Dual solutions of nanomaterial flow comprising titanium alloy (Ti6Al4V) suspended in Williamson fluid through a thin moving needle with nonlinear thermal radiation: stability scrutinization
Titanium alloy nanoparticle has a variety of applications in the manufacturing of soap and plastic, microsensors, aerospace design material, nano-wires, optical filters, implantation of surgical, and many biological treatments. Therefore, this research article discussed the influence of nonlinear ra...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-12, Vol.10 (1), p.20933-20933, Article 20933 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20933 |
---|---|
container_issue | 1 |
container_start_page | 20933 |
container_title | Scientific reports |
container_volume | 10 |
creator | Khan, Umair Zaib, A. Khan, Ilyas Nisar, Kottakkaran Sooppy |
description | Titanium alloy nanoparticle has a variety of applications in the manufacturing of soap and plastic, microsensors, aerospace design material, nano-wires, optical filters, implantation of surgical, and many biological treatments. Therefore, this research article discussed the influence of nonlinear radiation on magneto Williamson fluid involving titanium alloy particles through a thin needle. The arising system of partial differential equations is exercised by the similarity transformations to get the dimensional form of ordinary differential equations. The dual nature of solutions is obtained by implementing bvp4c. The study of stability has been carried out to check which of the results are physically applicable and stable. Influences of pertinent constraints on the flow field are discussed with the help of graphical representations and the method validation is shown in Table
1
. The results imply that more than one result is established when the moving needle and the free-stream travel in the reverse directions. Moreover, the magnetic parameter accelerates the severance of boundary-layer flow, while the separation delays in the absence of the nanoparticle. The velocity gradient of nanofluid decays owing to the Williamson parameter in both branches of the outcome, while the temperature shrinks in the first or upper branch solution (stable one) and uplifts in the second or lower branch solution (unstable one). The size of the needle decreases the velocity in the upper solution and accelerates in the lower solution. The patterns of streamlines are more complicated due to the reverse direction of the free stream and thin needle. |
doi_str_mv | 10.1038/s41598-020-77996-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7708647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473274505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-5c9d526909571011c0f22a4595ab25bed8f04745d28eab34fb57a5bdd7bfc06e3</originalsourceid><addsrcrecordid>eNp9kstuFDEQRVsIRKKQH2CBLLEJiwa32482C6QoPKVIbAIsreq2e8aR2w5-JBn-jX_DkwkhsMAbW7qnblVZt2medvhlh_vhVaIdk0OLCW6FkJK31w-afYIpa0lPyMN7773mMKVzXA8jknbycbPX94QTivl-8_NtAYdScCXb4BMKM_LgwwLZRFuV2YUrNIXlItpk_Qplm8HbsiBwLmzQ0Znlx45-fYFSSRfGa6OR9eibdc7CkoKvBsVqlNcxlNUaQX1VfQmXWzNvjHYGXdm8Rj54Z72BWAkTl9o6grawneo1ShlG62zeoDTFOqm3P26UJ82jGVwyh7f3QfPl_buzk4_t6ecPn06OT9uJCppbNknNCJdYMtHhrpvwTAhQJhmMhI1GDzOuINNkMDD2dB6ZADZqLcZ5wtz0B82bne9FGRejJ-NzBKfqpywQNyqAVX8r3q7VKlwqIfDAqagGR7cGMXwvJmW12DQZ58CbUJIilHMi-dBv0ef_oOehRF_Xq5ToSZ0Ts0qRHTXFkFI0890wHVbbgKhdQFQNiLoJiLquRc_ur3FX8jsOFeh3QKqSX5n4p_d_bH8BFIbNCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473274505</pqid></control><display><type>article</type><title>Dual solutions of nanomaterial flow comprising titanium alloy (Ti6Al4V) suspended in Williamson fluid through a thin moving needle with nonlinear thermal radiation: stability scrutinization</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Khan, Umair ; Zaib, A. ; Khan, Ilyas ; Nisar, Kottakkaran Sooppy</creator><creatorcontrib>Khan, Umair ; Zaib, A. ; Khan, Ilyas ; Nisar, Kottakkaran Sooppy</creatorcontrib><description>Titanium alloy nanoparticle has a variety of applications in the manufacturing of soap and plastic, microsensors, aerospace design material, nano-wires, optical filters, implantation of surgical, and many biological treatments. Therefore, this research article discussed the influence of nonlinear radiation on magneto Williamson fluid involving titanium alloy particles through a thin needle. The arising system of partial differential equations is exercised by the similarity transformations to get the dimensional form of ordinary differential equations. The dual nature of solutions is obtained by implementing bvp4c. The study of stability has been carried out to check which of the results are physically applicable and stable. Influences of pertinent constraints on the flow field are discussed with the help of graphical representations and the method validation is shown in Table
