Melatonin stimulates transcription of the rat phosphoenolpyruvate carboxykinase gene in hepatic cells

Our study revealed a new role of melatonin in hepatic glucose metabolism. We examined whether melatonin effects expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene. Melatonin induced PEPCK gene expression via the ERK1/2 pathway at the transcription level, and this induction requires de ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEBS open bio 2020-12, Vol.10 (12), p.2712-2721
Hauptverfasser: Asano, Kosuke, Tsukada, Akiko, Yanagisawa, Yuki, Higuchi, Mariko, Takagi, Katsuhiro, Ono, Moe, Tanaka, Takashi, Tomita, Koji, Yamada, Kazuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2721
container_issue 12
container_start_page 2712
container_title FEBS open bio
container_volume 10
creator Asano, Kosuke
Tsukada, Akiko
Yanagisawa, Yuki
Higuchi, Mariko
Takagi, Katsuhiro
Ono, Moe
Tanaka, Takashi
Tomita, Koji
Yamada, Kazuya
description Our study revealed a new role of melatonin in hepatic glucose metabolism. We examined whether melatonin effects expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene. Melatonin induced PEPCK gene expression via the ERK1/2 pathway at the transcription level, and this induction requires de novo protein synthesis. Melatonin plays physiological roles in various critical processes, including circadian rhythms, oxidative stress defenses, anti‐inflammation responses, and immunity; however, the current understanding of the role of melatonin in hepatic glucose metabolism is limited. In this study, we examined whether melatonin affects gene expression of the key gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK). We found that melatonin treatment increased PEPCK mRNA levels in rat highly differentiated hepatoma (H4IIE) cells and primary cultured hepatocytes. In addition, we found that melatonin induction was synergistically enhanced by dexamethasone, whereas it was dominantly inhibited by insulin. We also report that the effect of melatonin was blocked by inhibitors of mitogen‐activated protein kinase/extracellular signal‐regulated protein kinase (MAPK/ERK), RNA polymerase II, and protein synthesis. Furthermore, the phosphorylated (active) forms of ERK1 and ERK2 (ERK1/2) increased 15 min after melatonin treatment. We performed luciferase reporter assays to show that melatonin specifically stimulated promoter activity of the PEPCK gene. Additional reporter analysis using 5′‐deleted constructs revealed that the regulatory regions responsive to melatonin mapped to two nucleotide regions, one between −467 and −398 nucleotides and the other between −128 and +69 nucleotides, of the rat PEPCK gene. Thus, we conclude that melatonin induces PEPCK gene expression via the ERK1/2 pathway at the transcriptional level, and that induction requires de novo protein synthesis.
doi_str_mv 10.1002/2211-5463.13007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7714082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452097110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5627-690573393d09d237abf4a162f645bb5ba0c07c3267fb1308305bbc1b5201e3e53</originalsourceid><addsrcrecordid>eNqFkcFPIyEUxolZo4169mZIvOyl9gEz0Llssmt0dxONFz0Thr5pcacwwky1_73Uuo3rZUkI8Pi9D758hJwyuGAAfMI5Y-OykOKCCQC1R0a7ypcP-0NyktIj5CGBSYADcigEKCjUdETwFlvTB-88Tb1bDvmAifbR-GSj63oXPA0N7RdIo-lptwgpT_Sh7dZxWGWaWhPr8LL-47xJSOfokWa1BXamd5ZabNt0TPYb0yY8eV-PyMP11f3lr_HN3c_fl99vxraUXI1lBaUSohIzqGZcKFM3hWGSN7Io67qsDVhQVnCpmjpbngrIZcvqkgNDgaU4It-2ut1QL3Fm0Wcnre6iW5q41sE4_e-Ndws9DyutFCtgyrPA13eBGJ4GTL1eurSxYDyGIWle5LcqxRhk9PwT-hiG6LO9TEkpOCsqkanJlrIxpBSx2X2Ggd6kqDc56U1O-i3F3HH20cOO_5tZBuQWeHYtrv-np6-vfhRb5VeX7qgF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466321493</pqid></control><display><type>article</type><title>Melatonin stimulates transcription of the rat phosphoenolpyruvate carboxykinase gene in hepatic cells</title><source>Wiley-Blackwell Journals</source><source>Directory of Open Access Journals</source><source>Wiley Open Access</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Asano, Kosuke ; Tsukada, Akiko ; Yanagisawa, Yuki ; Higuchi, Mariko ; Takagi, Katsuhiro ; Ono, Moe ; Tanaka, Takashi ; Tomita, Koji ; Yamada, Kazuya</creator><creatorcontrib>Asano, Kosuke ; Tsukada, Akiko ; Yanagisawa, Yuki ; Higuchi, Mariko ; Takagi, Katsuhiro ; Ono, Moe ; Tanaka, Takashi ; Tomita, Koji ; Yamada, Kazuya</creatorcontrib><description>Our study revealed a new role of melatonin in hepatic glucose metabolism. We examined