Vision Changes the Cellular Composition of Binocular Circuitry during the Critical Period

High acuity stereopsis emerges during an early postnatal critical period when binocular neurons in the primary visual cortex sharpen their receptive field tuning properties. We find that this sharpening is achieved by dismantling the binocular circuit present at critical period onset and building it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2020-11, Vol.108 (4), p.735-747.e6
Hauptverfasser: Tan, Liming, Tring, Elaine, Ringach, Dario L., Zipursky, S. Lawrence, Trachtenberg, Joshua T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 747.e6
container_issue 4
container_start_page 735
container_title Neuron (Cambridge, Mass.)
container_volume 108
creator Tan, Liming
Tring, Elaine
Ringach, Dario L.
Zipursky, S. Lawrence
Trachtenberg, Joshua T.
description High acuity stereopsis emerges during an early postnatal critical period when binocular neurons in the primary visual cortex sharpen their receptive field tuning properties. We find that this sharpening is achieved by dismantling the binocular circuit present at critical period onset and building it anew. Longitudinal imaging of receptive field tuning (e.g., orientation selectivity) of thousands of neurons reveals that most binocular neurons present in layer 2/3 at critical period onset are poorly tuned and are rendered monocular. In parallel, new binocular neurons are established by conversion of well-tuned monocular neurons as they gain matched input from the other eye. These improvements in binocular tuning in layer 2/3 are not inherited from layer 4 but are driven by the experience-dependent sharpening of ipsilateral eye responses. Thus, vision builds a new and more sharply tuned binocular circuit in layer 2/3 by cellular exchange and not by refining the original circuit. •Improvements in ipsilateral eye tuning change binocularity during the critical period•Poorly tuned binocular neurons are rendered monocular•Conversion of sharply tuned monocular neurons establishes new binocular neurons•Vision drives this sharpening and binocular conversion in layer 2/3 and not 4 Tan et al. demonstrate that visually evoked responses of binocular neurons improve across the critical period. This is caused by changing the cellular composition of the binocular pool. Poorly tuned binocular neurons become monocular, while sharply tuned monocular neurons gain matched responses to the other eye and become binocular.
doi_str_mv 10.1016/j.neuron.2020.09.022
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7704707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627320307467</els_id><sourcerecordid>2464365809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-91eca0adf25c710cc533dd4d5b58929edd6e1b4726bd5e5956e400ad02d806423</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMoTjv6D0QK3Lip8uZZnY2ghS8Y0IUKrkI6ud2dpjppk6qB-femqXF8LFxlcb9zbs49hDyl0FGg6uWhizjnFDsGDDrQHTB2j6wo6L4VVOv7ZAVrrVrFen5BHpVyAKBCavqQXHAOmnKuV-T7t1BCis2wt3GHpZn22Aw4jvNoczOk4ymVMJ2BtG3ehJjcMgjZzWHKN42fc4i7RZYr6ezYfMYckn9MHmztWPDJ7XtJvr57-2X40F59ev9xeH3VOin7qdUUnQXrt0y6noJzknPvhZcbudZMo_cK6Ub0TG28RKmlQgGVB-bXoATjl-TV4nuaN0f0DuOU7WhOORxtvjHJBvP3JIa92aVr0_cgeuirwYtbg5x-zFgmcwzF1RvYiGkuhgkpKKd1VUWf_4Me0pxjjVcpJbiSa9CVEgvlciol4_buMxTMuTtzMEt35tydAW1qd1X27M8gd6JfZf1OivWc1wGzKS5gdOhDRjcZn8L_N_wEMkKt1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464365809</pqid></control><display><type>article</type><title>Vision Changes the Cellular Composition of Binocular Circuitry during the Critical Period</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tan, Liming ; Tring, Elaine ; Ringach, Dario L. ; Zipursky, S. Lawrence ; Trachtenberg, Joshua T.</creator><creatorcontrib>Tan, Liming ; Tring, Elaine ; Ringach, Dario L. ; Zipursky, S. Lawrence ; Trachtenberg, Joshua T.</creatorcontrib><description>High acuity stereopsis emerges during an early postnatal critical period when binocular neurons in the primary visual cortex sharpen their receptive field tuning properties. We find that this sharpening is achieved by dismantling the binocular circuit present at critical period onset and building it anew. Longitudinal imaging of receptive field tuning (e.g., orientation selectivity) of thousands of neurons reveals that most binocular neurons present in layer 2/3 at critical period onset are poorly tuned and are rendered monocular. In parallel, new binocular neurons are established by conversion of well-tuned monocular neurons as they gain matched input from the other eye. These improvements in binocular tuning in layer 2/3 are not inherited from layer 4 but are driven by the experience-dependent sharpening of ipsilateral eye responses. Thus, vision builds a new and more sharply tuned binocular circuit in layer 2/3 by cellular exchange and not by refining the original circuit. •Improvements in ipsilateral eye tuning change binocularity during the critical period•Poorly tuned binocular neurons are rendered monocular•Conversion of sharply tuned monocular neurons establishes new binocular neurons•Vision drives this sharpening and binocular conversion in layer 2/3 and not 4 Tan et al. demonstrate that visually evoked responses of binocular neurons improve across the critical period. This is caused by changing the cellular composition of the binocular pool. Poorly tuned binocular neurons become monocular, while sharply tuned monocular neurons gain matched responses to the other eye and become binocular.