVrXJ_w_P7xC_q0sV2C2ds-Rb_uf7wslsXq-efDYr4qnCjFUAjmtHOyJELUUlDNQEjmrN5UXOWjdrakoLmuWF27ipYMKDBRCUmU0md2iu5G3_2h7mHtwA_RdmYf297Gkwm2Nf---LYx23A0SuVqWmeDm9GgeSdbzlem9Qlib3KbJNFSHGnGr9_qxfB6gDSYvk0Ous56CIdkSi40YZLKs_O3d-guHKLP3ciUYkxpWbFMlSPlYkgpwubyCUrMebRmHK3JwfwZreFZxEZRyrDfQvxr_R_Vbxk1opU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473378693</pqid></control><display><type>article</type><title>Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ben Bouali, A. ; Montembault, A. ; David, L. ; Von Boxberg, Y. ; Viallon, M. ; Hamdi, B. ; Nothias, F. ; Fodil, R. ; Féréol, S.</creator><creatorcontrib>Ben Bouali, A. ; Montembault, A. ; David, L. ; Von Boxberg, Y. ; Viallon, M. ; Hamdi, B. ; Nothias, F. ; Fodil, R. ; Féréol, S.</creatorcontrib><description>In the context of tissue engineering, chitosan hydrogels are attractive biomaterials because they represent a family of natural polymers exhibiting several suitable features (cytocompatibility, bioresorbability, wound healing, bacteriostatic and fungistatic properties, structural similarity with glycosaminoglycans), and tunable mechanical properties. Optimizing the design of these biomaterials requires fine knowledge of its physical characteristics prior to assessment of the cell–biomaterial interactions. In this work, using atomic force microscopy (AFM), we report a characterization of mechanical and topographical properties at the submicron range of chitosan hydrogels, depending on physico-chemical parameters such as their polymer concentration (1.5%, 2.5% and 3.5%), their degree of acetylation (4% and 38.5%), and the conditions of the gelation process. Well-known polyacrylamide gels were used to validate the methodology approach for the determination and analysis of elastic modulus (i.e., Young’s modulus) distribution at the gel surface. We present elastic modulus distribution and topographical and stiffness maps for different chitosan hydrogels. For each chitosan hydrogel formulation, AFM analyses reveal a specific asymmetric elastic modulus distribution that constitutes a useful hallmark for chitosan hydrogel characterization. Our results regarding the local mechanical properties and the topography of chitosan hydrogels initiate new possibilities for an interpretation of the behavior of cells in contact with such soft materials
.</description><identifier>ISSN: 2194-0509</identifier><identifier>EISSN: 2194-0517</identifier><identifier>DOI: 10.1007/s40204-020-00141-4</identifier><identifier>PMID: 33156481</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetylation ; Atomic force microscopy ; Biocompatibility ; Biomaterials ; Biomedical materials ; Chemistry and Materials Science ; Chitosan ; Design optimization ; Elastic analysis ; Glycosaminoglycans ; Hydrogels ; Life Sciences ; Materials Science ; Mechanical properties ; Modulus of elasticity ; Natural polymers ; Original Research ; Physical characteristics ; Physical properties ; Polyacrylamide ; Polymers ; Stiffness ; Tissue engineering ; Wound healing</subject><ispartof>Progress in biomaterials, 2020-12, Vol.9 (4), p.187-201</ispartof><rights>Islamic Azad University 2020</rights><rights>Islamic Azad University 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-53c8cc62055b65183e563ca8f9475188ca21e84893bbc9123e1e359560778e563</citedby><cites>FETCH-LOGICAL-c525t-53c8cc62055b65183e563ca8f9475188ca21e84893bbc9123e1e359560778e563</cites><orcidid>0000-0003-3632-8537 ; 0000-0001-5886-6155 ; 0000-0003-4113-1106 ; 0000-0002-8871-2437 ; 0000-0003-1820-5832 ; 0000-0001-9118-0438 ; 0000-0002-2497-2096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718388/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718388/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,41486,42555,51317,53789,53791</link.rule.ids><backlink>$$Uhttps://inserm.hal.science/inserm-03160865$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben Bouali, A.</creatorcontrib><creatorcontrib>Montembault, A.</creatorcontrib><creatorcontrib>David, L.</creatorcontrib><creatorcontrib>Von Boxberg, Y.</creatorcontrib><creatorcontrib>Viallon, M.</creatorcontrib><creatorcontrib>Hamdi, B.</creatorcontrib><creatorcontrib>Nothias, F.</creatorcontrib><creatorcontrib>Fodil, R.</creatorcontrib><creatorcontrib>Féréol, S.