Vision Changes the Cellular Composition of Binocular Circuitry during the Critical Period
High acuity stereopsis emerges during an early postnatal critical period when binocular neurons in the primary visual cortex sharpen their receptive field tuning properties. We find that this sharpening is achieved by dismantling the binocular circuit present at critical period onset and building it...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2020-11, Vol.108 (4), p.735-747.e6 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 747.e6 |
---|---|
container_issue | 4 |
container_start_page | 735 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 108 |
creator | Tan, Liming Tring, Elaine Ringach, Dario L. Zipursky, S. Lawrence Trachtenberg, Joshua T. |
description | High acuity stereopsis emerges during an early postnatal critical period when binocular neurons in the primary visual cortex sharpen their receptive field tuning properties. We find that this sharpening is achieved by dismantling the binocular circuit present at critical period onset and building it anew. Longitudinal imaging of receptive field tuning (e.g., orientation selectivity) of thousands of neurons reveals that most binocular neurons present in layer 2/3 at critical period onset are poorly tuned and are rendered monocular. In parallel, new binocular neurons are established by conversion of well-tuned monocular neurons as they gain matched input from the other eye. These improvements in binocular tuning in layer 2/3 are not inherited from layer 4 but are driven by the experience-dependent sharpening of ipsilateral eye responses. Thus, vision builds a new and more sharply tuned binocular circuit in layer 2/3 by cellular exchange and not by refining the original circuit.
•Improvements in ipsilateral eye tuning change binocularity during the critical period•Poorly tuned binocular neurons are rendered monocular•Conversion of sharply tuned monocular neurons establishes new binocular neurons•Vision drives this sharpening and binocular conversion in layer 2/3 and not 4
Tan et al. demonstrate that visually evoked responses of binocular neurons improve across the critical period. This is caused by changing the cellular composition of the binocular pool. Poorly tuned binocular neurons become monocular, while sharply tuned monocular neurons gain matched responses to the other eye and become binocular. |
doi_str_mv | 10.1016/j.neuron.2020.09.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7704707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627320307467</els_id><sourcerecordid>2464365809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-91eca0adf25c710cc533dd4d5b58929edd6e1b4726bd5e5956e400ad02d806423</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMoTjv6D0QK3Lip8uZZnY2ghS8Y0IUKrkI6ud2dpjppk6qB-femqXF8LFxlcb9zbs49hDyl0FGg6uWhizjnFDsGDDrQHTB2j6wo6L4VVOv7ZAVrrVrFen5BHpVyAKBCavqQXHAOmnKuV-T7t1BCis2wt3GHpZn22Aw4jvNoczOk4ymVMJ2BtG3ehJjcMgjZzWHKN42fc4i7RZYr6ezYfMYckn9MHmztWPDJ7XtJvr57-2X40F59ev9xeH3VOin7qdUUnQXrt0y6noJzknPvhZcbudZMo_cK6Ub0TG28RKmlQgGVB-bXoATjl-TV4nuaN0f0DuOU7WhOORxtvjHJBvP3JIa92aVr0_cgeuirwYtbg5x-zFgmcwzF1RvYiGkuhgkpKKd1VUWf_4Me0pxjjVcpJbiSa9CVEgvlciol4_buMxTMuTtzMEt35tydAW1qd1X27M8gd6JfZf1OivWc1wGzKS5gdOhDRjcZn8L_N_wEMkKt1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464365809</pqid></control><display><type>article</type><title>Vision Changes the Cellular Composition of Binocular Circuitry during the Critical Period</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tan, Liming ; Tring, Elaine ; Ringach, Dario L. ; Zipursky, S. Lawrence ; Trachtenberg, Joshua T.</creator><creatorcontrib>Tan, Liming ; Tring, Elaine ; Ringach, Dario L. ; Zipursky, S. Lawrence ; Trachtenberg, Joshua T.</creatorcontrib><description>High acuity stereopsis emerges during an early postnatal critical period when binocular neurons in the primary visual cortex sharpen their receptive field tuning properties. We find that this sharpening is achieved by dismantling the binocular circuit present at critical period onset and building it anew. Longitudinal imaging of receptive field tuning (e.g., orientation selectivity) of thousands of neurons reveals that most binocular neurons present in layer 2/3 at critical period onset are poorly tuned and are rendered monocular. In parallel, new binocular neurons are established by conversion of well-tuned monocular neurons as they gain matched input from the other eye. These improvements in binocular tuning in layer 2/3 are not inherited from layer 4 but are driven by the experience-dependent sharpening of ipsilateral eye responses. Thus, vision builds a new and more sharply tuned binocular circuit in layer 2/3 by cellular exchange and not by refining the original circuit.
