Comparison of extraocular and intraocular pressure transducers for measurement of transient intraocular pressure fluctuations using continuous wireless telemetry

The optimal approach for continuous measurement of intraocular pressure (IOP), including pressure transducer location and measurement frequency, is currently unknown. This study assessed the capability of extraocular (EO) and intraocular (IO) pressure transducers, using different IOP sampling rates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-12, Vol.10 (1), p.20893-20893, Article 20893
Hauptverfasser: Jasien, Jessica V., Zohner, Ye Emma, Asif, Sonia Kuhn, Rhodes, Lindsay A., Samuels, Brian C., Girkin, Christopher A., Morris, Jeffrey S., Downs, J. Crawford
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20893
container_issue 1
container_start_page 20893
container_title Scientific reports
container_volume 10
creator Jasien, Jessica V.
Zohner, Ye Emma
Asif, Sonia Kuhn
Rhodes, Lindsay A.
Samuels, Brian C.
Girkin, Christopher A.
Morris, Jeffrey S.
Downs, J. Crawford
description The optimal approach for continuous measurement of intraocular pressure (IOP), including pressure transducer location and measurement frequency, is currently unknown. This study assessed the capability of extraocular (EO) and intraocular (IO) pressure transducers, using different IOP sampling rates and duty cycles, to characterize IOP dynamics. Transient IOP fluctuations were measured and quantified in 7 eyes of 4 male rhesus macaques (NHPs) using the Konigsberg EO system (continuous at 500 Hz), 12 eyes of 8 NHPs with the Stellar EO system and 16 eyes of 12 NHPs with the Stellar IO system (both measure at 200 Hz for 15 s of every 150 s period). IOP transducers were calibrated bi-weekly via anterior chamber manometry. Linear mixed effects models assessed the differences in the hourly transient IOP impulse, and transient IOP fluctuation frequency and magnitude between systems and transducer placements (EO versus IO). All systems measured 8000–12,000 and 5000–6500 transient IOP fluctuations per hour > 0.6 mmHg, representing 8–16% and 4–8% of the total IOP energy the eye must withstand during waking and sleeping hours, respectively. Differences between sampling frequency/duty cycle and transducer placement were statistically significant ( p  
doi_str_mv 10.1038/s41598-020-77880-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7708973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466296898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c92f7c852acc5c9fa5a14f09be12db7865c63d8f29e14d324406764701c11eae3</originalsourceid><addsrcrecordid>eNp9kkFvFSEQxzdGY5vaL-DBkHjxsgoDu8DFxLxoa9LEi54Jj5190uzCExZtP47fVLavttUYuQwz85s_M2Ga5jmjrxnl6k0WrNOqpUBbKZWirXrUHAMVXQsc4PGD-1FzmvMlracDLZh-2hxxDj0IoMfNz02c9zb5HAOJI8GrJdnoymQTsWEgPtz7-4Q5l4SkhkIeisOUyRgTmdGu8RnDsmrcpP3q_LN6nIpbil18DJmU7MOOuBgWH0osmfzwCadKkqWaGZd0_ax5Mtop4-mtPWm-fHj_eXPeXnw6-7h5d9E6IcXSOg2jdKoD61zn9Gg7y8RI9RYZDFup-s71fFAjaGRi4CAE7WUvJGWOMbTIT5q3B9192c44OFybn8w--dmmaxOtN39mgv9qdvG7kZIqLXkVeHUrkOK3gnkxs88Op8kGrKMZEH0PuldaVfTlX-hlLCnU8SolOUjRAa0UHCiXYs4Jx7tmGDXrEpjDEpi6BOZmCcwq_eLhGHclv7-8AvwA5JoKO0z3b_9H9hf28sP6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473274520</pqid></control><display><type>article</type><title>Comparison of extraocular and intraocular pressure transducers for measurement of transient intraocular pressure fluctuations using continuous wireless telemetry</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Jasien, Jessica V. ; Zohner, Ye Emma ; Asif, Sonia Kuhn ; Rhodes, Lindsay A. ; Samuels, Brian C. ; Girkin, Christopher A. ; Morris, Jeffrey S. ; Downs, J. Crawford</creator><creatorcontrib>Jasien, Jessica V. ; Zohner, Ye Emma ; Asif, Sonia Kuhn ; Rhodes, Lindsay A. ; Samuels, Brian C. ; Girkin, Christopher