From digital hype to analogue reality: Universal simulation beyond the quantum and exascale eras

•When machine learning is applied in ignorance of fundamental laws of nature, it is likely to deliver unreliable answers.•With his colleagues, Peter Coveney has described the computational algorithms best suited for deployment on exascale architectures.•In the exascale era, we will combine models of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational science 2020-10, Vol.46, p.101093-101093, Article 101093
Hauptverfasser: Coveney, Peter V., Highfield, Roger R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101093
container_issue
container_start_page 101093
container_title Journal of computational science
container_volume 46
creator Coveney, Peter V.
Highfield, Roger R.
description •When machine learning is applied in ignorance of fundamental laws of nature, it is likely to deliver unreliable answers.•With his colleagues, Peter Coveney has described the computational algorithms best suited for deployment on exascale architectures.•In the exascale era, we will combine models of the human heart and blood circulation to describe the cardiovascular system at the scale of a body.•Beyond the quantum and exascale computer eras, the future of simulation will rely more on analogue computing than has hitherto been expected. Many believe that the future of innovation lies in simulation. However, as computers are becoming ever more powerful, so does the hyperbole used to discuss their potential in modelling across a vast range of domains, from subatomic physics to chemistry, climate science, epidemiology, economics and cosmology. As we are about to enter the era of quantum and exascale computing, machine learning and artificial intelligence have entered the field in a significant way. In this article we give a brief history of simulation, discuss how machine learning can be more powerful if underpinned by deeper mechanistic understanding, outline the potential of exascale and quantum computing, highlight the limits of digital computing – classical and quantum – and distinguish rhetoric from reality in assessing the future of modelling and simulation, when we believe analogue computing will play an increasingly important role.
doi_str_mv 10.1016/j.jocs.2020.101093
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7709487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1877750320300545</els_id><sourcerecordid>2470029525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-ff32ee4a63ce3f16224e717078882daa09163c2f8e2f3cd72b95f8b6597b51e03</originalsourceid><addsrcrecordid>eNp9kU9vEzEQxS0EolXpF-CAfOSS4D-7sRchJFRRQKrEhZ7NrHc2ceS1U9sbNd8eh5QILszFI8_vvbH8CHnN2ZIzvnq3XW6jzUvBxO8L1sln5JJrpRaq5fz5uWfyglznvGW1pNYdly_JhZSSC6HYJfl5m-JEB7d2BTzdHHZIS6QQwMf1jDQheFcO7-l9cHtMuTLZTbOH4mKgPR5iGGjZIH2YIZR5qsqB4iNkCx4pJsivyIsRfMbrp_OK3N9-_nHzdXH3_cu3m093C9u0bVmMoxSIDaykRTnylRANKq6Y0lqLAYB1vI7EqFGM0g5K9F076n7VdqpvOTJ5RT6efHdzP-FgMZQE3uySmyAdTARn_p0EtzHruDdKsa7Rqhq8fTJI8WHGXMzkskXvIWCcsxGNYkx0rWgrKk6oTTHnhON5DWfmmI7ZmmM65piOOaVTRW_-fuBZ8ieLCnw4AVi_ae8wmWwdBouDS2iLGaL7n_8vSfOiUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470029525</pqid></control><display><type>article</type><title>From digital hype to analogue reality: Universal simulation beyond the quantum and exascale eras</title><source>Access via ScienceDirect (Elsevier)</source><creator>Coveney, Peter V. ; Highfield, Roger R.</creator><creatorcontrib>Coveney, Peter V. ; Highfield, Roger R.</creatorcontrib><description>•When machine learning is applied in ignorance of fundamental laws of nature, it is likely to deliver unreliable answers.•With his colleagues, Peter Coveney has described the computational algorithms best suited for deployment on exascale architectures.•In the exascale era, we will combine models of the human heart and blood circulation to describe the cardiovascular system at the scale of a body.