Melatonin stimulates transcription of the rat phosphoenolpyruvate carboxykinase gene in hepatic cells
Our study revealed a new role of melatonin in hepatic glucose metabolism. We examined whether melatonin effects expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene. Melatonin induced PEPCK gene expression via the ERK1/2 pathway at the transcription level, and this induction requires de ...
Gespeichert in:
Veröffentlicht in: | FEBS open bio 2020-12, Vol.10 (12), p.2712-2721 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2721 |
---|---|
container_issue | 12 |
container_start_page | 2712 |
container_title | FEBS open bio |
container_volume | 10 |
creator | Asano, Kosuke Tsukada, Akiko Yanagisawa, Yuki Higuchi, Mariko Takagi, Katsuhiro Ono, Moe Tanaka, Takashi Tomita, Koji Yamada, Kazuya |
description | Our study revealed a new role of melatonin in hepatic glucose metabolism. We examined whether melatonin effects expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene. Melatonin induced PEPCK gene expression via the ERK1/2 pathway at the transcription level, and this induction requires de novo protein synthesis.
Melatonin plays physiological roles in various critical processes, including circadian rhythms, oxidative stress defenses, anti‐inflammation responses, and immunity; however, the current understanding of the role of melatonin in hepatic glucose metabolism is limited. In this study, we examined whether melatonin affects gene expression of the key gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK). We found that melatonin treatment increased PEPCK mRNA levels in rat highly differentiated hepatoma (H4IIE) cells and primary cultured hepatocytes. In addition, we found that melatonin induction was synergistically enhanced by dexamethasone, whereas it was dominantly inhibited by insulin. We also report that the effect of melatonin was blocked by inhibitors of mitogen‐activated protein kinase/extracellular signal‐regulated protein kinase (MAPK/ERK), RNA polymerase II, and protein synthesis. Furthermore, the phosphorylated (active) forms of ERK1 and ERK2 (ERK1/2) increased 15 min after melatonin treatment. We performed luciferase reporter assays to show that melatonin specifically stimulated promoter activity of the PEPCK gene. Additional reporter analysis using 5′‐deleted constructs revealed that the regulatory regions responsive to melatonin mapped to two nucleotide regions, one between −467 and −398 nucleotides and the other between −128 and +69 nucleotides, of the rat PEPCK gene. Thus, we conclude that melatonin induces PEPCK gene expression via the ERK1/2 pathway at the transcriptional level, and that induction requires de novo protein synthesis. |
doi_str_mv | 10.1002/2211-5463.13007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7714082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452097110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5627-690573393d09d237abf4a162f645bb5ba0c07c3267fb1308305bbc1b5201e3e53</originalsourceid><addsrcrecordid>eNqFkcFPIyEUxolZo4169mZIvOyl9gEz0Llssmt0dxONFz0Thr5pcacwwky1_73Uuo3rZUkI8Pi9D758hJwyuGAAfMI5Y-OykOKCCQC1R0a7ypcP-0NyktIj5CGBSYADcigEKCjUdETwFlvTB-88Tb1bDvmAifbR-GSj63oXPA0N7RdIo-lptwgpT_Sh7dZxWGWaWhPr8LL-47xJSOfokWa1BXamd5ZabNt0TPYb0yY8eV-PyMP11f3lr_HN3c_fl99vxraUXI1lBaUSohIzqGZcKFM3hWGSN7Io67qsDVhQVnCpmjpbngrIZcvqkgNDgaU4It-2ut1QL3Fm0Wcnre6iW5q41sE4_e-Ndws9DyutFCtgyrPA13eBGJ4GTL1eurSxYDyGIWle5LcqxRhk9PwT-hiG6LO9TEkpOCsqkanJlrIxpBSx2X2Ggd6kqDc56U1O-i3F3HH20cOO_5tZBuQWeHYtrv-np6-vfhRb5VeX7qgF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466321493</pqid></control><display><type>article</type><title>Melatonin stimulates transcription of the rat phosphoenolpyruvate carboxykinase gene in hepatic cells</title><source>Wiley-Blackwell Journals</source><source>Directory of Open Access Journals</source><source>Wiley Open Access</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Asano, Kosuke ; Tsukada, Akiko ; Yanagisawa, Yuki ; Higuchi, Mariko ; Takagi, Katsuhiro ; Ono, Moe ; Tanaka, Takashi ; Tomita, Koji ; Yamada, Kazuya</creator><creatorcontrib>Asano, Kosuke ; Tsukada, Akiko ; Yanagisawa, Yuki ; Higuchi, Mariko ; Takagi, Katsuhiro ; Ono, Moe ; Tanaka, Takashi ; Tomita, Koji ; Yamada, Kazuya</creatorcontrib><description>Our study revealed a new role of melatonin in hepatic glucose metabolism. We examined whether melatonin effects expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene. Melatonin induced PEPCK gene expression via the ERK1/2 pathway at the transcription level, and this induction requires de novo protein synthesis.