A. ; Morris, Jeffrey S. ; Downs, J. Crawford</creatorcontrib><description>The optimal approach for continuous measurement of intraocular pressure (IOP), including pressure transducer location and measurement frequency, is currently unknown. This study assessed the capability of extraocular (EO) and intraocular (IO) pressure transducers, using different IOP sampling rates and duty cycles, to characterize IOP dynamics. Transient IOP fluctuations were measured and quantified in 7 eyes of 4 male rhesus macaques (NHPs) using the Konigsberg EO system (continuous at 500 Hz), 12 eyes of 8 NHPs with the Stellar EO system and 16 eyes of 12 NHPs with the Stellar IO system (both measure at 200 Hz for 15 s of every 150 s period). IOP transducers were calibrated bi-weekly via anterior chamber manometry. Linear mixed effects models assessed the differences in the hourly transient IOP impulse, and transient IOP fluctuation frequency and magnitude between systems and transducer placements (EO versus IO). All systems measured 8000–12,000 and 5000–6500 transient IOP fluctuations per hour &gt; 0.6 mmHg, representing 8–16% and 4–8% of the total IOP energy the eye must withstand during waking and sleeping hours, respectively. Differences between sampling frequency/duty cycle and transducer placement were statistically significant ( p  &lt; 0.05) but the effect sizes were small and clinically insignificant. IOP dynamics can be accurately captured by sampling IOP at 200 Hz on a 10% duty cycle using either IO or EO transducers.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-77880-8</identifier><identifier>PMID: 33262420</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/1314 ; 631/114/2400 ; 639/166/985 ; 692/308/1426 ; Animals ; Anterior chamber ; Female ; Humanities and Social Sciences ; Humans ; Intraocular Pressure ; Macaca mulatta ; Male ; Models, Animal ; multidisciplinary ; Pressure ; Pressure transducers ; Radio Waves ; Sampling ; Science ; Science (multidisciplinary) ; Statistical analysis ; Telemetry ; Telemetry - methods ; Transducers, Pressure</subject><ispartof>Scientific reports, 2020-12, Vol.10 (1), p.20893-20893, Article 20893</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c92f7c852acc5c9fa5a14f09be12db7865c63d8f29e14d324406764701c11eae3</citedby><cites>FETCH-LOGICAL-c474t-c92f7c852acc5c9fa5a14f09be12db7865c63d8f29e14d324406764701c11eae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708973/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708973/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33262420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jasien, Jessica V.</creatorcontrib><creatorcontrib>Zohner, Ye Emma</creatorcontrib><creatorcontrib>Asif, Sonia Kuhn</creatorcontrib><creatorcontrib>Rhodes, Lindsay A.</creatorcontrib><creatorcontrib>Samuels, Brian C.</creatorcontrib><creatorcontrib>Girkin, Christopher A.</creatorcontrib><creatorcontrib>Morris, Jeffrey S.</creatorcontrib><creatorcontrib>Downs, J. Crawford</creatorcontrib><title>Comparison of extraocular and intraocular pressure transducers for measurement of transient intraocular pressure fluctuations using continuous wireless telemetry</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The optimal approach for continuous measurement of intraocular pressure (IOP), including pressure transducer location and measurement frequency, is currently unknown. This study assessed the capability of extraocular (EO) and intraocular (IO) pressure transducers, using different IOP sampling rates and duty cycles, to characterize IOP dynamics. Transient IOP fluctuations were measured and quantified in 7 eyes of 4 male rhesus macaques (NHPs) using the Konigsberg EO system (continuous at 500 Hz), 12 eyes of 8 NHPs with the Stellar EO system and 16 eyes of 12 NHPs with the