Multiscale simulation of the focused electron beam induced deposition process

Focused electron beam induced deposition (FEBID) is a powerful technique for 3D-printing of complex nanodevices. However, for resolutions below 10 nm, it struggles to control size, morphology and composition of the structures, due to a lack of molecular-level understanding of the underlying irradiat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-11, Vol.10 (1), p.20827, Article 20827
Hauptverfasser: de Vera, Pablo, Azzolini, Martina, Sushko, Gennady, Abril, Isabel, Garcia-Molina, Rafael, Dapor, Maurizio, Solov’yov, Ilia A., Solov’yov, Andrey V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 20827
container_title Scientific reports
container_volume 10
creator de Vera, Pablo
Azzolini, Martina
Sushko, Gennady
Abril, Isabel
Garcia-Molina, Rafael
Dapor, Maurizio
Solov’yov, Ilia A.
Solov’yov, Andrey V.
description Focused electron beam induced deposition (FEBID) is a powerful technique for 3D-printing of complex nanodevices. However, for resolutions below 10 nm, it struggles to control size, morphology and composition of the structures, due to a lack of molecular-level understanding of the underlying irradiation-driven chemistry (IDC). Computational modeling is a tool to comprehend and further optimize FEBID-related technologies. Here we utilize a novel multiscale methodology which couples Monte Carlo simulations for radiation transport with irradiation-driven molecular dynamics for simulating IDC with atomistic resolution. Through an in depth analysis of W(CO) 6 deposition on SiO 2 and its subsequent irradiation with electrons, we provide a comprehensive description of the FEBID process and its intrinsic operation. Our analysis reveals that simulations deliver unprecedented results in modeling the FEBID process, demonstrating an excellent agreement with available experimental data of the simulated nanomaterial composition, microstructure and growth rate as a function of the primary beam parameters. The generality of the methodology provides a powerful tool to study versatile problems where IDC and multiscale phenomena play an essential role.
doi_str_mv 10.1038/s41598-020-77120-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7705715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473270416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-7f9726316b15c7a8276c094eeeb79dfd9b0cccd6cf219774a461db637317eb3b3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EAgT9ARYoEhs2Ab_iaTZIqOIltWIDa8txJiUoiYudIMHXY9pSHgu8sK2ZM9eeuYQcMXrGqBifB8myfJxSTlMAFvf3LbLPqcxSLjjf_nHfI6MQnmlcGc8ly3fJnhA8A-DjfTKbDU1fB2saTELdDo3pa9clrkr6J0wqZ4eAZYIN2t7HeIGmTequHGyMlrhwoV7yC-8shnBIdirTBBytzwPyeH31MLlNp_c3d5PLaWozzvsUqhy4EkwVLLNgxhyUpblExALysirzglprS2UrznIAaaRiZaEECAZYiEIckIuV7mIoWiwtdr03jV74ujX-TTtT69-Zrn7Sc_eqAWgGLIsCp2sB714GDL1u4xCwaUyHbgiaS6WokHFKET35gz67wXexvUiB4EAlU5HiK8p6F4LHavMZRvWnYXplmI6G6aVh-j0WHf9sY1PyZU8ExAoIMdXN0X-__Y_sB0f8oq0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473270416</pqid></control><display><type>article</type><title>Multiscale simulation of the focused electron beam induced deposition process</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>de Vera, Pablo ; Azzolini, Martina ; Sushko, Gennady ; Abril, Isabel ; Garcia-Molina, Rafael ; Dapor, Maurizio ; Solov’yov, Ilia A. ; Solov’yov, Andrey V.</creator><creatorcontrib>de Vera, Pablo ; Azzolini, Martina ; Sushko, Gennady ; Abril, Isabel ; Garcia-Molina, Rafael ; Dapor, Maurizio ; Solov’yov, Ilia A. ; Solov’yov, Andrey V.</creatorcontrib><description>Focused electron beam induced deposition (FEBID) is a powerful technique for 3D-printing of complex nanodevices. However, for resolutions below 10 nm, it struggles to control size, morphology and composition of the structures, due to a lack of molecular-level understanding of the underlying irradiation-driven chemistry (IDC). Computational modeling is a tool to comprehend and further optimize FEBID-related technologies. Here we utilize a novel multiscale methodology which couples Monte Carlo simulations for radiation transport with irradiation-driven molecular dynamics for simulating IDC with atomistic resolution. Through an in depth analysis of W(CO) 6 deposition on SiO 2 and its subsequent irradiation with electrons, we provide a comprehensive description of the FEBID process and its intrinsic operation. Our analysis reveals that simulations deliver unprecedented results in modeling the FEBID process, demonstrating an excellent agreement with available experimental data of the simulated nanomaterial composition, microstructure and growth rate as a function of the primary beam parameters. The generality of the methodology provides a powerful tool to study versatile problems where IDC and multiscale phenomena play an essential role.