1
. The results imply that more than one result is established when the moving needle and the free-stream travel in the reverse directions. Moreover, the magnetic parameter accelerates the severance of boundary-layer flow, while the separation delays in the absence of the nanoparticle. The velocity gradient of nanofluid decays owing to the Williamson parameter in both branches of the outcome, while the temperature shrinks in the first or upper branch solution (stable one) and uplifts in the second or lower branch solution (unstable one). The size of the needle decreases the velocity in the upper solution and accelerates in the lower solution. The patterns of streamlines are more complicated due to the reverse direction of the free stream and thin needle.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-77996-x</identifier><identifier>PMID: 33262406</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 639/705 ; Biological treatment ; Differential equations ; Humanities and Social Sciences ; multidisciplinary ; Nanoparticles ; Ordinary differential equations ; Partial differential equations ; Science ; Science (multidisciplinary) ; Thermal radiation ; Titanium ; Titanium alloys ; Velocity</subject><ispartof>Scientific reports, 2020-12, Vol.10 (1), p.20933-20933, Article 20933</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-5c9d526909571011c0f22a4595ab25bed8f04745d28eab34fb57a5bdd7bfc06e3</citedby><cites>FETCH-LOGICAL-c474t-5c9d526909571011c0f22a4595ab25bed8f04745d28eab34fb57a5bdd7bfc06e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708647/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708647/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33262406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Umair</creatorcontrib><creatorcontrib>Zaib, A.</creatorcontrib><creatorcontrib>Khan, Ilyas</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><title>Dual solutions of nanomaterial flow comprising titanium alloy (Ti6Al4V) suspended in Williamson fluid through a thin moving needle with nonlinear thermal radiation: stability scrutinization</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Titanium alloy nanoparticle has a variety of applications in the manufacturing of soap and plastic, microsensors, aerospace design material, nano-wires, optical filters, implantation of surgical, and many biological treatments. Therefore, this research article discussed the influence of nonlinear radiation on magneto Williamson fluid involving titanium alloy particles through a thin needle. The arising system of partial differential equations is exercised by the similarity transformations to get the dimensional form of ordinary differential equations. The dual nature of solutions is obtained by implementing bvp4c. The study of stability has been carried out to check which of the results are physically applicable and stable. Influences of pertinent constraints on the flow field are discussed with the help of graphical representations and the method validation is shown in Table
1
. The results imply that more than one result is established when the moving needle and the free-stream travel in the reverse directions. Moreover, the magnetic parameter accelerates the severance of boundary-layer flow, while the separation delays in the absence of the nanoparticle. The velocity gradient of nanofluid decays owing to the Williamson parameter in both branches of the outcome, while the temperature shrinks in the first or upper branch solution (stable one) and uplifts in the second or lower branch solution (unstable one). The size of the needle decreases the velocity in the upper solution and accelerates in the lower solution. The patterns of streamlines are more complicated due to the reverse direction of the free stream and thin needle.</description><subject>639/166</subject><subject>639/705</subject><subject>Biological treatment</subject><subject>Differential equations</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thermal radiation</subject><subject>Titanium</subject><subject>Titanium alloys</subject><subject>Velocity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kstuFDEQRVsIRKKQH2CBLLEJiwa32482C6QoPKVIbAIsreq2e8aR2w5-JBn-jX_DkwkhsMAbW7qnblVZt2medvhlh_vhVaIdk0OLCW6FkJK31w-afYIpa0lPyMN7773mMKVzXA8jknbycbPX94QTivl-8_NtAYdScCXb4BMKM_LgwwLZRFuV2YUrNIXlItpk_Qplm8HbsiBwLmzQ0Znlx45-fYFSSRfGa6OR9eibdc7CkoKvBsVqlNcxlNUaQX1VfQmXWzNvjHYGXdm8Rj54Z72BWAkTl9o6grawneo1ShlG62zeoDTFOqm3P26UJ82jGVwyh7f3QfPl_buzk4_t6ecPn06OT9uJCppbNknNCJdYMtHhrpvwTAhQJhmMhI1GDzOuINNkMDD2dB6ZADZqLcZ5wtz0B82bne9FGRejJ-NzBKfqpywQNyqAVX8r3q7VKlwqIfDAqagGR7cGMXwvJmW12DQZ58CbUJIilHMi-dBv0ef_oOehRF_Xq5ToSZ0Ts0qRHTXFkFI0890wHVbbgKhdQFQNiLoJiLquRc_ur3FX8jsOFeh3QKqSX5n4p_d_bH8BFIbNCg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Khan, Umair</creator><creator>Zaib, A.