Exploring the genetic variability and diversity of pearl millet core collection germplasm for grain nutritional traits improvement

Improving essential nutrient content in staple food crops through biofortification breeding can overcome the micronutrient malnutrition problem. Genetic improvement depends on the availability of genetic variability in the primary gene pool. This study was aimed to ascertain the magnitude of variabi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-12, Vol.10 (1), p.21177-21177, Article 21177
Hauptverfasser: Govindaraj, Mahalingam, Rai, Kedar N., Kanatti, Anand, Upadhyaya, Hari D., Shivade, Harshad, Rao, Aluri S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21177
container_issue 1
container_start_page 21177
container_title Scientific reports
container_volume 10
creator Govindaraj, Mahalingam
Rai, Kedar N.
Kanatti, Anand
Upadhyaya, Hari D.
Shivade, Harshad
Rao, Aluri S.
description Improving essential nutrient content in staple food crops through biofortification breeding can overcome the micronutrient malnutrition problem. Genetic improvement depends on the availability of genetic variability in the primary gene pool. This study was aimed to ascertain the magnitude of variability in a core germplasm collection of diverse origin and predict pearl millet biofortification prospects for essential micronutrients. Germplasm accessions were evaluated in field trials at ICRISAT, India. The accessions differed significantly for all micronutrients with over two-fold variation for Fe (34–90 mg kg −1 ), Zn (30–74 mg kg −1 ), and Ca (85–249 mg kg −1 ). High estimates of heritability (> 0.81) were observed for Fe, Zn, Ca, P, Mo, and Mg. The lower magnitude of genotype (G) × environment (E) interaction observed for most of the traits implies strong genetic control for grain nutrients. The top-10 accessions for each nutrient and 15 accessions, from five countries for multiple nutrients were identified. For Fe and Zn, 39 accessions, including 15 with multiple nutrients, exceeded the Indian cultivars and 17 of them exceeded the biofortification breeding target for Fe (72 mg kg −1 ). These 39 accessions were grouped into 5 clusters. Most of these nutrients were positively and significantly associated among themselves and with days to 50% flowering and 1000-grain weight (TGW) indicating the possibility of their simultaneous improvement in superior agronomic background. The identified core collection accessions rich in specific and multiple-nutrients would be useful as the key genetic resources for developing biofortified and agronomically superior cultivars.
doi_str_mv 10.1038/s41598-020-77818-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7713302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473280088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-dc08e18339302e08677b86e74a0338323aef49cb10809bac69c51b31c9629b963</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEolXpC7BAltiwCfiSxPYGCVXlIlViA2vL8ZmcunLsMHaO6JYnx-GUUljghT32fPOPR3_TPGf0NaNCvckd67VqKaetlIrV6FFzymnXt1xw_vhBfNKc53xD6-q57ph-2pwIwaXoaXfa_Lj8voSEPu5JuQayhwjFO3Kw6O3ogy-3xMYd2fkDYN5uaSILWAxk9iFAIS4h1K3GrvgUqwLOS7B5JlNCskfrI4lrQb9lbSClvpRM_LxgOsAMsTxrnkw2ZDi_O8-ar-8vv1x8bK8-f_h08e6qdT1jpd05qoApIbSgHKgapBzVALKzVAgluLAwddqNjCqqR-sGXetGwZweuB71IM6at0fdZR1n2LnaGm0wC_rZ4q1J1pu_M9Ffm306GCmZqD2rwKs7AUzfVsjFzD47CMFGSGs2vBvkwClnG_ryH_QmrVjn3ygpuKJUqUrxI-Uw5Yww3X-GUbO5bI4um-qy-eWyobXoxcMx7kt-e1oBcQTysvkK-Kf3f2R_Au9LtVs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473280088</pqid></control><display><type>article</type><title>Exploring the genetic variability and diversity of pearl millet core collection germplasm for grain nutritional traits improvement</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Govindaraj, Mahalingam ; Rai, Kedar N. ; Kanatti, Anand ; Upadhyaya, Hari D. ; Shivade, Harshad ; Rao, Aluri S.</creator><creatorcontrib>Govindaraj, Mahalingam ; Rai, Kedar N. ; Kanatti, Anand ; Upadhyaya, Hari D. ; Shivade, Harshad ; Rao, Aluri S.