Stellar IO system (both measure at 200 Hz for 15 s of every 150 s period). IOP transducers were calibrated bi-weekly via anterior chamber manometry. Linear mixed effects models assessed the differences in the hourly transient IOP impulse, and transient IOP fluctuation frequency and magnitude between systems and transducer placements (EO versus IO). All systems measured 8000–12,000 and 5000–6500 transient IOP fluctuations per hour &gt; 0.6 mmHg, representing 8–16% and 4–8% of the total IOP energy the eye must withstand during waking and sleeping hours, respectively. Differences between sampling frequency/duty cycle and transducer placement were statistically significant ( p  &lt; 0.05) but the effect sizes were small and clinically insignificant. IOP dynamics can be accurately captured by sampling IOP at 200 Hz on a 10% duty cycle using either IO or EO transducers.</description><subject>631/114/1314</subject><subject>631/114/2400</subject><subject>639/166/985</subject><subject>692/308/1426</subject><subject>Animals</subject><subject>Anterior chamber</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Intraocular Pressure</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Models, Animal</subject><subject>multidisciplinary</subject><subject>Pressure</subject><subject>Pressure transducers</subject><subject>Radio Waves</subject><subject>Sampling</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Statistical analysis</subject><subject>Telemetry</subject><subject>Telemetry - methods</subject><subject>Transducers, Pressure</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kkFvFSEQxzdGY5vaL-DBkHjxsgoDu8DFxLxoa9LEi54Jj5190uzCExZtP47fVLavttUYuQwz85s_M2Ga5jmjrxnl6k0WrNOqpUBbKZWirXrUHAMVXQsc4PGD-1FzmvMlracDLZh-2hxxDj0IoMfNz02c9zb5HAOJI8GrJdnoymQTsWEgPtz7-4Q5l4SkhkIeisOUyRgTmdGu8RnDsmrcpP3q_LN6nIpbil18DJmU7MOOuBgWH0osmfzwCadKkqWaGZd0_ax5Mtop4-mtPWm-fHj_eXPeXnw6-7h5d9E6IcXSOg2jdKoD61zn9Gg7y8RI9RYZDFup-s71fFAjaGRi4CAE7WUvJGWOMbTIT5q3B9192c44OFybn8w--dmmaxOtN39mgv9qdvG7kZIqLXkVeHUrkOK3gnkxs88Op8kGrKMZEH0PuldaVfTlX-hlLCnU8SolOUjRAa0UHCiXYs4Jx7tmGDXrEpjDEpi6BOZmCcwq_eLhGHclv7-8AvwA5JoKO0z3b_9H9hf28sP6</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Jasien, Jessica V.</creator><creator>Zohner, Ye Emma</creator><creator>Asif, Sonia Kuhn</creator><creator>Rhodes, Lindsay A.</creator><creator>Samuels, Brian C.</creator><creator>Girkin, Christopher A.</creator><creator>Morris, Jeffrey S.</creator><creator>Downs, J. Crawford</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201201</creationdate><title>Comparison of extraocular and intraocular pressure transducers for measurement of transient intraocular pressure fluctuations using continuous wireless telemetry</title><author>Jasien, Jessica V. ; Zohner, Ye Emma ; Asif, Sonia Kuhn ; Rhodes, Lindsay A. ; Samuels, Brian C. ; Girkin, Christopher A. ; Morris, Jeffrey S. ; Downs, J. Crawford</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c92f7c852acc5c9fa5a14f09be12db7865c63d8f29e14d324406764701c11eae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/1314</topic><topic>631/114/2400</topic><topic>639/166/985</topic><topic>692/308/1426</topic><topic>Animals</topic><topic>Anterior chamber</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Intraocular Pressure</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Models, Animal</topic><topic>multidisciplinary</topic><topic>Pressure</topic><topic>Pressure transducers</topic><topic>Radio Waves</topic><topic>Sampling</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Statistical analysis</topic><topic>Telemetry</topic><topic>Telemetry - methods</topic><topic>Transducers, Pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jasien, Jessica V.</creatorcontrib><creatorcontrib>Zohner, Ye Emma</creatorcontrib><creatorcontrib>Asif, Sonia Kuhn</creatorcontrib><creatorcontrib>Rhodes, Lindsay A.