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2020.09.022</identifier><identifier>PMID: 33091339</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acuity ; Animals ; binocular ; Binocular vision ; Critical period ; Critical Period, Psychological ; experience ; Female ; Information processing ; Male ; matching ; Mice ; Mice, Transgenic ; mouse ; Neuroimaging ; Neurons ; Neurons - physiology ; Orientation - physiology ; Orientation behavior ; Photic Stimulation ; Receptive field ; tuning ; vision ; Vision, Binocular - physiology ; Vision, Monocular - physiology ; Visual cortex ; Visual Cortex - physiology ; Visual Pathways - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2020-11, Vol.108 (4), p.735-747.e6</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>2020. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-91eca0adf25c710cc533dd4d5b58929edd6e1b4726bd5e5956e400ad02d806423</citedby><cites>FETCH-LOGICAL-c557t-91eca0adf25c710cc533dd4d5b58929edd6e1b4726bd5e5956e400ad02d806423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627320307467$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33091339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Liming</creatorcontrib><creatorcontrib>Tring, Elaine</creatorcontrib><creatorcontrib>Ringach, Dario L.</creatorcontrib><creatorcontrib>Zipursky, S. Lawrence</creatorcontrib><creatorcontrib>Trachtenberg, Joshua T.</creatorcontrib><title>Vision Changes the Cellular Composition of Binocular Circuitry during the Critical Period</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>High acuity stereopsis emerges during an early postnatal critical period when binocular neurons in the primary visual cortex sharpen their receptive field tuning properties. We find that this sharpening is achieved by dismantling the binocular circuit present at critical period onset and building it anew. Longitudinal imaging of receptive field tuning (e.g., orientation selectivity) of thousands of neurons reveals that most binocular neurons present in layer 2/3 at critical period onset are poorly tuned and are rendered monocular. In parallel, new binocular neurons are established by conversion of well-tuned monocular neurons as they gain matched input from the other eye. These improvements in binocular tuning in layer 2/3 are not inherited from layer 4 but are driven by the experience-dependent sharpening of ipsilateral eye responses. Thus, vision builds a new and more sharply tuned binocular circuit in layer 2/3 by cellular exchange and not by refining the original circuit. •Improvements in ipsilateral eye tuning change binocularity during the critical period•Poorly tuned binocular neurons are rendered monocular•Conversion of sharply tuned monocular neurons establishes new binocular neurons•Vision drives this sharpening and binocular conversion in layer 2/3 and not 4 Tan et al. demonstrate that visually evoked responses of binocular neurons improve across the critical period. This is caused by changing the cellular composition of the binocular pool. Poorly tuned binocular neurons become monocular, while sharply tuned monocular neurons gain matched responses to the other eye and become binocular.</description><subject>Acuity</subject><subject>Animals</subject><subject>binocular</subject><subject>Binocular vision</subject><subject>Critical period</subject><subject>Critical Period, Psychological</subject><subject>experience</subject><subject>Female</subject><subject>Information processing</subject><subject>Male</subject><subject>matching</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>mouse</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Orientation - physiology</subject><subject>Orientation behavior</subject><subject>Photic Stimulation</subject><subject>Receptive field</subject><subject>tuning</subject><subject>vision</subject><subject>Vision, Binocular - physiology</subject><subject>Vision, Monocular - physiology</subject><subject>Visual cortex</subject><subject>Visual Cortex - physiology</subject><subject>Visual Pathways - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUuLFDEUhYMoTjv6D0QK3Lip8uZZnY2ghS8Y0IUKrkI6ud2dpjppk6qB-femqXF8LFxlcb9zbs49hDyl0FGg6uWhizjnFDsGDDrQHTB2j6wo6L4VVOv7ZAVrrVrFen5BHpVyAKBCavqQXHAOmnKuV-T7t1BCis2wt3GHpZn22Aw4jvNoczOk4ymVMJ2BtG3ehJjcMgjZzWHKN42fc4i7RZYr6ezYfMYckn9MHmztWPDJ7XtJvr57-2X40F59ev9xeH3VOin7qdUUnQXrt0y6noJzknPvhZcbudZMo_cK6Ub0TG28RKmlQgGVB-bXoATjl-TV4nuaN0f0DuOU7WhOORxtvjHJBvP3JIa92aVr0_cgeuirwYtbg5x-zFgmcwzF1RvYiGkuhgkpKKd1VUWf_4Me0pxjjVcpJbiSa9CVEgvlciol4_buMxTMuTtzMEt35tydAW1qd1X27M8gd6JfZf1OivWc1wGzKS5gdOhDRjcZn8L_N_wEMkKt1Q</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Tan, Liming</creator><creator>Tring, Elaine</creator><creator>Ringach, Dario L.