</creatorcontrib><title>Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM</title><title>Progress in biomaterials</title><addtitle>Prog Biomater</addtitle><description>In the context of tissue engineering, chitosan hydrogels are attractive biomaterials because they represent a family of natural polymers exhibiting several suitable features (cytocompatibility, bioresorbability, wound healing, bacteriostatic and fungistatic properties, structural similarity with glycosaminoglycans), and tunable mechanical properties. Optimizing the design of these biomaterials requires fine knowledge of its physical characteristics prior to assessment of the cell–biomaterial interactions. In this work, using atomic force microscopy (AFM), we report a characterization of mechanical and topographical properties at the submicron range of chitosan hydrogels, depending on physico-chemical parameters such as their polymer concentration (1.5%, 2.5% and 3.5%), their degree of acetylation (4% and 38.5%), and the conditions of the gelation process. Well-known polyacrylamide gels were used to validate the methodology approach for the determination and analysis of elastic modulus (i.e., Young’s modulus) distribution at the gel surface. We present elastic modulus distribution and topographical and stiffness maps for different chitosan hydrogels. For each chitosan hydrogel formulation, AFM analyses reveal a specific asymmetric elastic modulus distribution that constitutes a useful hallmark for chitosan hydrogel characterization. Our results regarding the local mechanical properties and the topography of chitosan hydrogels initiate new possibilities for an interpretation of the behavior of cells in contact with such soft materials
.</description><subject>Acetylation</subject><subject>Atomic force microscopy</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Design optimization</subject><subject>Elastic analysis</subject><subject>Glycosaminoglycans</subject><subject>Hydrogels</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Natural polymers</subject><subject>Original Research</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>Polyacrylamide</subject><subject>Polymers</subject><subject>Stiffness</subject><subject>Tissue engineering</subject><subject>Wound healing</subject><issn>2194-0509</issn><issn>2194-0517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1vGyEQhlHVqrFc_4GekHrJIZvC8rmXSJbV1JGc5JKeEYvH3rV2wYG1Jf_74m7kqjmUwzDA876DZhD6SsktJUR9T5yUhBc5FIRQTgv-AU1KWuUrQdXHS06qKzRLaUfyUpwwqj6jK8aokFzTCVo-WR-Ssx3gHlxjfZtzvI9hD3FoIeGwwa5ph5Csx81pHcMWuoRtwhGOkGVrXJ_w_P7xC_q0sV2C2ds-Rb_uf7wslsXq-efDYr4qnCjFUAjmtHOyJELUUlDNQEjmrN5UXOWjdrakoLmuWF27ipYMKDBRCUmU0md2iu5G3_2h7mHtwA_RdmYf297Gkwm2Nf---LYx23A0SuVqWmeDm9GgeSdbzlem9Qlib3KbJNFSHGnGr9_qxfB6gDSYvk0Ous56CIdkSi40YZLKs_O3d-guHKLP3ciUYkxpWbFMlSPlYkgpwubyCUrMebRmHK3JwfwZreFZxEZRyrDfQvxr_R_Vbxk1opU</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Ben Bouali, A.</creator><creator>Montembault, A.</creator><creator>David, L.</creator><creator>Von Boxberg, Y.</creator><creator>Viallon, M.</creator><creator>Hamdi, B.</creator><creator>Nothias, F.</creator><creator>Fodil, R.</creator><creator>Féréol, S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3632-8537</orcidid><orcidid>https://orcid.org/0000-0001-5886-6155</orcidid><orcidid>https://orcid.org/0000-0003-4113-1106</orcidid><orcidid>https://orcid.org/0000-0002-8871-2437</orcidid><orcidid>https://orcid.org/0000-0003-1820-5832</orcidid><orcidid>https://orcid.org/0000-0001-9118-0438</orcidid><orcidid>https://orcid.org/0000-0002-2497-2096</orcidid></search><sort><creationdate>20201201</creationdate><title>Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM</title><author>Ben Bouali, A. ; Montembault, A. ; David, L. ; Von Boxberg, Y. ; Viallon, M. ; Hamdi, B. ; Nothias, F. ; Fodil, R. ; Féréol, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-53c8cc62055b65183e563ca8f9475188ca21e84893bbc9123e1e359560778e563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetylation</topic><topic>Atomic force microscopy</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Design optimization</topic><topic>Elastic analysis</topic><topic>Glycosaminoglycans</topic><topic>Hydrogels</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Natural polymers</topic><topic>Original Research</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>Polyacrylamide</topic><topic>Polymers</topic><topic>Stiffness</topic><topic>Tissue engineering</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Bouali, A.