</creator><creator>Khan, Ilyas</creator><creator>Nisar, Kottakkaran Sooppy</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201201</creationdate><title>Dual solutions of nanomaterial flow comprising titanium alloy (Ti6Al4V) suspended in Williamson fluid through a thin moving needle with nonlinear thermal radiation: stability scrutinization</title><author>Khan, Umair ; Zaib, A. ; Khan, Ilyas ; Nisar, Kottakkaran Sooppy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-5c9d526909571011c0f22a4595ab25bed8f04745d28eab34fb57a5bdd7bfc06e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/166</topic><topic>639/705</topic><topic>Biological treatment</topic><topic>Differential equations</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thermal radiation</topic><topic>Titanium</topic><topic>Titanium alloys</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Umair</creatorcontrib><creatorcontrib>Zaib, A.</creatorcontrib><creatorcontrib>Khan, Ilyas</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Umair</au><au>Zaib, A.</au><au>Khan, Ilyas</au><au>Nisar, Kottakkaran Sooppy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual solutions of nanomaterial flow comprising titanium alloy (Ti6Al4V) suspended in Williamson fluid through a thin moving needle with nonlinear thermal radiation: stability scrutinization</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>20933</spage><epage>20933</epage><pages>20933-20933</pages><artnum>20933</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Titanium alloy nanoparticle has a variety of applications in the manufacturing of soap and plastic, microsensors, aerospace design material, nano-wires, optical filters, implantation of surgical, and many biological treatments. Therefore, this research article discussed the influence of nonlinear radiation on magneto Williamson fluid involving titanium alloy particles through a thin needle. The arising system of partial differential equations is exercised by the similarity transformations to get the dimensional form of ordinary differential equations. The dual nature of solutions is obtained by implementing bvp4c. The study of stability has been carried out to check which of the results are physically applicable and stable. Influences of pertinent constraints on the flow field are discussed with the help of graphical representations and the method validation is shown in Table
1
. The results imply that more than one result is established when the moving needle and the free-stream travel in the reverse directions. Moreover, the magnetic parameter accelerates the severance of boundary-layer flow, while the separation delays in the absence of the nanoparticle. The velocity gradient of nanofluid decays owing to the Williamson parameter in both branches of the outcome, while the temperature shrinks in the first or upper branch solution (stable one) and uplifts in the second or lower branch solution (unstable one). The size of the needle decreases the velocity in the upper solution and accelerates in the lower solution. The patterns of streamlines are more complicated due to the reverse direction of the free stream and thin needle.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33262406</pmid><doi>10.1038/s41598-020-77996-x</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-12, Vol.10 (1), p.20933-20933, Article 20933 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7708647 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/166 639/705 Biological treatment Differential equations Humanities and Social Sciences multidisciplinary Nanoparticles Ordinary differential equations Partial differential equations Science Science (multidisciplinary) Thermal radiation Titanium Titanium alloys Velocity |
title | Dual solutions of nanomaterial flow comprising titanium alloy (Ti6Al4V) suspended in Williamson fluid through a thin moving needle with nonlinear thermal radiation: stability scrutinization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20solutions%20of%20nanomaterial%20flow%20comprising%20titanium%20alloy%20(Ti6Al4V)%20suspended%20in%20Williamson%20fluid%20through%20a%20thin%20moving%20needle%20with%20nonlinear%20thermal%20radiation:%20stability%20scrutinization&rft.jtitle=Scientific%20reports&rft.au=Khan,%20Umair&rft.date=2020-12-01&rft.volume=10&rft.issue=1&rft.spage=20933&rft.epage=20933&rft.pages=20933-20933&rft.artnum=20933&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-77996-x&rft_dat=%3Cproquest_pubme%3E2473274505%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473274505&rft_id=info:pmid/33262406&rfr_iscdi=true |