whether melatonin effects expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene. Melatonin induced PEPCK gene expression via the ERK1/2 pathway at the transcription level, and this induction requires de novo protein synthesis. Melatonin plays physiological roles in various critical processes, including circadian rhythms, oxidative stress defenses, anti‐inflammation responses, and immunity; however, the current understanding of the role of melatonin in hepatic glucose metabolism is limited. In this study, we examined whether melatonin affects gene expression of the key gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK). We found that melatonin treatment increased PEPCK mRNA levels in rat highly differentiated hepatoma (H4IIE) cells and primary cultured hepatocytes. In addition, we found that melatonin induction was synergistically enhanced by dexamethasone, whereas it was dominantly inhibited by insulin. We also report that the effect of melatonin was blocked by inhibitors of mitogen‐activated protein kinase/extracellular signal‐regulated protein kinase (MAPK/ERK), RNA polymerase II, and protein synthesis. Furthermore, the phosphorylated (active) forms of ERK1 and ERK2 (ERK1/2) increased 15 min after melatonin treatment. We performed luciferase reporter assays to show that melatonin specifically stimulated promoter activity of the PEPCK gene. Additional reporter analysis using 5′‐deleted constructs revealed that the regulatory regions responsive to melatonin mapped to two nucleotide regions, one between −467 and −398 nucleotides and the other between −128 and +69 nucleotides, of the rat PEPCK gene. Thus, we conclude that melatonin induces PEPCK gene expression via the ERK1/2 pathway at the transcriptional level, and that induction requires de novo protein synthesis.</description><identifier>ISSN: 2211-5463</identifier><identifier>EISSN: 2211-5463</identifier><identifier>DOI: 10.1002/2211-5463.13007</identifier><identifier>PMID: 33070478</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Antibodies ; Blood glucose ; Cyclic AMP ; Dexamethasone ; Extracellular signal-regulated kinase ; Gene expression ; Glucagon ; Glucocorticoids ; Gluconeogenesis ; Glucose ; Glucose metabolism ; Hypothalamus ; Insulin ; Insulin resistance ; Kinases ; Liver ; MAP kinase ; Melatonin ; Metabolism ; mitogen‐activated protein kinase ; Oxidative stress ; phosphoenolpyruvate carboxykinase ; Plasmids ; Protein kinase ; Proteins ; Retinoic acid ; Signal transduction ; Thyroid ; Transcription</subject><ispartof>FEBS open bio, 2020-12, Vol.10 (12), p.2712-2721</ispartof><rights>2020 The Authors. Published by FEBS Press and John Wiley &amp; Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5627-690573393d09d237abf4a162f645bb5ba0c07c3267fb1308305bbc1b5201e3e53</citedby><cites>FETCH-LOGICAL-c5627-690573393d09d237abf4a162f645bb5ba0c07c3267fb1308305bbc1b5201e3e53</cites><orcidid>0000-0003-1958-5427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714082/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714082/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1416,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33070478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asano, Kosuke</creatorcontrib><creatorcontrib>Tsukada, Akiko</creatorcontrib><creatorcontrib>Yanagisawa, Yuki</creatorcontrib><creatorcontrib>Higuchi, Mariko</creatorcontrib><creatorcontrib>Takagi, Katsuhiro</creatorcontrib><creatorcontrib>Ono, Moe</creatorcontrib><creatorcontrib>Tanaka, Takashi</creatorcontrib><creatorcontrib>Tomita, Koji</creatorcontrib><creatorcontrib>Yamada, Kazuya</creatorcontrib><title>Melatonin stimulates transcription of the rat phosphoenolpyruvate carboxykinase gene in hepatic cells</title><title>FEBS open bio</title><addtitle>FEBS Open Bio</addtitle><description>Our study revealed a new role of melatonin in hepatic glucose metabolism. We examined whether melatonin effects expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene. Melatonin induced PEPCK gene expression via the ERK1/2 pathway at the transcription level, and this induction requires de novo protein synthesis. Melatonin plays physiological roles in various critical processes, including circadian rhythms, oxidative stress defenses, anti‐inflammation responses, and immunity; however, the current understanding of the role of melatonin in hepatic glucose metabolism is limited. In this study, we examined whether melatonin affects gene expression of the key gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK). We found that melatonin treatment increased PEPCK mRNA levels in rat highly differentiated hepatoma (H4IIE) cells and primary cultured hepatocytes. In addition, we found that melatonin induction was synergistically enhanced by dexamethasone, whereas it was dominantly inhibited by insulin. We also report that the effect of melatonin was blocked by inhibitors of mitogen‐activated protein kinase/extracellular signal‐regulated protein kinase (MAPK/ERK), RNA polymerase II, and protein synthesis. Furthermore, the phosphorylated (active) forms of ERK1 and ERK2 (ERK1/2) increased 15 min after melatonin treatment. We performed luciferase reporter assays to show that melatonin specifically stimulated promoter activity of the PEPCK gene. Additional reporter analysis using 5′‐deleted constructs revealed that the regulatory regions responsive to melatonin mapped to two nucleotide regions, one between −467 and −398 nucleotides and the other between −128 and +69 nucleotides, of the rat PEPCK gene. Thus, we conclude that melatonin induces PEPCK gene expression via the ERK1/2 pathway at the transcriptional level, and that induction requires de novo protein synthesis.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Blood glucose</subject><subject>Cyclic AMP</subject><subject>Dexamethasone</subject><subject>Extracellular signal-regulated kinase</subject><subject>Gene expression</subject><subject>Glucagon</subject><subject>Glucocorticoids</subject><subject>Gluconeogenesis</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Hypothalamus</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Kinases</subject><subject>Liver</subject><subject>MAP kinase</subject><subject>Melatonin</subject><subject>Metabolism</subject><subject>mitogen‐activated protein kinase</subject><subject>Oxidative stress</subject><subject>phosphoenolpyruvate carboxykinase</subject><subject>Plasmids</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Retinoic acid</subject><subject>Signal transduction</subject><subject>Thyroid</subject><subject>Transcription</subject><issn>2211-5463</issn><issn>2211-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkcFPIyEUxolZo4169mZIvOyl9gEz0Llssmt0dxONFz0Thr5pcacwwky1_73Uuo3rZUkI8Pi9D758hJwyuGAAfMI5Y-OykOKCCQC1R0a7ypcP-0NyktIj5CGBSYADcigEKCjUdETwFlvTB-88Tb1bDvmAifbR-GSj63oXPA0N7RdIo-lptwgpT_Sh7dZxWGWaWhPr8LL-47xJSOfokWa1BXamd5ZabNt0TPYb0yY8eV-PyMP11f3lr_HN3c_fl99vxraUXI1lBaUSohIzqGZcKFM3hWGSN7Io67qsDVhQVnCpmjpbngrIZcvqkgNDgaU4It-2ut1QL3Fm0Wcnre6iW5q41sE4_e-Ndws9DyutFCtgyrPA13eBGJ4GTL1eurSxYDyGIWle5LcqxRhk9PwT-hiG6LO9TEkpOCsqkanJlrIxpBSx2X2Ggd6kqDc56U1O-i3F3HH20cOO_5tZBuQWeHYtrv-np6-vfhRb5VeX7qgF</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Asano, Kosuke</creator><creator>Tsukada, Akiko</creator><creator>Yanagisawa, Yuki</creator><creator>Higuchi, Mariko</creator><creator>Takagi, Katsuhiro</creator><creator>Ono, Moe</creator><creator>Tanaka, Takashi</creator><creator>Tomita, Koji</creator><creator>Yamada, Kazuya</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1958-5427</orcidid></search><sort><creationdate>202012</creationdate><title>Melatonin stimulates transcription of the rat phosphoenolpyruvate carboxykinase gene in hepatic cells</title><author>Asano, Kosuke ; Tsukada, Akiko ; Yanagisawa, Yuki ; Higuchi, Mariko ; Takagi, Katsuhiro ; Ono, Moe ; Tanaka, Takashi ; Tomita, Koji ; Yamada, Kazuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5627-690573393d09d237abf4a162f645bb5ba0c07c3267fb1308305bbc1b5201e3e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Blood glucose</topic><topic>Cyclic AMP</topic><topic>Dexamethasone</topic><topic>Extracellular signal-regulated kinase</topic><topic>Gene expression</topic><topic>Glucagon</topic><topic>Glucocorticoids</topic><topic>Gluconeogenesis</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Hypothalamus</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Kinases</topic><topic>Liver</topic><topic>MAP kinase</topic><topic>Melatonin</topic><topic>Metabolism</topic><topic>mitogen‐activated protein kinase</topic><topic>Oxidative stress</topic><topic>phosphoenolpyruvate carboxykinase</topic><topic>Plasmids</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Retinoic acid</topic><topic>Signal