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-77120-z</identifier><identifier>PMID: 33257728</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1035 ; 639/301/119 ; 639/638/298 ; 639/638/563/606 ; 639/638/563/981 ; 639/766/36 ; 639/925/930/1032 ; Chemical reactions ; Computer applications ; Energy ; Growth rate ; Humanities and Social Sciences ; Irradiation ; Monte Carlo simulation ; Morphology ; multidisciplinary ; Radiation ; Science ; Science (multidisciplinary) ; Silicon dioxide ; Simulation</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.20827, Article 20827</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-7f9726316b15c7a8276c094eeeb79dfd9b0cccd6cf219774a461db637317eb3b3</citedby><cites>FETCH-LOGICAL-c522t-7f9726316b15c7a8276c094eeeb79dfd9b0cccd6cf219774a461db637317eb3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705715/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705715/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33257728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Vera, Pablo</creatorcontrib><creatorcontrib>Azzolini, Martina</creatorcontrib><creatorcontrib>Sushko, Gennady</creatorcontrib><creatorcontrib>Abril, Isabel</creatorcontrib><creatorcontrib>Garcia-Molina, Rafael</creatorcontrib><creatorcontrib>Dapor, Maurizio</creatorcontrib><creatorcontrib>Solov’yov, Ilia A.</creatorcontrib><creatorcontrib>Solov’yov, Andrey V.</creatorcontrib><title>Multiscale simulation of the focused electron beam induced deposition process</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Focused electron beam induced deposition (FEBID) is a powerful technique for 3D-printing of complex nanodevices. However, for resolutions below 10 nm, it struggles to control size, morphology and composition of the structures, due to a lack of molecular-level understanding of the underlying irradiation-driven chemistry (IDC). Computational modeling is a tool to comprehend and further optimize FEBID-related technologies. Here we utilize a novel multiscale methodology which couples Monte Carlo simulations for radiation transport with irradiation-driven molecular dynamics for simulating IDC with atomistic resolution. Through an in depth analysis of W(CO) 6 deposition on SiO 2 and its subsequent irradiation with electrons, we provide a comprehensive description of the FEBID process and its intrinsic operation. Our analysis reveals that simulations deliver unprecedented results in modeling the FEBID process, demonstrating an excellent agreement with available experimental data of the simulated nanomaterial composition, microstructure and growth rate as a function of the primary beam parameters. The generality of the methodology provides a powerful tool to study versatile problems where IDC and multiscale phenomena play an essential role.</description><subject>639/301/1034/1035</subject><subject>639/301/119</subject><subject>639/638/298</subject><subject>639/638/563/606</subject><subject>639/638/563/981</subject><subject>639/766/36</subject><subject>639/925/930/1032</subject><subject>Chemical reactions</subject><subject>Computer applications</subject><subject>Energy</subject><subject>Growth rate</subject><subject>Humanities and Social Sciences</subject><subject>Irradiation</subject><subject>Monte Carlo simulation</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Radiation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon dioxide</subject><subject>Simulation</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctOwzAQRS0EAgT9ARYoEhs2Ab_iaTZIqOIltWIDa8txJiUoiYudIMHXY9pSHgu8sK2ZM9eeuYQcMXrGqBifB8myfJxSTlMAFvf3LbLPqcxSLjjf_nHfI6MQnmlcGc8ly3fJnhA8A-DjfTKbDU1fB2saTELdDo3pa9clrkr6J0wqZ4eAZYIN2t7HeIGmTequHGyMlrhwoV7yC-8shnBIdirTBBytzwPyeH31MLlNp_c3d5PLaWozzvsUqhy4EkwVLLNgxhyUpblExALysirzglprS2UrznIAaaRiZaEECAZYiEIckIuV7mIoWiwtdr03jV74ujX-TTtT69-Zrn7Sc_eqAWgGLIsCp2sB714GDL1u4xCwaUyHbgiaS6WokHFKET35gz67wXexvUiB4EAlU5HiK8p6F4LHavMZRvWnYXplmI6G6aVh-j0WHf9sY1PyZU8ExAoIMdXN0X-__Y_sB0f8oq0</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>de Vera, Pablo</creator><creator>Azzolini, Martina</creator><creator>Sushko, Gennady</creator><creator>Abril, Isabel</creator><creator>Garcia-Molina, Rafael</creator><creator>Dapor, Maurizio</creator><creator>Solov’yov, Ilia A.