Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding

Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2020-05, Vol.78 (3), p.539-553.e8
Hauptverfasser: Hsieh, Tsung-Han S., Cattoglio, Claudia, Slobodyanyuk, Elena, Hansen, Anders S., Rando, Oliver J., Tjian, Robert, Darzacq, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553.e8
container_issue 3
container_start_page 539
container_title Molecular cell
container_volume 78
creator Hsieh, Tsung-Han S.
Cattoglio, Claudia
Slobodyanyuk, Elena
Hansen, Anders S.
Rando, Oliver J.
Tjian, Robert
Darzacq, Xavier
description Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods by using high-resolution Micro-C to probe links between 3D genome organization and transcriptional regulation in mouse stem cells. Combinatorial binding of transcription factors, cofactors, and chromatin modifiers spatially segregates TAD regions into various finer-scale structures with distinct regulatory features including stripes, dots, and domains linking promoters-to-promoters (P-P) or enhancers-to-promoters (E-P) and bundle contacts between Polycomb regions. E-P stripes extending from the edge of domains predominantly link co-expressed loci, often in the absence of CTCF and cohesin occupancy. Acute inhibition of transcription disrupts these gene-related folding features without altering higher-order chromatin structures. Our study uncovers previously obscured finer-scale genome organization, establishing functional links between chromatin folding and gene regulation. [Display omitted] •Micro-C resolves mammalian chromatin folding down to single nucleosomes•Nested structures are the prevalent folding feature within TADs•Transcription drives short-range interactions connecting enhancers and promoters•Only a subset of fine-scale structures appears to be CTCF- and cohesin-specific Hsieh et al. describe chromatin folding at single-nucleosome resolution in mammalian cells using Micro-C, an enhanced chromosome conformation capture method. Micro-C uncovers genome-wide, fine-scale chromatin organizational features shaped by gene activity, transcriptional regulation, and gene silencing.
doi_str_mv 10.1016/j.molcel.2020.03.002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7703524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520301507</els_id><sourcerecordid>2384202786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-642e1e80bedc9dcc0ab30262b6b8fbb160ff8bec5ee8c6be1c3d3cd8f67b97d03</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhq2Kqi2Ff1ChHLkkjO3ESS5IaKGAtG0lVM6WPyZdL4m92NmV-u9xtdvSXnqakWbmmZn3JeSCQkWBik_ragqjwbFiwKACXgGwI3JGoW_Lmor6zSFnrWhOyduU1gC0brr-hJxyxijnjJ-R61-Ywrhz_q6YV1jwr8VSeZuM2mARhuI2Kp9MdJvZBV8unf-DtrhS06RGp3yxWMUwqdn54jKMNkPekeNBjQnfH-I5-X357Xbxo1zefP-5-LIsTcP6uRQ1Q4odaLSmt8aA0hyYYFrobtCaChiGTqNpEDsjNFLDLTe2G0Sr-9YCPyef99zNVk8Zgn6OapSb6CYV72VQTr6seLeSd2En2xZ4w-oM-HgAxPB3i2mWk0tZzVF5DNskGe_qLGzbidxa71tNDClFHJ7WUJAPVsi13FshH6yQwGW2Io99eH7i09Cj9v9_wCzUzmGUyTj0Bq2LaGZpg3t9wz8mH56y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384202786</pqid></control><display><type>article</type><title>Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Hsieh, Tsung-Han S. ; Cattoglio, Claudia ; Slobodyanyuk, Elena ; Hansen, Anders S. ; Rando, Oliver J. ; Tjian, Robert ; Darzacq, Xavier</creator><creatorcontrib>Hsieh, Tsung-Han S. ; Cattoglio, Claudia ; Slobodyanyuk, Elena ; Hansen, Anders S. ; Rando, Oliver J. ; Tjian, Robert ; Darzacq, Xavier</creatorcontrib><description>Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods by using high-resolution Micro-C to probe links between 3D genome organization and transcriptional regulation in mouse stem cells. Combinatorial binding of transcription factors, cofactors, and chromatin modifiers spatially segregates TAD regions into various finer-scale structures with distinct regulatory features including stripes, dots, and domains linking promoters-to-promoters (P-P) or enhancers-to-promoters (E-P) and bundle contacts between Polycomb regions. E-P stripes extending from the edge of domains predominantly link co-expressed loci, often in the absence of CTCF and cohesin occupancy. Acute inhibition of transcription disrupts these gene-related folding features without altering higher-order chromatin structures. Our study uncovers previously obscured finer-scale genome organization, establishing functional links between chromatin folding and gene regulation. [Display omitted] •Micro-C resolves mammalian chromatin folding down to single nucleosomes•Nested structures are the prevalent folding feature within TADs•Transcription drives short-range interactions connecting enhancers and promoters•Only a subset of fine-scale structures appears to be CTCF- and cohesin-specific Hsieh et al. describe chromatin folding at single-nucleosome resolution in mammalian cells using Micro-C, an enhanced chromosome conformation capture method. Micro-C uncovers genome-wide, fine-scale chromatin organizational features shaped by gene activity, transcriptional regulation, and gene silencing.