•Beyond the quantum and exascale computer eras, the future of simulation will rely more on analogue computing than has hitherto been expected. Many believe that the future of innovation lies in simulation. However, as computers are becoming ever more powerful, so does the hyperbole used to discuss their potential in modelling across a vast range of domains, from subatomic physics to chemistry, climate science, epidemiology, economics and cosmology. As we are about to enter the era of quantum and exascale computing, machine learning and artificial intelligence have entered the field in a significant way. In this article we give a brief history of simulation, discuss how machine learning can be more powerful if underpinned by deeper mechanistic understanding, outline the potential of exascale and quantum computing, highlight the limits of digital computing – classical and quantum – and distinguish rhetoric from reality in assessing the future of modelling and simulation, when we believe analogue computing will play an increasingly important role.</description><identifier>ISSN: 1877-7503</identifier><identifier>EISSN: 1877-7511</identifier><identifier>EISSN: 1877-7503</identifier><identifier>DOI: 10.1016/j.jocs.2020.101093</identifier><identifier>PMID: 33312270</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Analogue computing ; Artificial intelligence ; Computer simulation ; Digital computing ; Exascale computing ; Machine learning ; Quantum computing</subject><ispartof>Journal of computational science, 2020-10, Vol.46, p.101093-101093, Article 101093</ispartof><rights>2020 The Authors</rights><rights>2020 The Authors.</rights><rights>2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-ff32ee4a63ce3f16224e717078882daa09163c2f8e2f3cd72b95f8b6597b51e03</citedby><cites>FETCH-LOGICAL-c455t-ff32ee4a63ce3f16224e717078882daa09163c2f8e2f3cd72b95f8b6597b51e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jocs.2020.101093$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33312270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coveney, Peter V.</creatorcontrib><creatorcontrib>Highfield, Roger R.</creatorcontrib><title>From digital hype to analogue reality: Universal simulation beyond the quantum and exascale eras</title><title>Journal of computational science</title><addtitle>J Comput Sci</addtitle><description>•When machine learning is applied in ignorance of fundamental laws of nature, it is likely to deliver unreliable answers.•With his colleagues, Peter Coveney has described the computational algorithms best suited for deployment on exascale architectures.•In the exascale era, we will combine models of the human heart and blood circulation to describe the cardiovascular system at the scale of a body.•Beyond the quantum and exascale computer eras, the future of simulation will rely more on analogue computing than has hitherto been expected. Many believe that the future of innovation lies in simulation. However, as computers are becoming ever more powerful, so does the hyperbole used to discuss their potential in modelling across a vast range of domains, from subatomic physics to chemistry, climate science, epidemiology, economics and cosmology. As we are about to enter the era of quantum and exascale computing, machine learning and artificial intelligence have entered the field in a significant way. In this article we give a brief history of simulation, discuss how machine learning can be more powerful if underpinned by deeper mechanistic understanding, outline the potential of exascale and quantum computing, highlight the limits of digital computing – classical and quantum – and distinguish rhetoric from reality in assessing the future of modelling and simulation, when we believe analogue computing will play an increasingly important role.</description><subject>Analogue computing</subject><subject>Artificial intelligence</subject><subject>Computer simulation</subject><subject>Digital computing</subject><subject>Exascale computing</subject><subject>Machine learning</subject><subject>Quantum computing</subject><issn>1877-7503</issn><issn>1877-7511</issn><issn>1877-7503</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vEzEQxS0EolXpF-CAfOSS4D-7sRchJFRRQKrEhZ7NrHc2ceS1U9sbNd8eh5QILszFI8_vvbH8CHnN2ZIzvnq3XW6jzUvBxO8L1sln5JJrpRaq5fz5uWfyglznvGW1pNYdly_JhZSSC6HYJfl5m-JEB7d2BTzdHHZIS6QQwMf1jDQheFcO7-l9cHtMuTLZTbOH4mKgPR5iGGjZIH2YIZR5qsqB4iNkCx4pJsivyIsRfMbrp_OK3N9-_nHzdXH3_cu3m093C9u0bVmMoxSIDaykRTnylRANKq6Y0lqLAYB1vI7EqFGM0g5K9F076n7VdqpvOTJ5RT6efHdzP-FgMZQE3uySmyAdTARn_p0EtzHruDdKsa7Rqhq8fTJI8WHGXMzkskXvIWCcsxGNYkx0rWgrKk6oTTHnhON5DWfmmI7ZmmM65piOOaVTRW_-fuBZ8ieLCnw4AVi_ae8wmWwdBouDS2iLGaL7n_8vSfOiUg</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Coveney, Peter V.