•Improvements in ipsilateral eye tuning change binocularity during the critical period•Poorly tuned binocular neurons are rendered monocular•Conversion of sharply tuned monocular neurons establishes new binocular neurons•Vision drives this sharpening and binocular conversion in layer 2/3 and not 4
Tan et al. demonstrate that visually evoked responses of binocular neurons improve across the critical period. This is caused by changing the cellular composition of the binocular pool. Poorly tuned binocular neurons become monocular, while sharply tuned monocular neurons gain matched responses to the other eye and become binocular.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2020.09.022</identifier><identifier>PMID: 33091339</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acuity ; Animals ; binocular ; Binocular vision ; Critical period ; Critical Period, Psychological ; experience ; Female ; Information processing ; Male ; matching ; Mice ; Mice, Transgenic ; mouse ; Neuroimaging ; Neurons ; Neurons - physiology ; Orientation - physiology ; Orientation behavior ; Photic Stimulation ; Receptive field ; tuning ; vision ; Vision, Binocular - physiology ; Vision, Monocular - physiology ; Visual cortex ; Visual Cortex - physiology ; Visual Pathways - physiology</subject><ispartof>Neuron (Cambridge, Mass.), 2020-11, Vol.108 (4), p.735-747.e6</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>2020. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-91eca0adf25c710cc533dd4d5b58929edd6e1b4726bd5e5956e400ad02d806423</citedby><cites>FETCH-LOGICAL-c557t-91eca0adf25c710cc533dd4d5b58929edd6e1b4726bd5e5956e400ad02d806423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627320307467$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33091339$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Liming</creatorcontrib><creatorcontrib>Tring, Elaine</creatorcontrib><creatorcontrib>Ringach, Dario L.</creatorcontrib><creatorcontrib>Zipursky, S. Lawrence</creatorcontrib><creatorcontrib>Trachtenberg, Joshua T.</creatorcontrib><title>Vision Changes the Cellular Composition of Binocular Circuitry during the Critical Period</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>High acuity stereopsis emerges during an early postnatal critical period when binocular neurons in the primary visual cortex sharpen their receptive field tuning properties. We find that this sharpening is achieved by dismantling the binocular circuit present at critical period onset and building it anew. Longitudinal imaging of receptive field tuning (e.g., orientation selectivity) of thousands of neurons reveals that most binocular neurons present in layer 2/3 at critical period onset are poorly tuned and are rendered monocular. In parallel, new binocular neurons are established by conversion of well-tuned monocular neurons as they gain matched input from the other eye. These improvements in binocular tuning in layer 2/3 are not inherited from layer 4 but are driven by the experience-dependent sharpening of ipsilateral eye responses. Thus, vision builds a new and more sharply tuned binocular circuit in layer 2/3 by cellular exchange and not by refining the original circuit.
•Improvements in ipsilateral eye tuning change binocularity during the critical period•Poorly tuned binocular neurons are rendered monocular•Conversion of sharply tuned monocular neurons establishes new binocular neurons•Vision drives this sharpening and binocular conversion in layer 2/3 and not 4
Tan et al. demonstrate that visually evoked responses of binocular neurons improve across the critical period. This is caused by changing the cellular composition of the binocular pool. Poorly tuned binocular neurons become monocular, while sharply tuned monocular neurons gain matched responses to the other eye and become binocular.</description><subject>Acuity</subject><subject>Animals</subject><subject>binocular</subject><subject>Binocular vision</subject><subject>Critical period</subject><subject>Critical Period, Psychological</subject><subject>experience</subject><subject>Female</subject><subject>Information processing</subject><subject>Male</subject><subject>matching</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>mouse</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Orientation - physiology</subject><subject>Orientation behavior</subject><subject>Photic Stimulation</subject><subject>Receptive field</subject><subject>tuning</subject><subject>vision</subject><subject>Vision, Binocular - physiology</subject><subject>Vision, Monocular - physiology</subject><subject>Visual cortex</subject><subject>Visual Cortex - physiology</subject><subject>Visual Pathways - physiology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUuLFDEUhYMoTjv6D0QK3Lip8uZZnY2ghS8Y0IUKrkI6ud2dpjppk6qB-femqXF8LFxlcb9zbs49hDyl0FGg6uWhizjnFDsGDDrQHTB2j6wo6L4VVOv7ZAVrrVrFen5BHpVyAKBCavqQXHAOmnKuV-T7t1BCis2wt3GHpZn22Aw4jvNoczOk4ymVMJ2BtG3ehJjcMgjZzWHKN42fc4i7RZYr6ezYfMYckn9MHmztWPDJ7XtJvr57-2X40F59ev9xeH3VOin7qdUUnQXrt0y6noJzknPvhZcbudZMo_cK6Ub0TG28RKmlQgGVB-bXoATjl-TV4nuaN0f0DuOU7WhOORxtvjHJBvP3JIa92aVr0_cgeuirwYtbg5x-zFgmcwzF1RvYiGkuhgkpKKd1VUWf_4Me0pxjjVcpJbiSa9CVEgvlciol4_buMxTMuTtzMEt35tydAW1qd1X27M8gd6JfZf1OivWc1wGzKS5gdOhDRjcZn8L_N_wEMkKt1Q</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Tan, Liming</creator><creator>Tring, Elaine</creator><creator>Ringach, Dario L.