</creatorcontrib><description>Improving essential nutrient content in staple food crops through biofortification breeding can overcome the micronutrient malnutrition problem. Genetic improvement depends on the availability of genetic variability in the primary gene pool. This study was aimed to ascertain the magnitude of variability in a core germplasm collection of diverse origin and predict pearl millet biofortification prospects for essential micronutrients. Germplasm accessions were evaluated in field trials at ICRISAT, India. The accessions differed significantly for all micronutrients with over two-fold variation for Fe (34–90 mg kg −1 ), Zn (30–74 mg kg −1 ), and Ca (85–249 mg kg −1 ). High estimates of heritability (&gt; 0.81) were observed for Fe, Zn, Ca, P, Mo, and Mg. The lower magnitude of genotype (G) × environment (E) interaction observed for most of the traits implies strong genetic control for grain nutrients. The top-10 accessions for each nutrient and 15 accessions, from five countries for multiple nutrients were identified. For Fe and Zn, 39 accessions, including 15 with multiple nutrients, exceeded the Indian cultivars and 17 of them exceeded the biofortification breeding target for Fe (72 mg kg −1 ). These 39 accessions were grouped into 5 clusters. Most of these nutrients were positively and significantly associated among themselves and with days to 50% flowering and 1000-grain weight (TGW) indicating the possibility of their simultaneous improvement in superior agronomic background. The identified core collection accessions rich in specific and multiple-nutrients would be useful as the key genetic resources for developing biofortified and agronomically superior cultivars.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-77818-0</identifier><identifier>PMID: 33273504</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/2491 ; 631/208/480 ; 631/208/711 ; 631/208/8 ; Analysis of Variance ; Cluster Analysis ; Cultivars ; Ecotype ; Flowering ; Flowers - physiology ; Gene pool ; Genetic control ; Genetic diversity ; Genetic improvement ; Genetic resources ; Genetic variability ; Genetic Variation ; Genotypes ; Germplasm ; Heritability ; Humanities and Social Sciences ; Inheritance Patterns - genetics ; Malnutrition ; Micronutrients ; Millet ; multidisciplinary ; Nutrient content ; Nutrients ; Nutritional Physiological Phenomena ; Pennisetum - genetics ; Pennisetum glaucum ; Plant breeding ; Science ; Science (multidisciplinary) ; Seeds - genetics ; Soil - chemistry</subject><ispartof>Scientific reports, 2020-12, Vol.10 (1), p.21177-21177, Article 21177</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-dc08e18339302e08677b86e74a0338323aef49cb10809bac69c51b31c9629b963</citedby><cites>FETCH-LOGICAL-c511t-dc08e18339302e08677b86e74a0338323aef49cb10809bac69c51b31c9629b963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713302/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713302/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33273504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Govindaraj, Mahalingam</creatorcontrib><creatorcontrib>Rai, Kedar N.</creatorcontrib><creatorcontrib>Kanatti, Anand</creatorcontrib><creatorcontrib>Upadhyaya, Hari D.</creatorcontrib><creatorcontrib>Shivade, Harshad</creatorcontrib><creatorcontrib>Rao, Aluri S.</creatorcontrib><title>Exploring the genetic variability and diversity of pearl millet core collection germplasm for grain nutritional traits improvement</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Improving essential nutrient content in staple food crops through biofortification breeding can overcome the micronutrient malnutrition problem. Genetic improvement depends on the availability of genetic variability in the primary gene pool. This study was aimed to ascertain the magnitude of variability in a core germplasm collection of diverse origin and predict pearl millet biofortification prospects for essential micronutrients. Germplasm accessions were evaluated in field trials at ICRISAT, India. The accessions differed significantly for all micronutrients with over two-fold variation for Fe (34–90 mg kg −1 ), Zn (30–74 mg kg −1 ), and Ca (85–249 mg kg −1 ). High estimates of heritability (&gt; 0.81) were observed for Fe, Zn, Ca, P, Mo, and Mg. The lower magnitude of genotype (G) × environment (E) interaction observed for most of the traits implies strong genetic control for grain nutrients. The top-10 accessions for each nutrient and 15 accessions, from five countries