Melatonin plays physiological roles in various critical processes, including circadian rhythms, oxidative stress defenses, anti‐inflammation responses, and immunity; however, the current understanding of the role of melatonin in hepatic glucose metabolism is limited. In this study, we examined whether melatonin affects gene expression of the key gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK). We found that melatonin treatment increased PEPCK mRNA levels in rat highly differentiated hepatoma (H4IIE) cells and primary cultured hepatocytes. In addition, we found that melatonin induction was synergistically enhanced by dexamethasone, whereas it was dominantly inhibited by insulin. We also report that the effect of melatonin was blocked by inhibitors of mitogen‐activated protein kinase/extracellular signal‐regulated protein kinase (MAPK/ERK), RNA polymerase II, and protein synthesis. Furthermore, the phosphorylated (active) forms of ERK1 and ERK2 (ERK1/2) increased 15 min after melatonin treatment. We performed luciferase reporter assays to show that melatonin specifically stimulated promoter activity of the PEPCK gene. Additional reporter analysis using 5′‐deleted constructs revealed that the regulatory regions responsive to melatonin mapped to two nucleotide regions, one between −467 and −398 nucleotides and the other between −128 and +69 nucleotides, of the rat PEPCK gene. Thus, we conclude that melatonin induces PEPCK gene expression via the ERK1/2 pathway at the transcriptional level, and that induction requires de novo protein synthesis.</description><identifier>ISSN: 2211-5463</identifier><identifier>EISSN: 2211-5463</identifier><identifier>DOI: 10.1002/2211-5463.13007</identifier><identifier>PMID: 33070478</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Animals ; Antibodies ; Blood glucose ; Cyclic AMP ; Dexamethasone ; Extracellular signal-regulated kinase ; Gene expression ; Glucagon ; Glucocorticoids ; Gluconeogenesis ; Glucose ; Glucose metabolism ; Hypothalamus ; Insulin ; Insulin resistance ; Kinases ; Liver ; MAP kinase ; Melatonin ; Metabolism ; mitogen‐activated protein kinase ; Oxidative stress ; phosphoenolpyruvate carboxykinase ; Plasmids ; Protein kinase ; Proteins ; Retinoic acid ; Signal transduction ; Thyroid ; Transcription</subject><ispartof>FEBS open bio, 2020-12, Vol.10 (12), p.2712-2721</ispartof><rights>2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5627-690573393d09d237abf4a162f645bb5ba0c07c3267fb1308305bbc1b5201e3e53</citedby><cites>FETCH-LOGICAL-c5627-690573393d09d237abf4a162f645bb5ba0c07c3267fb1308305bbc1b5201e3e53</cites><orcidid>0000-0003-1958-5427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714082/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714082/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1416,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33070478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asano, Kosuke</creatorcontrib><creatorcontrib>Tsukada, Akiko</creatorcontrib><creatorcontrib>Yanagisawa, Yuki</creatorcontrib><creatorcontrib>Higuchi, Mariko</creatorcontrib><creatorcontrib>Takagi, Katsuhiro</creatorcontrib><creatorcontrib>Ono, Moe</creatorcontrib><creatorcontrib>Tanaka, Takashi</creatorcontrib><creatorcontrib>Tomita, Koji</creatorcontrib><creatorcontrib>Yamada, Kazuya</creatorcontrib><title>Melatonin stimulates transcription of the rat phosphoenolpyruvate carboxykinase gene in hepatic cells</title><title>FEBS open bio</title><addtitle>FEBS Open Bio</addtitle><description>Our study revealed a new role of melatonin in hepatic glucose metabolism. We examined whether melatonin effects expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene. Melatonin induced PEPCK gene expression via the ERK1/2 pathway at the transcription level, and this induction requires de novo protein synthesis.