</creator><creator>Zipursky, S. Lawrence</creator><creator>Trachtenberg, Joshua T.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201125</creationdate><title>Vision Changes the Cellular Composition of Binocular Circuitry during the Critical Period</title><author>Tan, Liming ; Tring, Elaine ; Ringach, Dario L. ; Zipursky, S. Lawrence ; Trachtenberg, Joshua T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-91eca0adf25c710cc533dd4d5b58929edd6e1b4726bd5e5956e400ad02d806423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acuity</topic><topic>Animals</topic><topic>binocular</topic><topic>Binocular vision</topic><topic>Critical period</topic><topic>Critical Period, Psychological</topic><topic>experience</topic><topic>Female</topic><topic>Information processing</topic><topic>Male</topic><topic>matching</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>mouse</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Orientation - physiology</topic><topic>Orientation behavior</topic><topic>Photic Stimulation</topic><topic>Receptive field</topic><topic>tuning</topic><topic>vision</topic><topic>Vision, Binocular - physiology</topic><topic>Vision, Monocular - physiology</topic><topic>Visual cortex</topic><topic>Visual Cortex - physiology</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Liming</creatorcontrib><creatorcontrib>Tring, Elaine</creatorcontrib><creatorcontrib>Ringach, Dario L.</creatorcontrib><creatorcontrib>Zipursky, S. Lawrence</creatorcontrib><creatorcontrib>Trachtenberg, Joshua T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Liming</au><au>Tring, Elaine</au><au>Ringach, Dario L.</au><au>Zipursky, S. Lawrence</au><au>Trachtenberg, Joshua T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vision Changes the Cellular Composition of Binocular Circuitry during the Critical Period</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2020-11-25</date><risdate>2020</risdate><volume>108</volume><issue>4</issue><spage>735</spage><epage>747.e6</epage><pages>735-747.e6</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>High acuity stereopsis emerges during an early postnatal critical period when binocular neurons in the primary visual cortex sharpen their receptive field tuning properties. We find that this sharpening is achieved by dismantling the binocular circuit present at critical period onset and building it anew. Longitudinal imaging of receptive field tuning (e.g., orientation selectivity) of thousands of neurons reveals that most binocular neurons present in layer 2/3 at critical period onset are poorly tuned and are rendered monocular. In parallel, new binocular neurons are established by conversion of well-tuned monocular neurons as they gain matched input from the other eye. These improvements in binocular tuning in layer 2/3 are not inherited from layer 4 but are driven by the experience-dependent sharpening of ipsilateral eye responses. Thus, vision builds a new and more sharply tuned binocular circuit in layer 2/3 by cellular exchange and not by refining the original circuit. •Improvements in ipsilateral eye tuning change binocularity during the critical period•Poorly tuned binocular neurons are rendered monocular•Conversion of sharply tuned monocular neurons establishes new binocular neurons•Vision drives this sharpening and binocular conversion in layer 2/3 and not 4 Tan et al. demonstrate that visually evoked responses of binocular neurons improve across the critical period. This is caused by changing the cellular composition of the binocular pool. Poorly tuned binocular neurons become monocular, while sharply tuned monocular neurons gain matched responses to the other eye and become binocular.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33091339</pmid><doi>10.1016/j.neuron.2020.09.022</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2020-11, Vol.108 (4), p.735-747.e6
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7704707
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Acuity
Animals
binocular
Binocular vision
Critical period
Critical Period, Psychological
experience
Female
Information processing
Male
matching
Mice
Mice, Transgenic
mouse
Neuroimaging
Neurons
Neurons - physiology
Orientation - physiology
Orientation behavior
Photic Stimulation
Receptive field
tuning
vision
Vision, Binocular - physiology
Vision, Monocular - physiology
Visual cortex
Visual Cortex - physiology
Visual Pathways - physiology
title Vision Changes the Cellular Composition of Binocular Circuitry during the Critical Period
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vision%20Changes%20the%20Cellular%20Composition%20of%20Binocular%20Circuitry%20during%20the%20Critical%20Period&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Tan,%20Liming&rft.date=2020-11-25&rft.volume=108&rft.issue=4&rft.spage=735&rft.epage=747.e6&rft.pages=735-747.e6&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2020.09.022&rft_dat=%3Cproquest_pubme%3E2464365809%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464365809&rft_id=info:pmid/33091339&rft_els_id=S0896627320307467&rfr_iscdi=true