</creatorcontrib><creatorcontrib>Montembault, A.</creatorcontrib><creatorcontrib>David, L.</creatorcontrib><creatorcontrib>Von Boxberg, Y.</creatorcontrib><creatorcontrib>Viallon, M.</creatorcontrib><creatorcontrib>Hamdi, B.</creatorcontrib><creatorcontrib>Nothias, F.</creatorcontrib><creatorcontrib>Fodil, R.</creatorcontrib><creatorcontrib>Féréol, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Progress in biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Bouali, A.</au><au>Montembault, A.</au><au>David, L.</au><au>Von Boxberg, Y.</au><au>Viallon, M.</au><au>Hamdi, B.</au><au>Nothias, F.</au><au>Fodil, R.</au><au>Féréol, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM</atitle><jtitle>Progress in biomaterials</jtitle><stitle>Prog Biomater</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>9</volume><issue>4</issue><spage>187</spage><epage>201</epage><pages>187-201</pages><issn>2194-0509</issn><eissn>2194-0517</eissn><abstract>In the context of tissue engineering, chitosan hydrogels are attractive biomaterials because they represent a family of natural polymers exhibiting several suitable features (cytocompatibility, bioresorbability, wound healing, bacteriostatic and fungistatic properties, structural similarity with glycosaminoglycans), and tunable mechanical properties. Optimizing the design of these biomaterials requires fine knowledge of its physical characteristics prior to assessment of the cell–biomaterial interactions. In this work, using atomic force microscopy (AFM), we report a characterization of mechanical and topographical properties at the submicron range of chitosan hydrogels, depending on physico-chemical parameters such as their polymer concentration (1.5%, 2.5% and 3.5%), their degree of acetylation (4% and 38.5%), and the conditions of the gelation process. Well-known polyacrylamide gels were used to validate the methodology approach for the determination and analysis of elastic modulus (i.e., Young’s modulus) distribution at the gel surface. We present elastic modulus distribution and topographical and stiffness maps for different chitosan hydrogels. For each chitosan hydrogel formulation, AFM analyses reveal a specific asymmetric elastic modulus distribution that constitutes a useful hallmark for chitosan hydrogel characterization. Our results regarding the local mechanical properties and the topography of chitosan hydrogels initiate new possibilities for an interpretation of the behavior of cells in contact with such soft materials
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33156481</pmid><doi>10.1007/s40204-020-00141-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3632-8537</orcidid><orcidid>https://orcid.org/0000-0001-5886-6155</orcidid><orcidid>https://orcid.org/0000-0003-4113-1106</orcidid><orcidid>https://orcid.org/0000-0002-8871-2437</orcidid><orcidid>https://orcid.org/0000-0003-1820-5832</orcidid><orcidid>https://orcid.org/0000-0001-9118-0438</orcidid><orcidid>https://orcid.org/0000-0002-2497-2096</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-0509 |
ispartof | Progress in biomaterials, 2020-12, Vol.9 (4), p.187-201 |
issn | 2194-0509 2194-0517 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7718388 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Acetylation Atomic force microscopy Biocompatibility Biomaterials Biomedical materials Chemistry and Materials Science Chitosan Design optimization Elastic analysis Glycosaminoglycans Hydrogels Life Sciences Materials Science Mechanical properties Modulus of elasticity Natural polymers Original Research Physical characteristics Physical properties Polyacrylamide Polymers Stiffness Tissue engineering Wound healing |
title | Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20mechanical%20properties%20of%20chitosan%20hydrogels%20as%20revealed%20by%20AFM&rft.jtitle=Progress%20in%20biomaterials&rft.au=Ben%20Bouali,%20A.&rft.date=2020-12-01&rft.volume=9&rft.issue=4&rft.spage=187&rft.epage=201&rft.pages=187-201&rft.issn=2194-0509&rft.eissn=2194-0517&rft_id=info:doi/10.1007/s40204-020-00141-4&rft_dat=%3Cproquest_pubme%3E2473378693%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473378693&rft_id=info:pmid/33156481&rfr_iscdi=true |