</creator><creator>Highfield, Roger R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202010</creationdate><title>From digital hype to analogue reality: Universal simulation beyond the quantum and exascale eras</title><author>Coveney, Peter V. ; Highfield, Roger R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-ff32ee4a63ce3f16224e717078882daa09163c2f8e2f3cd72b95f8b6597b51e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analogue computing</topic><topic>Artificial intelligence</topic><topic>Computer simulation</topic><topic>Digital computing</topic><topic>Exascale computing</topic><topic>Machine learning</topic><topic>Quantum computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coveney, Peter V.</creatorcontrib><creatorcontrib>Highfield, Roger R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computational science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coveney, Peter V.</au><au>Highfield, Roger R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From digital hype to analogue reality: Universal simulation beyond the quantum and exascale eras</atitle><jtitle>Journal of computational science</jtitle><addtitle>J Comput Sci</addtitle><date>2020-10</date><risdate>2020</risdate><volume>46</volume><spage>101093</spage><epage>101093</epage><pages>101093-101093</pages><artnum>101093</artnum><issn>1877-7503</issn><eissn>1877-7511</eissn><eissn>1877-7503</eissn><abstract>•When machine learning is applied in ignorance of fundamental laws of nature, it is likely to deliver unreliable answers.•With his colleagues, Peter Coveney has described the computational algorithms best suited for deployment on exascale architectures.•In the exascale era, we will combine models of the human heart and blood circulation to describe the cardiovascular system at the scale of a body.•Beyond the quantum and exascale computer eras, the future of simulation will rely more on analogue computing than has hitherto been expected. Many believe that the future of innovation lies in simulation. However, as computers are becoming ever more powerful, so does the hyperbole used to discuss their potential in modelling across a vast range of domains, from subatomic physics to chemistry, climate science, epidemiology, economics and cosmology. As we are about to enter the era of quantum and exascale computing, machine learning and artificial intelligence have entered the field in a significant way. In this article we give a brief history of simulation, discuss how machine learning can be more powerful if underpinned by deeper mechanistic understanding, outline the potential of exascale and quantum computing, highlight the limits of digital computing – classical and quantum – and distinguish rhetoric from reality in assessing the future of modelling and simulation, when we believe analogue computing will play an increasingly important role.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33312270</pmid><doi>10.1016/j.jocs.2020.101093</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1877-7503
ispartof Journal of computational science, 2020-10, Vol.46, p.101093-101093, Article 101093
issn 1877-7503
1877-7511
1877-7503
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7709487
source Access via ScienceDirect (Elsevier)
subjects Analogue computing
Artificial intelligence
Computer simulation
Digital computing
Exascale computing
Machine learning
Quantum computing
title From digital hype to analogue reality: Universal simulation beyond the quantum and exascale eras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20digital%20hype%20to%20analogue%20reality:%20Universal%20simulation%20beyond%20the%20quantum%20and%20exascale%20eras&rft.jtitle=Journal%20of%20computational%20science&rft.au=Coveney,%20Peter%20V.&rft.date=2020-10&rft.volume=46&rft.spage=101093&rft.epage=101093&rft.pages=101093-101093&rft.artnum=101093&rft.issn=1877-7503&rft.eissn=1877-7511&rft_id=info:doi/10.1016/j.jocs.2020.101093&rft_dat=%3Cproquest_pubme%3E2470029525%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470029525&rft_id=info:pmid/33312270&rft_els_id=S1877750320300545&rfr_iscdi=true