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.03.002</identifier><identifier>PMID: 32213323</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>30 nm chromatin fiber ; 3D genome ; Animals ; CCCTC-Binding Factor - genetics ; Chromatin - chemistry ; Chromatin - genetics ; Chromatin - metabolism ; Chromatin Assembly and Disassembly - genetics ; CTCF ; DNA Polymerase II - genetics ; DNA Polymerase II - metabolism ; Embryonic Stem Cells - physiology ; Enhancer Elements, Genetic ; enhancer-promoter (E-P) interactions ; Gene Expression Regulation ; Genome Components ; loop extrusion ; Mice ; Micro-C ; Pol II ; Promoter Regions, Genetic ; TAD ; transcription ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Molecular cell, 2020-05, Vol.78 (3), p.539-553.e8</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-642e1e80bedc9dcc0ab30262b6b8fbb160ff8bec5ee8c6be1c3d3cd8f67b97d03</citedby><cites>FETCH-LOGICAL-c529t-642e1e80bedc9dcc0ab30262b6b8fbb160ff8bec5ee8c6be1c3d3cd8f67b97d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2020.03.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32213323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsieh, Tsung-Han S.</creatorcontrib><creatorcontrib>Cattoglio, Claudia</creatorcontrib><creatorcontrib>Slobodyanyuk, Elena</creatorcontrib><creatorcontrib>Hansen, Anders S.</creatorcontrib><creatorcontrib>Rando, Oliver J.</creatorcontrib><creatorcontrib>Tjian, Robert</creatorcontrib><creatorcontrib>Darzacq, Xavier</creatorcontrib><title>Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods by using high-resolution Micro-C to probe links between 3D genome organization and transcriptional regulation in mouse stem cells. Combinatorial binding of transcription factors, cofactors, and chromatin modifiers spatially segregates TAD regions into various finer-scale structures with distinct regulatory features including stripes, dots, and domains linking promoters-to-promoters (P-P) or enhancers-to-promoters (E-P) and bundle contacts between Polycomb regions. E-P stripes extending from the edge of domains predominantly link co-expressed loci, often in the absence of CTCF and cohesin occupancy. Acute inhibition of transcription disrupts these gene-related folding features without altering higher-order chromatin structures. Our study uncovers previously obscured finer-scale genome organization, establishing functional links between chromatin folding and gene regulation. [Display omitted] •Micro-C resolves mammalian chromatin folding down to single nucleosomes•Nested structures are the prevalent folding feature within TADs•Transcription drives short-range interactions connecting enhancers and promoters•Only a subset of fine-scale structures appears to be CTCF- and cohesin-specific Hsieh et al. describe chromatin folding at single-nucleosome resolution in mammalian cells using Micro-C, an enhanced chromosome conformation capture method. Micro-C uncovers genome-wide, fine-scale chromatin organizational features shaped by gene activity, transcriptional regulation, and gene silencing.</description><subject>30 nm chromatin fiber</subject><subject>3D genome</subject><subject>Animals</subject><subject>CCCTC-Binding Factor - genetics</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Assembly and Disassembly - genetics</subject><subject>CTCF</subject><subject>DNA Polymerase II - genetics</subject><subject>DNA Polymerase II - metabolism</subject><subject>Embryonic Stem Cells - physiology</subject><subject>Enhancer Elements, Genetic</subject><subject>enhancer-promoter (E-P) interactions</subject><subject>Gene Expression Regulation</subject><subject>Genome Components</subject><subject>loop extrusion</subject><subject>Mice</subject><subject>Micro-C</subject><subject>Pol II</subject><subject>Promoter Regions, Genetic</subject><subject>TAD</subject><subject>transcription</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhq2Kqi2Ff1ChHLkkjO3ESS5IaKGAtG0lVM6WPyZdL4m92NmV-u9xtdvSXnqakWbmmZn3JeSCQkWBik_ragqjwbFiwKACXgGwI3JGoW_Lmor6zSFnrWhOyduU1gC0brr-hJxyxijnjJ-R61-Ywrhz_q6YV1jwr8VSeZuM2mARhuI2Kp9MdJvZBV8unf-DtrhS06RGp3yxWMUwqdn54jKMNkPekeNBjQnfH-I5-X357Xbxo1zefP-5-LIsTcP6uRQ1Q4odaLSmt8aA0hyYYFrobtCaChiGTqNpEDsjNFLDLTe2G0Sr-9YCPyef99zNVk8Zgn6OapSb6CYV72VQTr6seLeSd2En2xZ4w-oM-HgAxPB3i2mWk0tZzVF5DNskGe_qLGzbidxa71tNDClFHJ7WUJAPVsi13FshH6yQwGW2Io99eH7i09Cj9v9_wCzUzmGUyTj0Bq2LaGZpg3t9wz8mH56y</recordid><startdate>20200507</startdate><enddate>20200507</enddate><creator>Hsieh, Tsung-Han S.</creator><creator>Cattoglio, Claudia</creator><creator>Slobodyanyuk, Elena</creator><creator>Hansen, Anders S.</creator><creator>Rando, Oliver J.