</creator><creator>Solov’yov, Andrey V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201130</creationdate><title>Multiscale simulation of the focused electron beam induced deposition process</title><author>de Vera, Pablo ; Azzolini, Martina ; Sushko, Gennady ; Abril, Isabel ; Garcia-Molina, Rafael ; Dapor, Maurizio ; Solov’yov, Ilia A. ; Solov’yov, Andrey V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-7f9726316b15c7a8276c094eeeb79dfd9b0cccd6cf219774a461db637317eb3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1034/1035</topic><topic>639/301/119</topic><topic>639/638/298</topic><topic>639/638/563/606</topic><topic>639/638/563/981</topic><topic>639/766/36</topic><topic>639/925/930/1032</topic><topic>Chemical reactions</topic><topic>Computer applications</topic><topic>Energy</topic><topic>Growth rate</topic><topic>Humanities and Social Sciences</topic><topic>Irradiation</topic><topic>Monte Carlo simulation</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Radiation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon dioxide</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Vera, Pablo</creatorcontrib><creatorcontrib>Azzolini, Martina</creatorcontrib><creatorcontrib>Sushko, Gennady</creatorcontrib><creatorcontrib>Abril, Isabel</creatorcontrib><creatorcontrib>Garcia-Molina, Rafael</creatorcontrib><creatorcontrib>Dapor, Maurizio</creatorcontrib><creatorcontrib>Solov’yov, Ilia A.</creatorcontrib><creatorcontrib>Solov’yov, Andrey V.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Vera, Pablo</au><au>Azzolini, Martina</au><au>Sushko, Gennady</au><au>Abril, Isabel</au><au>Garcia-Molina, Rafael</au><au>Dapor, Maurizio</au><au>Solov’yov, Ilia A.</au><au>Solov’yov, Andrey V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale simulation of the focused electron beam induced deposition process</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-11-30</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>20827</spage><pages>20827-</pages><artnum>20827</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Focused electron beam induced deposition (FEBID) is a powerful technique for 3D-printing of complex nanodevices. However, for resolutions below 10 nm, it struggles to control size, morphology and composition of the structures, due to a lack of molecular-level understanding of the underlying irradiation-driven chemistry (IDC). Computational modeling is a tool to comprehend and further optimize FEBID-related technologies. Here we utilize a novel multiscale methodology which couples Monte Carlo simulations for radiation transport with irradiation-driven molecular dynamics for simulating IDC with atomistic resolution. Through an in depth analysis of W(CO) 6 deposition on SiO 2 and its subsequent irradiation with electrons, we provide a comprehensive description of the FEBID process and its intrinsic operation. Our analysis reveals that simulations deliver unprecedented results in modeling the FEBID process, demonstrating an excellent agreement with available experimental data of the simulated nanomaterial composition, microstructure and growth rate as a function of the primary beam parameters. The generality of the methodology provides a powerful tool to study versatile problems where IDC and multiscale phenomena play an essential role.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33257728</pmid><doi>10.1038/s41598-020-77120-z</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-11, Vol.10 (1), p.20827, Article 20827
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7705715
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Free Full-Text Journals in Chemistry
subjects 639/301/1034/1035
639/301/119
639/638/298
639/638/563/606
639/638/563/981
639/766/36
639/925/930/1032
Chemical reactions
Computer applications
Energy
Growth rate
Humanities and Social Sciences
Irradiation
Monte Carlo simulation
Morphology
multidisciplinary
Radiation
Science
Science (multidisciplinary)
Silicon dioxide
Simulation
title Multiscale simulation of the focused electron beam induced deposition process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20simulation%20of%20the%20focused%20electron%20beam%20induced%20deposition%20process&rft.jtitle=Scientific%20reports&rft.au=de%20Vera,%20Pablo&rft.date=2020-11-30&rft.volume=10&rft.issue=1&rft.spage=20827&rft.pages=20827-&rft.artnum=20827&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-77120-z&rft_dat=%3Cproquest_pubme%3E2473270416%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473270416&rft_id=info:pmid/33257728&rfr_iscdi=true