for multiple nutrients were identified. For Fe and Zn, 39 accessions, including 15 with multiple nutrients, exceeded the Indian cultivars and 17 of them exceeded the biofortification breeding target for Fe (72 mg kg −1 ). These 39 accessions were grouped into 5 clusters. Most of these nutrients were positively and significantly associated among themselves and with days to 50% flowering and 1000-grain weight (TGW) indicating the possibility of their simultaneous improvement in superior agronomic background. The identified core collection accessions rich in specific and multiple-nutrients would be useful as the key genetic resources for developing biofortified and agronomically superior cultivars.</description><subject>631/208/2491</subject><subject>631/208/480</subject><subject>631/208/711</subject><subject>631/208/8</subject><subject>Analysis of Variance</subject><subject>Cluster Analysis</subject><subject>Cultivars</subject><subject>Ecotype</subject><subject>Flowering</subject><subject>Flowers - physiology</subject><subject>Gene pool</subject><subject>Genetic control</subject><subject>Genetic diversity</subject><subject>Genetic improvement</subject><subject>Genetic resources</subject><subject>Genetic variability</subject><subject>Genetic Variation</subject><subject>Genotypes</subject><subject>Germplasm</subject><subject>Heritability</subject><subject>Humanities and Social Sciences</subject><subject>Inheritance Patterns - genetics</subject><subject>Malnutrition</subject><subject>Micronutrients</subject><subject>Millet</subject><subject>multidisciplinary</subject><subject>Nutrient content</subject><subject>Nutrients</subject><subject>Nutritional Physiological Phenomena</subject><subject>Pennisetum - genetics</subject><subject>Pennisetum glaucum</subject><subject>Plant breeding</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seeds - genetics</subject><subject>Soil - chemistry</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1TAQhiMEolXpC7BAltiwCfiSxPYGCVXlIlViA2vL8ZmcunLsMHaO6JYnx-GUUljghT32fPOPR3_TPGf0NaNCvckd67VqKaetlIrV6FFzymnXt1xw_vhBfNKc53xD6-q57ph-2pwIwaXoaXfa_Lj8voSEPu5JuQayhwjFO3Kw6O3ogy-3xMYd2fkDYN5uaSILWAxk9iFAIS4h1K3GrvgUqwLOS7B5JlNCskfrI4lrQb9lbSClvpRM_LxgOsAMsTxrnkw2ZDi_O8-ar-8vv1x8bK8-f_h08e6qdT1jpd05qoApIbSgHKgapBzVALKzVAgluLAwddqNjCqqR-sGXetGwZweuB71IM6at0fdZR1n2LnaGm0wC_rZ4q1J1pu_M9Ffm306GCmZqD2rwKs7AUzfVsjFzD47CMFGSGs2vBvkwClnG_ryH_QmrVjn3ygpuKJUqUrxI-Uw5Yww3X-GUbO5bI4um-qy-eWyobXoxcMx7kt-e1oBcQTysvkK-Kf3f2R_Au9LtVs</recordid><startdate>20201203</startdate><enddate>20201203</enddate><creator>Govindaraj, Mahalingam</creator><creator>Rai, Kedar N.</creator><creator>Kanatti, Anand</creator><creator>Upadhyaya, Hari D.</creator><creator>Shivade, Harshad</creator><creator>Rao, Aluri S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201203</creationdate><title>Exploring the genetic variability and diversity of pearl millet core collection germplasm for grain nutritional traits improvement</title><author>Govindaraj, Mahalingam ; Rai, Kedar N. ; Kanatti, Anand ; Upadhyaya, Hari D. ; Shivade, Harshad ; Rao, Aluri S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-dc08e18339302e08677b86e74a0338323aef49cb10809bac69c51b31c9629b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/208/2491</topic><topic>631/208/480</topic><topic>631/208/711</topic><topic>631/208/8</topic><topic>Analysis of Variance</topic><topic>Cluster Analysis</topic><topic>Cultivars</topic><topic>Ecotype</topic><topic>Flowering</topic><topic>Flowers - physiology</topic><topic>Gene pool</topic><topic>Genetic control</topic><topic>Genetic diversity</topic><topic>Genetic improvement</topic><topic>Genetic resources</topic><topic>Genetic variability</topic><topic>Genetic Variation</topic><topic>Genotypes</topic><topic>Germplasm</topic><topic>Heritability</topic><topic>Humanities and Social Sciences</topic><topic>Inheritance Patterns - genetics</topic><topic>Malnutrition</topic><topic>Micronutrients</topic><topic>Millet</topic><topic>multidisciplinary</topic><topic>Nutrient content</topic><topic>Nutrients</topic><topic>Nutritional Physiological Phenomena</topic><topic>Pennisetum - genetics</topic><topic>Pennisetum glaucum</topic><topic>Plant breeding</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seeds - genetics</topic><topic>Soil - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Govindaraj, Mahalingam</creatorcontrib><creatorcontrib>Rai, Kedar N.