</creator><creator>Tjian, Robert</creator><creator>Darzacq, Xavier</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200507</creationdate><title>Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding</title><author>Hsieh, Tsung-Han S. ; Cattoglio, Claudia ; Slobodyanyuk, Elena ; Hansen, Anders S. ; Rando, Oliver J. ; Tjian, Robert ; Darzacq, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-642e1e80bedc9dcc0ab30262b6b8fbb160ff8bec5ee8c6be1c3d3cd8f67b97d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>30 nm chromatin fiber</topic><topic>3D genome</topic><topic>Animals</topic><topic>CCCTC-Binding Factor - genetics</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Assembly and Disassembly - genetics</topic><topic>CTCF</topic><topic>DNA Polymerase II - genetics</topic><topic>DNA Polymerase II - metabolism</topic><topic>Embryonic Stem Cells - physiology</topic><topic>Enhancer Elements, Genetic</topic><topic>enhancer-promoter (E-P) interactions</topic><topic>Gene Expression Regulation</topic><topic>Genome Components</topic><topic>loop extrusion</topic><topic>Mice</topic><topic>Micro-C</topic><topic>Pol II</topic><topic>Promoter Regions, Genetic</topic><topic>TAD</topic><topic>transcription</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Tsung-Han S.</creatorcontrib><creatorcontrib>Cattoglio, Claudia</creatorcontrib><creatorcontrib>Slobodyanyuk, Elena</creatorcontrib><creatorcontrib>Hansen, Anders S.</creatorcontrib><creatorcontrib>Rando, Oliver J.</creatorcontrib><creatorcontrib>Tjian, Robert</creatorcontrib><creatorcontrib>Darzacq, Xavier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Tsung-Han S.</au><au>Cattoglio, Claudia</au><au>Slobodyanyuk, Elena</au><au>Hansen, Anders S.</au><au>Rando, Oliver J.</au><au>Tjian, Robert</au><au>Darzacq, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2020-05-07</date><risdate>2020</risdate><volume>78</volume><issue>3</issue><spage>539</spage><epage>553.e8</epage><pages>539-553.e8</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods by using high-resolution Micro-C to probe links between 3D genome organization and transcriptional regulation in mouse stem cells. Combinatorial binding of transcription factors, cofactors, and chromatin modifiers spatially segregates TAD regions into various finer-scale structures with distinct regulatory features including stripes, dots, and domains linking promoters-to-promoters (P-P) or enhancers-to-promoters (E-P) and bundle contacts between Polycomb regions. E-P stripes extending from the edge of domains predominantly link co-expressed loci, often in the absence of CTCF and cohesin occupancy. Acute inhibition of transcription disrupts these gene-related folding features without altering higher-order chromatin structures. Our study uncovers previously obscured finer-scale genome organization, establishing functional links between chromatin folding and gene regulation. [Display omitted] •Micro-C resolves mammalian chromatin folding down to single nucleosomes•Nested structures are the prevalent folding feature within TADs•Transcription drives short-range interactions connecting enhancers and promoters•Only a subset of fine-scale structures appears to be CTCF- and cohesin-specific Hsieh et al. describe chromatin folding at single-nucleosome resolution in mammalian cells using Micro-C, an enhanced chromosome conformation capture method. Micro-C uncovers genome-wide, fine-scale chromatin organizational features shaped by gene activity, transcriptional regulation, and gene silencing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32213323</pmid><doi>10.1016/j.molcel.2020.03.002</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2020-05, Vol.78 (3), p.539-553.e8
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7703524
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects 30 nm chromatin fiber
3D genome
Animals
CCCTC-Binding Factor - genetics
Chromatin - chemistry
Chromatin - genetics
Chromatin - metabolism
Chromatin Assembly and Disassembly - genetics
CTCF
DNA Polymerase II - genetics
DNA Polymerase II - metabolism
Embryonic Stem Cells - physiology
Enhancer Elements, Genetic
enhancer-promoter (E-P) interactions
Gene Expression Regulation
Genome Components
loop extrusion
Mice
Micro-C
Pol II
Promoter Regions, Genetic
TAD
transcription
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
title Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20the%203D%20Landscape%20of%20Transcription-Linked%20Mammalian%20Chromatin%20Folding&rft.jtitle=Molecular%20cell&rft.au=Hsieh,%20Tsung-Han%20S.&rft.date=2020-05-07&rft.volume=78&rft.issue=3&rft.spage=539&rft.epage=553.e8&rft.pages=539-553.e8&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.03.002&rft_dat=%3Cproquest_pubme%3E2384202786%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384202786&rft_id=info:pmid/32213323&rft_els_id=S1097276520301507&rfr_iscdi=true