Biomechanical properties of the rat sclera obtained with inverse finite element modeling

It is widely accepted that biomechanics plays an important role in glaucoma pathophysiology, but the mechanisms involved are largely unknown. Rats are a common animal model of glaucoma, and finite element models are being developed to provide much-needed insight into the biomechanical environment of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomechanics and modeling in mechanobiology 2020-12, Vol.19 (6), p.2195-2212
Hauptverfasser: Schwaner, Stephen A., Hannon, Bailey G., Feola, Andrew J., Ethier, C. Ross
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2212
container_issue 6
container_start_page 2195
container_title Biomechanics and modeling in mechanobiology
container_volume 19
creator Schwaner, Stephen A.
Hannon, Bailey G.
Feola, Andrew J.
Ethier, C. Ross
description It is widely accepted that biomechanics plays an important role in glaucoma pathophysiology, but the mechanisms involved are largely unknown. Rats are a common animal model of glaucoma, and finite element models are being developed to provide much-needed insight into the biomechanical environment of the posterior rat eye. However, material properties of rat ocular tissues, including the sclera, are currently unknown. Since the sclera plays a major role in posterior ocular biomechanics, our goal was to use inverse finite element modeling to extract rat scleral material properties. We first used digital image correlation to measure scleral surface displacement during whole-globe inflation testing. We modeled the sclera as a nonlinear material with embedded collagen fibers and then fit modeled displacements to experimental data using a differential evolution algorithm. Subject-specific models were constructed in which 3 parameters described the stiffness of the ground substance and collagen fibers in the posterior eye, and 16 parameters defined the primary orientation and alignment of fibers within eight scleral sub-regions. We successfully extracted scleral material properties for eight rat eyes. Model displacements recreated general patterns of the experimental displacements but did not always match local patterns. The fiber directions and fiber concentration parameters were highly variable, but on average, fibers were aligned circumferentially and were more aligned in the peripapillary sclera than in the peripheral sclera. The material properties determined here will be used to inform future finite element models of the rat posterior eye with the goal of elucidating the role of biomechanics in glaucoma pathophysiology.
doi_str_mv 10.1007/s10237-020-01333-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7716265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539892250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-788546034f5e4b44b58b4a5f5b849fdc88125ab5732bd123ba15442c300aa8183</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoNU7If-ARcScONmNJ-TzKagxbZCwY2Cu5BkztybMpPcJrkt_nvT3nr9WHSVwHnOe87hQeg1Je8pIepDoYRx1RFGOkI55514ho5oT1WnBkEO9n85HKLjUq5JI7nmL9AhZ7ynmtEj9ONTSAv4tY3B2xlvctpArgEKThOua8DZVlz8DNni5KoNEUZ8F-oah3gLuQCeQgwVMMywQKx4SSPMIa5eoueTnQu8enxP0Pfzz9_OLrurrxdfzj5edV4oUTultRQ94WKSIJwQTmonrJyk02KYRq81ZdI6qThzI2XcWSqFYJ4TYq2mmp-g013uZusWGH3bIdvZbHJYbP5pkg3m30oMa7NKt0Yp2rNetoB3jwE53WyhVLOE4mGebYS0LYbxQVM5MHk_6-1_6HXa5tjOM0w2bGBMkkaxHeVzKiXDtF-GEnMvzuzEmabDPIgzojW9-fuMfctvUw3gO6C0UlxB_jP7idhf6p6j9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539892250</pqid></control><display><type>article</type><title>Biomechanical properties of the rat sclera obtained with inverse finite element modeling</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Schwaner, Stephen A. ; Hannon, Bailey G. ; Feola, Andrew J. ; Ethier, C. Ross</creator><creatorcontrib>Schwaner, Stephen A. ; Hannon, Bailey G. ; Feola, Andrew J. ; Ethier, C. Ross</creatorcontrib><description>It is widely accepted that biomechanics plays an important role in glaucoma pathophysiology, but the mechanisms involved are largely unknown. Rats are a common animal model of glaucoma, and finite element models are being developed to provide much-needed insight into the biomechanical environment of the posterior rat eye. However, material properties of rat ocular tissues, including the sclera, are currently unknown. Since the sclera plays a major role in posterior ocular biomechanics, our