</creator><creator>Zipursky, S. Lawrence</creator><creator>Trachtenberg, Joshua T.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201125</creationdate><title>Vision Changes the Cellular Composition of Binocular Circuitry during the Critical Period</title><author>Tan, Liming ; Tring, Elaine ; Ringach, Dario L. ; Zipursky, S. Lawrence ; Trachtenberg, Joshua T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-91eca0adf25c710cc533dd4d5b58929edd6e1b4726bd5e5956e400ad02d806423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acuity</topic><topic>Animals</topic><topic>binocular</topic><topic>Binocular vision</topic><topic>Critical period</topic><topic>Critical Period, Psychological</topic><topic>experience</topic><topic>Female</topic><topic>Information processing</topic><topic>Male</topic><topic>matching</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>mouse</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Orientation - physiology</topic><topic>Orientation behavior</topic><topic>Photic Stimulation</topic><topic>Receptive field</topic><topic>tuning</topic><topic>vision</topic><topic>Vision, Binocular - physiology</topic><topic>Vision, Monocular - physiology</topic><topic>Visual cortex</topic><topic>Visual Cortex - physiology</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Liming</creatorcontrib><creatorcontrib>Tring, Elaine</creatorcontrib><creatorcontrib>Ringach, Dario L.</creatorcontrib><creatorcontrib>Zipursky, S. Lawrence</creatorcontrib><creatorcontrib>Trachtenberg, Joshua T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Liming</au><au>Tring, Elaine</au><au>Ringach, Dario L.</au><au>Zipursky, S. Lawrence</au><au>Trachtenberg, Joshua T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vision Changes the Cellular Composition of Binocular Circuitry during the Critical Period</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2020-11-25</date><risdate>2020</risdate><volume>108</volume><issue>4</issue><spage>735</spage><epage>747.e6</epage><pages>735-747.e6</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>High acuity stereopsis emerges during an early postnatal critical period when binocular neurons in the primary visual cortex sharpen their receptive field tuning properties. We find that this sharpening is achieved by dismantling the binocular circuit present at critical period onset and building it anew. Longitudinal imaging of receptive field tuning (e.g., orientation selectivity) of thousands of neurons reveals that most binocular neurons present in layer 2/3 at critical period onset are poorly tuned and are rendered monocular. In parallel, new binocular neurons are established by conversion of well-tuned monocular neurons as they gain matched input from the other eye. These improvements in binocular tuning in layer 2/3 are not inherited from layer 4 but are driven by the experience-dependent sharpening of ipsilateral eye responses. Thus, vision builds a new and more sharply tuned binocular circuit in layer 2/3 by cellular exchange and not by refining the original circuit.
•Improvements in ipsilateral eye tuning change binocularity during the critical period•Poorly tuned binocular neurons are rendered monocular•Conversion of sharply tuned monocular neurons establishes new binocular neurons•Vision drives this sharpening and binocular conversion in layer 2/3 and not 4
Tan et al. demonstrate that visually evoked responses of binocular neurons improve across the critical period. This is caused by changing the cellular composition of the binocular pool. Poorly tuned binocular neurons become monocular, while sharply tuned monocular neurons gain matched responses to the other eye and become binocular.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33091339</pmid><doi>10.1016/j.neuron.2020.09.022</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2020-11, Vol.108 (4), p.735-747.e6 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7704707 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Acuity Animals binocular Binocular vision Critical period Critical Period, Psychological experience Female Information processing Male matching Mice Mice, Transgenic mouse Neuroimaging Neurons Neurons - physiology Orientation - physiology Orientation behavior Photic Stimulation Receptive field tuning vision Vision, Binocular - physiology Vision, Monocular - physiology Visual cortex Visual Cortex - physiology Visual Pathways - physiology |
title | Vision Changes the Cellular Composition of Binocular Circuitry during the Critical Period |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vision%20Changes%20the%20Cellular%20Composition%20of%20Binocular%20Circuitry%20during%20the%20Critical%20Period&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Tan,%20Liming&rft.date=2020-11-25&rft.volume=108&rft.issue=4&rft.spage=735&rft.epage=747.e6&rft.pages=735-747.e6&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2020.09.022&rft_dat=%3Cproquest_pubme%3E2464365809%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464365809&rft_id=info:pmid/33091339&rft_els_id=S0896627320307467&rfr_iscdi=true |