Melatonin plays physiological roles in various critical processes, including circadian rhythms, oxidative stress defenses, anti‐inflammation responses, and immunity; however, the current understanding of the role of melatonin in hepatic glucose metabolism is limited. In this study, we examined whether melatonin affects gene expression of the key gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK). We found that melatonin treatment increased PEPCK mRNA levels in rat highly differentiated hepatoma (H4IIE) cells and primary cultured hepatocytes. In addition, we found that melatonin induction was synergistically enhanced by dexamethasone, whereas it was dominantly inhibited by insulin. We also report that the effect of melatonin was blocked by inhibitors of mitogen‐activated protein kinase/extracellular signal‐regulated protein kinase (MAPK/ERK), RNA polymerase II, and protein synthesis. Furthermore, the phosphorylated (active) forms of ERK1 and ERK2 (ERK1/2) increased 15 min after melatonin treatment. We performed luciferase reporter assays to show that melatonin specifically stimulated promoter activity of the PEPCK gene. Additional reporter analysis using 5′‐deleted constructs revealed that the regulatory regions responsive to melatonin mapped to two nucleotide regions, one between −467 and −398 nucleotides and the other between −128 and +69 nucleotides, of the rat PEPCK gene. Thus, we conclude that melatonin induces PEPCK gene expression via the ERK1/2 pathway at the transcriptional level, and that induction requires de novo protein synthesis.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Blood glucose</subject><subject>Cyclic AMP</subject><subject>Dexamethasone</subject><subject>Extracellular signal-regulated kinase</subject><subject>Gene expression</subject><subject>Glucagon</subject><subject>Glucocorticoids</subject><subject>Gluconeogenesis</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Hypothalamus</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Kinases</subject><subject>Liver</subject><subject>MAP kinase</subject><subject>Melatonin</subject><subject>Metabolism</subject><subject>mitogen‐activated protein kinase</subject><subject>Oxidative stress</subject><subject>phosphoenolpyruvate carboxykinase</subject><subject>Plasmids</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Retinoic acid</subject><subject>Signal transduction</subject><subject>Thyroid</subject><subject>Transcription</subject><issn>2211-5463</issn><issn>2211-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkcFPIyEUxolZo4169mZIvOyl9gEz0Llssmt0dxONFz0Thr5pcacwwky1_73Uuo3rZUkI8Pi9D758hJwyuGAAfMI5Y-OykOKCCQC1R0a7ypcP-0NyktIj5CGBSYADcigEKCjUdETwFlvTB-88Tb1bDvmAifbR-GSj63oXPA0N7RdIo-lptwgpT_Sh7dZxWGWaWhPr8LL-47xJSOfokWa1BXamd5ZabNt0TPYb0yY8eV-PyMP11f3lr_HN3c_fl99vxraUXI1lBaUSohIzqGZcKFM3hWGSN7Io67qsDVhQVnCpmjpbngrIZcvqkgNDgaU4It-2ut1QL3Fm0Wcnre6iW5q41sE4_e-Ndws9DyutFCtgyrPA13eBGJ4GTL1eurSxYDyGIWle5LcqxRhk9PwT-hiG6LO9TEkpOCsqkanJlrIxpBSx2X2Ggd6kqDc56U1O-i3F3HH20cOO_5tZBuQWeHYtrv-np6-vfhRb5VeX7qgF</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Asano, Kosuke</creator><creator>Tsukada, Akiko</creator><creator>Yanagisawa, Yuki</creator><creator>Higuchi, Mariko</creator><creator>Takagi, Katsuhiro</creator><creator>Ono, Moe</creator><creator>Tanaka, Takashi</creator><creator>Tomita, Koji</creator><creator>Yamada, Kazuya</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1958-5427</orcidid></search><sort><creationdate>202012</creationdate><title>Melatonin stimulates transcription of the rat phosphoenolpyruvate carboxykinase gene in hepatic cells</title><author>Asano, Kosuke ; Tsukada, Akiko ; Yanagisawa, Yuki ; Higuchi, Mariko ; Takagi, Katsuhiro ; Ono, Moe ; Tanaka, Takashi ; Tomita, Koji ; Yamada, Kazuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5627-690573393d09d237abf4a162f645bb5ba0c07c3267fb1308305bbc1b5201e3e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Blood glucose</topic><topic>Cyclic AMP</topic><topic>Dexamethasone</topic><topic>Extracellular signal-regulated kinase</topic><topic>Gene expression</topic><topic>Glucagon</topic><topic>Glucocorticoids</topic><topic>Gluconeogenesis</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Hypothalamus</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Kinases</topic><topic>Liver</topic><topic>MAP kinase</topic><topic>Melatonin</topic><topic>Metabolism</topic><topic>mitogen‐activated protein kinase</topic><topic>Oxidative stress</topic><topic>phosphoenolpyruvate carboxykinase</topic><topic>Plasmids</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Retinoic acid</topic><topic>Signal