goal was to use inverse finite element modeling to extract rat scleral material properties. We first used digital image correlation to measure scleral surface displacement during whole-globe inflation testing. We modeled the sclera as a nonlinear material with embedded collagen fibers and then fit modeled displacements to experimental data using a differential evolution algorithm. Subject-specific models were constructed in which 3 parameters described the stiffness of the ground substance and collagen fibers in the posterior eye, and 16 parameters defined the primary orientation and alignment of fibers within eight scleral sub-regions. We successfully extracted scleral material properties for eight rat eyes. Model displacements recreated general patterns of the experimental displacements but did not always match local patterns. The fiber directions and fiber concentration parameters were highly variable, but on average, fibers were aligned circumferentially and were more aligned in the peripapillary sclera than in the peripheral sclera. The material properties determined here will be used to inform future finite element models of the rat posterior eye with the goal of elucidating the role of biomechanics in glaucoma pathophysiology.</description><identifier>ISSN: 1617-7959</identifier><identifier>EISSN: 1617-7940</identifier><identifier>DOI: 10.1007/s10237-020-01333-4</identifier><identifier>PMID: 32361821</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Animal models ; Animals ; Anisotropy ; Biological and Medical Physics ; Biomechanical Phenomena ; Biomechanics ; Biomedical Engineering and Bioengineering ; Biophysics ; Collagen ; Digital imaging ; Disease Models, Animal ; Displacement ; Elastic Modulus ; Engineering ; Evolutionary algorithms ; Evolutionary computation ; Extracellular Matrix ; Eye ; Eye (anatomy) ; Fibers ; Finite Element Analysis ; Finite element method ; Glaucoma ; Glaucoma - physiopathology ; Image Processing, Computer-Assisted ; Intraocular Pressure ; Male ; Material properties ; Mathematical models ; Mechanical properties ; Modelling ; Original Paper ; Parameters ; Pathophysiology ; Rats ; Sclera - diagnostic imaging ; Sclera - physiopathology ; Stiffness ; Theoretical and Applied Mechanics ; Tomography, Optical Coherence - methods</subject><ispartof>Biomechanics and modeling in mechanobiology, 2020-12, Vol.19 (6), p.2195-2212</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-788546034f5e4b44b58b4a5f5b849fdc88125ab5732bd123ba15442c300aa8183</citedby><cites>FETCH-LOGICAL-c474t-788546034f5e4b44b58b4a5f5b849fdc88125ab5732bd123ba15442c300aa8183</cites><orcidid>0000-0002-4766-8900 ; 0000-0001-6110-3052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10237-020-01333-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10237-020-01333-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32361821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schwaner, Stephen A.</creatorcontrib><creatorcontrib>Hannon, Bailey G.</creatorcontrib><creatorcontrib>Feola, Andrew J.</creatorcontrib><creatorcontrib>Ethier, C. Ross</creatorcontrib><title>Biomechanical properties of the rat sclera obtained with inverse finite element modeling</title><title>Biomechanics and modeling in mechanobiology</title><addtitle>Biomech Model Mechanobiol</addtitle><addtitle>Biomech Model Mechanobiol</addtitle><description>It is widely accepted that biomechanics plays an important role in glaucoma pathophysiology, but the mechanisms involved are largely unknown. Rats are a common animal model of glaucoma, and finite element models are being developed to provide much-needed insight into the biomechanical environment of the posterior rat eye. However, material properties of rat ocular tissues, including the sclera, are currently unknown. Since the sclera plays a major role in posterior ocular biomechanics, our goal was to use inverse finite element modeling to extract rat scleral material properties. We first used digital image correlation to measure scleral surface displacement during whole-globe inflation testing. We modeled the sclera as a nonlinear material with embedded collagen fibers and then fit modeled displacements to experimental data using a differential evolution algorithm. Subject-specific models were constructed in which 3 parameters described the stiffness of the ground substance and collagen fibers in the