</creatorcontrib><creatorcontrib>Kanatti, Anand</creatorcontrib><creatorcontrib>Upadhyaya, Hari D.</creatorcontrib><creatorcontrib>Shivade, Harshad</creatorcontrib><creatorcontrib>Rao, Aluri S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Govindaraj, Mahalingam</au><au>Rai, Kedar N.</au><au>Kanatti, Anand</au><au>Upadhyaya, Hari D.</au><au>Shivade, Harshad</au><au>Rao, Aluri S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the genetic variability and diversity of pearl millet core collection germplasm for grain nutritional traits improvement</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-12-03</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>21177</spage><epage>21177</epage><pages>21177-21177</pages><artnum>21177</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Improving essential nutrient content in staple food crops through biofortification breeding can overcome the micronutrient malnutrition problem. Genetic improvement depends on the availability of genetic variability in the primary gene pool. This study was aimed to ascertain the magnitude of variability in a core germplasm collection of diverse origin and predict pearl millet biofortification prospects for essential micronutrients. Germplasm accessions were evaluated in field trials at ICRISAT, India. The accessions differed significantly for all micronutrients with over two-fold variation for Fe (34–90 mg kg −1 ), Zn (30–74 mg kg −1 ), and Ca (85–249 mg kg −1 ). High estimates of heritability (&gt; 0.81) were observed for Fe, Zn, Ca, P, Mo, and Mg. The lower magnitude of genotype (G) × environment (E) interaction observed for most of the traits implies strong genetic control for grain nutrients. The top-10 accessions for each nutrient and 15 accessions, from five countries for multiple nutrients were identified. For Fe and Zn, 39 accessions, including 15 with multiple nutrients, exceeded the Indian cultivars and 17 of them exceeded the biofortification breeding target for Fe (72 mg kg −1 ). These 39 accessions were grouped into 5 clusters. Most of these nutrients were positively and significantly associated among themselves and with days to 50% flowering and 1000-grain weight (TGW) indicating the possibility of their simultaneous improvement in superior agronomic background. The identified core collection accessions rich in specific and multiple-nutrients would be useful as the key genetic resources for developing biofortified and agronomically superior cultivars.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33273504</pmid><doi>10.1038/s41598-020-77818-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-12, Vol.10 (1), p.21177-21177, Article 21177
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7713302
source Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/208/2491
631/208/480
631/208/711
631/208/8
Analysis of Variance
Cluster Analysis
Cultivars
Ecotype
Flowering
Flowers - physiology
Gene pool
Genetic control
Genetic diversity
Genetic improvement
Genetic resources
Genetic variability
Genetic Variation
Genotypes
Germplasm
Heritability
Humanities and Social Sciences
Inheritance Patterns - genetics
Malnutrition
Micronutrients
Millet
multidisciplinary
Nutrient content
Nutrients
Nutritional Physiological Phenomena
Pennisetum - genetics
Pennisetum glaucum
Plant breeding
Science
Science (multidisciplinary)
Seeds - genetics
Soil - chemistry
title Exploring the genetic variability and diversity of pearl millet core collection germplasm for grain nutritional traits improvement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20genetic%20variability%20and%20diversity%20of%20pearl%20millet%20core%20collection%20germplasm%20for%20grain%20nutritional%20traits%20improvement&rft.jtitle=Scientific%20reports&rft.au=Govindaraj,%20Mahalingam&rft.date=2020-12-03&rft.volume=10&rft.issue=1&rft.spage=21177&rft.epage=21177&rft.pages=21177-21177&rft.artnum=21177&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-77818-0&rft_dat=%3Cproquest_pubme%3E2473280088%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473280088&rft_id=info:pmid/33273504&rfr_iscdi=true