transduction</topic><topic>Thyroid</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asano, Kosuke</creatorcontrib><creatorcontrib>Tsukada, Akiko</creatorcontrib><creatorcontrib>Yanagisawa, Yuki</creatorcontrib><creatorcontrib>Higuchi, Mariko</creatorcontrib><creatorcontrib>Takagi, Katsuhiro</creatorcontrib><creatorcontrib>Ono, Moe</creatorcontrib><creatorcontrib>Tanaka, Takashi</creatorcontrib><creatorcontrib>Tomita, Koji</creatorcontrib><creatorcontrib>Yamada, Kazuya</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>FEBS open bio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asano, Kosuke</au><au>Tsukada, Akiko</au><au>Yanagisawa, Yuki</au><au>Higuchi, Mariko</au><au>Takagi, Katsuhiro</au><au>Ono, Moe</au><au>Tanaka, Takashi</au><au>Tomita, Koji</au><au>Yamada, Kazuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melatonin stimulates transcription of the rat phosphoenolpyruvate carboxykinase gene in hepatic cells</atitle><jtitle>FEBS open bio</jtitle><addtitle>FEBS Open Bio</addtitle><date>2020-12</date><risdate>2020</risdate><volume>10</volume><issue>12</issue><spage>2712</spage><epage>2721</epage><pages>2712-2721</pages><issn>2211-5463</issn><eissn>2211-5463</eissn><abstract>Our study revealed a new role of melatonin in hepatic glucose metabolism. We examined whether melatonin effects expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene. Melatonin induced PEPCK gene expression via the ERK1/2 pathway at the transcription level, and this induction requires de novo protein synthesis. Melatonin plays physiological roles in various critical processes, including circadian rhythms, oxidative stress defenses, anti‐inflammation responses, and immunity; however, the current understanding of the role of melatonin in hepatic glucose metabolism is limited. In this study, we examined whether melatonin affects gene expression of the key gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK). We found that melatonin treatment increased PEPCK mRNA levels in rat highly differentiated hepatoma (H4IIE) cells and primary cultured hepatocytes. In addition, we found that melatonin induction was synergistically enhanced by dexamethasone, whereas it was dominantly inhibited by insulin. We also report that the effect of melatonin was blocked by inhibitors of mitogen‐activated protein kinase/extracellular signal‐regulated protein kinase (MAPK/ERK), RNA polymerase II, and protein synthesis. Furthermore, the phosphorylated (active) forms of ERK1 and ERK2 (ERK1/2) increased 15 min after melatonin treatment. We performed luciferase reporter assays to show that melatonin specifically stimulated promoter activity of the PEPCK gene. Additional reporter analysis using 5′‐deleted constructs revealed that the regulatory regions responsive to melatonin mapped to two nucleotide regions, one between −467 and −398 nucleotides and the other between −128 and +69 nucleotides, of the rat PEPCK gene. Thus, we conclude that melatonin induces PEPCK gene expression via the ERK1/2 pathway at the transcriptional level, and that induction requires de novo protein synthesis.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33070478</pmid><doi>10.1002/2211-5463.13007</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1958-5427</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-5463
ispartof FEBS open bio, 2020-12, Vol.10 (12), p.2712-2721
issn 2211-5463
2211-5463
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7714082
source Wiley-Blackwell Journals; Directory of Open Access Journals; Wiley Open Access; PubMed Central; EZB Electronic Journals Library
subjects Animals
Antibodies
Blood glucose
Cyclic AMP
Dexamethasone
Extracellular signal-regulated kinase
Gene expression
Glucagon
Glucocorticoids
Gluconeogenesis
Glucose
Glucose metabolism
Hypothalamus
Insulin
Insulin resistance
Kinases
Liver
MAP kinase
Melatonin
Metabolism
mitogen‐activated protein kinase
Oxidative stress
phosphoenolpyruvate carboxykinase
Plasmids
Protein kinase
Proteins
Retinoic acid
Signal transduction
Thyroid
Transcription
title Melatonin stimulates transcription of the rat phosphoenolpyruvate carboxykinase gene in hepatic cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melatonin%20stimulates%20transcription%20of%20the%20rat%20phosphoenolpyruvate%20carboxykinase%20gene%20in%20hepatic%20cells&rft.jtitle=FEBS%20open%20bio&rft.au=Asano,%20Kosuke&rft.date=2020-12&rft.volume=10&rft.issue=12&rft.spage=2712&rft.epage=2721&rft.pages=2712-2721&rft.issn=2211-5463&rft.eissn=2211-5463&rft_id=info:doi/10.1002/2211-5463.13007&rft_dat=%3Cproquest_pubme%3E2452097110%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466321493&rft_id=info:pmid/33070478&rfr_iscdi=true