posterior eye, and 16 parameters defined the primary orientation and alignment of fibers within eight scleral sub-regions. We successfully extracted scleral material properties for eight rat eyes. Model displacements recreated general patterns of the experimental displacements but did not always match local patterns. The fiber directions and fiber concentration parameters were highly variable, but on average, fibers were aligned circumferentially and were more aligned in the peripapillary sclera than in the peripheral sclera. The material properties determined here will be used to inform future finite element models of the rat posterior eye with the goal of elucidating the role of biomechanics in glaucoma pathophysiology.</description><subject>Algorithms</subject><subject>Animal models</subject><subject>Animals</subject><subject>Anisotropy</subject><subject>Biological and Medical Physics</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Collagen</subject><subject>Digital imaging</subject><subject>Disease Models, Animal</subject><subject>Displacement</subject><subject>Elastic Modulus</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Extracellular Matrix</subject><subject>Eye</subject><subject>Eye (anatomy)</subject><subject>Fibers</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Glaucoma</subject><subject>Glaucoma - physiopathology</subject><subject>Image Processing, Computer-Assisted</subject><subject>Intraocular Pressure</subject><subject>Male</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Modelling</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Pathophysiology</subject><subject>Rats</subject><subject>Sclera - diagnostic imaging</subject><subject>Sclera - physiopathology</subject><subject>Stiffness</subject><subject>Theoretical and Applied Mechanics</subject><subject>Tomography, Optical Coherence - methods</subject><issn>1617-7959</issn><issn>1617-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1rFTEUhoNU7If-ARcScONmNJ-TzKagxbZCwY2Cu5BkztybMpPcJrkt_nvT3nr9WHSVwHnOe87hQeg1Je8pIepDoYRx1RFGOkI55514ho5oT1WnBkEO9n85HKLjUq5JI7nmL9AhZ7ynmtEj9ONTSAv4tY3B2xlvctpArgEKThOua8DZVlz8DNni5KoNEUZ8F-oah3gLuQCeQgwVMMywQKx4SSPMIa5eoueTnQu8enxP0Pfzz9_OLrurrxdfzj5edV4oUTultRQ94WKSIJwQTmonrJyk02KYRq81ZdI6qThzI2XcWSqFYJ4TYq2mmp-g013uZusWGH3bIdvZbHJYbP5pkg3m30oMa7NKt0Yp2rNetoB3jwE53WyhVLOE4mGebYS0LYbxQVM5MHk_6-1_6HXa5tjOM0w2bGBMkkaxHeVzKiXDtF-GEnMvzuzEmabDPIgzojW9-fuMfctvUw3gO6C0UlxB_jP7idhf6p6j9Q</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Schwaner, Stephen A.</creator><creator>Hannon, Bailey G.</creator><creator>Feola, Andrew J.</creator><creator>Ethier, C. Ross</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TB</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4766-8900</orcidid><orcidid>https://orcid.org/0000-0001-6110-3052</orcidid></search><sort><creationdate>20201201</creationdate><title>Biomechanical properties of the rat sclera obtained with inverse finite element modeling</title><author>Schwaner, Stephen A. ; Hannon, Bailey G. ; Feola, Andrew J. ; Ethier, C. Ross</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-788546034f5e4b44b58b4a5f5b849fdc88125ab5732bd123ba15442c300aa8183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Animal models</topic><topic>Animals</topic><topic>Anisotropy</topic><topic>Biological and Medical Physics</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Collagen</topic><topic>Digital imaging</topic><topic>Disease Models, Animal</topic><topic>Displacement</topic><topic>Elastic Modulus</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Extracellular Matrix</topic><topic>Eye</topic><topic>Eye (anatomy)</topic><topic>Fibers</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Glaucoma</topic><topic>Glaucoma - physiopathology</topic><topic>Image Processing, Computer-Assisted</topic><topic>Intraocular Pressure</topic><topic>Male</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Modelling</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Pathophysiology</topic><topic>Rats</topic><topic>Sclera - diagnostic imaging</topic><topic>Sclera - physiopathology</topic><topic>Stiffness</topic><topic>Theoretical and Applied Mechanics</topic><topic>Tomography, Optical Coherence - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwaner, Stephen A.</creatorcontrib><creatorcontrib>Hannon, Bailey G.</creatorcontrib><creatorcontrib>Feola, Andrew J.