transduction</topic><topic>Thyroid</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asano, Kosuke</creatorcontrib><creatorcontrib>Tsukada, Akiko</creatorcontrib><creatorcontrib>Yanagisawa, Yuki</creatorcontrib><creatorcontrib>Higuchi, Mariko</creatorcontrib><creatorcontrib>Takagi, Katsuhiro</creatorcontrib><creatorcontrib>Ono, Moe</creatorcontrib><creatorcontrib>Tanaka, Takashi</creatorcontrib><creatorcontrib>Tomita, Koji</creatorcontrib><creatorcontrib>Yamada, Kazuya</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>FEBS open bio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asano, Kosuke</au><au>Tsukada, Akiko</au><au>Yanagisawa, Yuki</au><au>Higuchi, Mariko</au><au>Takagi, Katsuhiro</au><au>Ono, Moe</au><au>Tanaka, Takashi</au><au>Tomita, Koji</au><au>Yamada, Kazuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melatonin stimulates transcription of the rat phosphoenolpyruvate carboxykinase gene in hepatic cells</atitle><jtitle>FEBS open bio</jtitle><addtitle>FEBS Open Bio</addtitle><date>2020-12</date><risdate>2020</risdate><volume>10</volume><issue>12</issue><spage>2712</spage><epage>2721</epage><pages>2712-2721</pages><issn>2211-5463</issn><eissn>2211-5463</eissn><abstract>Our study revealed a new role of melatonin in hepatic glucose metabolism. We examined whether melatonin effects expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene. Melatonin induced PEPCK gene expression via the ERK1/2 pathway at the transcription level, and this induction requires de novo protein synthesis.
Melatonin plays physiological roles in various critical processes, including circadian rhythms, oxidative stress defenses, anti‐inflammation responses, and immunity; however, the current understanding of the role of melatonin in hepatic glucose metabolism is limited. In this study, we examined whether melatonin affects gene expression of the key gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK). We found that melatonin treatment increased PEPCK mRNA levels in rat highly differentiated hepatoma (H4IIE) cells and primary cultured hepatocytes. In addition, we found that melatonin induction was synergistically enhanced by dexamethasone, whereas it was dominantly inhibited by insulin. We also report that the effect of melatonin was blocked by inhibitors of mitogen‐activated protein kinase/extracellular signal‐regulated protein kinase (MAPK/ERK), RNA polymerase II, and protein synthesis. Furthermore, the phosphorylated (active) forms of ERK1 and ERK2 (ERK1/2) increased 15 min after melatonin treatment. We performed luciferase reporter assays to show that melatonin specifically stimulated promoter activity of the PEPCK gene. Additional reporter analysis using 5′‐deleted constructs revealed that the regulatory regions responsive to melatonin mapped to two nucleotide regions, one between −467 and −398 nucleotides and the other between −128 and +69 nucleotides, of the rat PEPCK gene. Thus, we conclude that melatonin induces PEPCK gene expression via the ERK1/2 pathway at the transcriptional level, and that induction requires de novo protein synthesis.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>33070478</pmid><doi>10.1002/2211-5463.13007</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1958-5427</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-5463 |
ispartof | FEBS open bio, 2020-12, Vol.10 (12), p.2712-2721 |
issn | 2211-5463 2211-5463 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7714082 |
source | Wiley-Blackwell Journals; Directory of Open Access Journals; Wiley Open Access; PubMed Central; EZB Electronic Journals Library |
subjects | Animals Antibodies Blood glucose Cyclic AMP Dexamethasone Extracellular signal-regulated kinase Gene expression Glucagon Glucocorticoids Gluconeogenesis Glucose Glucose metabolism Hypothalamus Insulin Insulin resistance Kinases Liver MAP kinase Melatonin Metabolism mitogen‐activated protein kinase Oxidative stress phosphoenolpyruvate carboxykinase Plasmids Protein kinase Proteins Retinoic acid Signal transduction Thyroid Transcription |
title | Melatonin stimulates transcription of the rat phosphoenolpyruvate carboxykinase gene in hepatic cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melatonin%20stimulates%20transcription%20of%20the%20rat%20phosphoenolpyruvate%20carboxykinase%20gene%20in%20hepatic%20cells&rft.jtitle=FEBS%20open%20bio&rft.au=Asano,%20Kosuke&rft.date=2020-12&rft.volume=10&rft.issue=12&rft.spage=2712&rft.epage=2721&rft.pages=2712-2721&rft.issn=2211-5463&rft.eissn=2211-5463&rft_id=info:doi/10.1002/2211-5463.13007&rft_dat=%3Cproquest_pubme%3E2452097110%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466321493&rft_id=info:pmid/33070478&rfr_iscdi=true |