</creatorcontrib><creatorcontrib>Samuels, Brian C.</creatorcontrib><creatorcontrib>Girkin, Christopher A.</creatorcontrib><creatorcontrib>Morris, Jeffrey S.</creatorcontrib><creatorcontrib>Downs, J. Crawford</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasien, Jessica V.</au><au>Zohner, Ye Emma</au><au>Asif, Sonia Kuhn</au><au>Rhodes, Lindsay A.</au><au>Samuels, Brian C.</au><au>Girkin, Christopher A.</au><au>Morris, Jeffrey S.</au><au>Downs, J. Crawford</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of extraocular and intraocular pressure transducers for measurement of transient intraocular pressure fluctuations using continuous wireless telemetry</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>20893</spage><epage>20893</epage><pages>20893-20893</pages><artnum>20893</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The optimal approach for continuous measurement of intraocular pressure (IOP), including pressure transducer location and measurement frequency, is currently unknown. This study assessed the capability of extraocular (EO) and intraocular (IO) pressure transducers, using different IOP sampling rates and duty cycles, to characterize IOP dynamics. Transient IOP fluctuations were measured and quantified in 7 eyes of 4 male rhesus macaques (NHPs) using the Konigsberg EO system (continuous at 500 Hz), 12 eyes of 8 NHPs with the Stellar EO system and 16 eyes of 12 NHPs with the Stellar IO system (both measure at 200 Hz for 15 s of every 150 s period). IOP transducers were calibrated bi-weekly via anterior chamber manometry. Linear mixed effects models assessed the differences in the hourly transient IOP impulse, and transient IOP fluctuation frequency and magnitude between systems and transducer placements (EO versus IO). All systems measured 8000–12,000 and 5000–6500 transient IOP fluctuations per hour &gt; 0.6 mmHg, representing 8–16% and 4–8% of the total IOP energy the eye must withstand during waking and sleeping hours, respectively. Differences between sampling frequency/duty cycle and transducer placement were statistically significant ( p  &lt; 0.05) but the effect sizes were small and clinically insignificant. IOP dynamics can be accurately captured by sampling IOP at 200 Hz on a 10% duty cycle using either IO or EO transducers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33262420</pmid><doi>10.1038/s41598-020-77880-8</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-12, Vol.10 (1), p.20893-20893, Article 20893
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7708973
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 631/114/1314
631/114/2400
639/166/985
692/308/1426
Animals
Anterior chamber
Female
Humanities and Social Sciences
Humans
Intraocular Pressure
Macaca mulatta
Male
Models, Animal
multidisciplinary
Pressure
Pressure transducers
Radio Waves
Sampling
Science
Science (multidisciplinary)
Statistical analysis
Telemetry
Telemetry - methods
Transducers, Pressure
title Comparison of extraocular and intraocular pressure transducers for measurement of transient intraocular pressure fluctuations using continuous wireless telemetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20extraocular%20and%20intraocular%20pressure%20transducers%20for%20measurement%20of%20transient%20intraocular%20pressure%20fluctuations%20using%20continuous%20wireless%20telemetry&rft.jtitle=Scientific%20reports&rft.au=Jasien,%20Jessica%20V.&rft.date=2020-12-01&rft.volume=10&rft.issue=1&rft.spage=20893&rft.epage=20893&rft.pages=20893-20893&rft.artnum=20893&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-77880-8&rft_dat=%3Cproquest_pubme%3E2466296898%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473274520&rft_id=info:pmid/33262420&rfr_iscdi=true