</creatorcontrib><creatorcontrib>Ethier, C. Ross</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomechanics and modeling in mechanobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwaner, Stephen A.</au><au>Hannon, Bailey G.</au><au>Feola, Andrew J.</au><au>Ethier, C. Ross</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical properties of the rat sclera obtained with inverse finite element modeling</atitle><jtitle>Biomechanics and modeling in mechanobiology</jtitle><stitle>Biomech Model Mechanobiol</stitle><addtitle>Biomech Model Mechanobiol</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>19</volume><issue>6</issue><spage>2195</spage><epage>2212</epage><pages>2195-2212</pages><issn>1617-7959</issn><eissn>1617-7940</eissn><abstract>It is widely accepted that biomechanics plays an important role in glaucoma pathophysiology, but the mechanisms involved are largely unknown. Rats are a common animal model of glaucoma, and finite element models are being developed to provide much-needed insight into the biomechanical environment of the posterior rat eye. However, material properties of rat ocular tissues, including the sclera, are currently unknown. Since the sclera plays a major role in posterior ocular biomechanics, our goal was to use inverse finite element modeling to extract rat scleral material properties. We first used digital image correlation to measure scleral surface displacement during whole-globe inflation testing. We modeled the sclera as a nonlinear material with embedded collagen fibers and then fit modeled displacements to experimental data using a differential evolution algorithm. Subject-specific models were constructed in which 3 parameters described the stiffness of the ground substance and collagen fibers in the posterior eye, and 16 parameters defined the primary orientation and alignment of fibers within eight scleral sub-regions. We successfully extracted scleral material properties for eight rat eyes. Model displacements recreated general patterns of the experimental displacements but did not always match local patterns. The fiber directions and fiber concentration parameters were highly variable, but on average, fibers were aligned circumferentially and were more aligned in the peripapillary sclera than in the peripheral sclera. The material properties determined here will be used to inform future finite element models of the rat posterior eye with the goal of elucidating the role of biomechanics in glaucoma pathophysiology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32361821</pmid><doi>10.1007/s10237-020-01333-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4766-8900</orcidid><orcidid>https://orcid.org/0000-0001-6110-3052</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7959
ispartof Biomechanics and modeling in mechanobiology, 2020-12, Vol.19 (6), p.2195-2212
issn 1617-7959
1617-7940
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7716265
source MEDLINE; SpringerNature Journals
subjects Algorithms
Animal models
Animals
Anisotropy
Biological and Medical Physics
Biomechanical Phenomena
Biomechanics
Biomedical Engineering and Bioengineering
Biophysics
Collagen
Digital imaging
Disease Models, Animal
Displacement
Elastic Modulus
Engineering
Evolutionary algorithms
Evolutionary computation
Extracellular Matrix
Eye
Eye (anatomy)
Fibers
Finite Element Analysis
Finite element method
Glaucoma
Glaucoma - physiopathology
Image Processing, Computer-Assisted
Intraocular Pressure
Male
Material properties
Mathematical models
Mechanical properties
Modelling
Original Paper
Parameters
Pathophysiology
Rats
Sclera - diagnostic imaging
Sclera - physiopathology
Stiffness
Theoretical and Applied Mechanics
Tomography, Optical Coherence - methods
title Biomechanical properties of the rat sclera obtained with inverse finite element modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20properties%20of%20the%20rat%20sclera%20obtained%20with%20inverse%20finite%20element%20modeling&rft.jtitle=Biomechanics%20and%20modeling%20in%20mechanobiology&rft.au=Schwaner,%20Stephen%20A.&rft.date=2020-12-01&rft.volume=19&rft.issue=6&rft.spage=2195&rft.epage=2212&rft.pages=2195-2212&rft.issn=1617-7959&rft.eissn=1617-7940&rft_id=info:doi/10.1007/s10237-020-01333-4&rft_dat=%3Cproquest_pubme%3E2539892250%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539892250&rft_id=info:pmid/32361821&rfr_iscdi=true