Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding
Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2020-05, Vol.78 (3), p.539-553.e8 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 553.e8 |
---|---|
container_issue | 3 |
container_start_page | 539 |
container_title | Molecular cell |
container_volume | 78 |
creator | Hsieh, Tsung-Han S. Cattoglio, Claudia Slobodyanyuk, Elena Hansen, Anders S. Rando, Oliver J. Tjian, Robert Darzacq, Xavier |
description | Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods by using high-resolution Micro-C to probe links between 3D genome organization and transcriptional regulation in mouse stem cells. Combinatorial binding of transcription factors, cofactors, and chromatin modifiers spatially segregates TAD regions into various finer-scale structures with distinct regulatory features including stripes, dots, and domains linking promoters-to-promoters (P-P) or enhancers-to-promoters (E-P) and bundle contacts between Polycomb regions. E-P stripes extending from the edge of domains predominantly link co-expressed loci, often in the absence of CTCF and cohesin occupancy. Acute inhibition of transcription disrupts these gene-related folding features without altering higher-order chromatin structures. Our study uncovers previously obscured finer-scale genome organization, establishing functional links between chromatin folding and gene regulation.
[Display omitted]
•Micro-C resolves mammalian chromatin folding down to single nucleosomes•Nested structures are the prevalent folding feature within TADs•Transcription drives short-range interactions connecting enhancers and promoters•Only a subset of fine-scale structures appears to be CTCF- and cohesin-specific
Hsieh et al. describe chromatin folding at single-nucleosome resolution in mammalian cells using Micro-C, an enhanced chromosome conformation capture method. Micro-C uncovers genome-wide, fine-scale chromatin organizational features shaped by gene activity, transcriptional regulation, and gene silencing. |
doi_str_mv | 10.1016/j.molcel.2020.03.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7703524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520301507</els_id><sourcerecordid>2384202786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-642e1e80bedc9dcc0ab30262b6b8fbb160ff8bec5ee8c6be1c3d3cd8f67b97d03</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhq2Kqi2Ff1ChHLkkjO3ESS5IaKGAtG0lVM6WPyZdL4m92NmV-u9xtdvSXnqakWbmmZn3JeSCQkWBik_ragqjwbFiwKACXgGwI3JGoW_Lmor6zSFnrWhOyduU1gC0brr-hJxyxijnjJ-R61-Ywrhz_q6YV1jwr8VSeZuM2mARhuI2Kp9MdJvZBV8unf-DtrhS06RGp3yxWMUwqdn54jKMNkPekeNBjQnfH-I5-X357Xbxo1zefP-5-LIsTcP6uRQ1Q4odaLSmt8aA0hyYYFrobtCaChiGTqNpEDsjNFLDLTe2G0Sr-9YCPyef99zNVk8Zgn6OapSb6CYV72VQTr6seLeSd2En2xZ4w-oM-HgAxPB3i2mWk0tZzVF5DNskGe_qLGzbidxa71tNDClFHJ7WUJAPVsi13FshH6yQwGW2Io99eH7i09Cj9v9_wCzUzmGUyTj0Bq2LaGZpg3t9wz8mH56y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384202786</pqid></control><display><type>article</type><title>Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Hsieh, Tsung-Han S. ; Cattoglio, Claudia ; Slobodyanyuk, Elena ; Hansen, Anders S. ; Rando, Oliver J. ; Tjian, Robert ; Darzacq, Xavier</creator><creatorcontrib>Hsieh, Tsung-Han S. ; Cattoglio, Claudia ; Slobodyanyuk, Elena ; Hansen, Anders S. ; Rando, Oliver J. ; Tjian, Robert ; Darzacq, Xavier</creatorcontrib><description>Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods by using high-resolution Micro-C to probe links between 3D genome organization and transcriptional regulation in mouse stem cells. Combinatorial binding of transcription factors, cofactors, and chromatin modifiers spatially segregates TAD regions into various finer-scale structures with distinct regulatory features including stripes, dots, and domains linking promoters-to-promoters (P-P) or enhancers-to-promoters (E-P) and bundle contacts between Polycomb regions. E-P stripes extending from the edge of domains predominantly link co-expressed loci, often in the absence of CTCF and cohesin occupancy. Acute inhibition of transcription disrupts these gene-related folding features without altering higher-order chromatin structures. Our study uncovers previously obscured finer-scale genome organization, establishing functional links between chromatin folding and gene regulation.
[Display omitted]
•Micro-C resolves mammalian chromatin folding down to single nucleosomes•Nested structures are the prevalent folding feature within TADs•Transcription drives short-range interactions connecting enhancers and promoters•Only a subset of fine-scale structures appears to be CTCF- and cohesin-specific
Hsieh et al. describe chromatin folding at single-nucleosome resolution in mammalian cells using Micro-C, an enhanced chromosome conformation capture method. Micro-C uncovers genome-wide, fine-scale chromatin organizational features shaped by gene activity, transcriptional regulation, and gene silencing.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.03.002</identifier><identifier>PMID: 32213323</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>30 nm chromatin fiber ; 3D genome ; Animals ; CCCTC-Binding Factor - genetics ; Chromatin - chemistry ; Chromatin - genetics ; Chromatin - metabolism ; Chromatin Assembly and Disassembly - genetics ; CTCF ; DNA Polymerase II - genetics ; DNA Polymerase II - metabolism ; Embryonic Stem Cells - physiology ; Enhancer Elements, Genetic ; enhancer-promoter (E-P) interactions ; Gene Expression Regulation ; Genome Components ; loop extrusion ; Mice ; Micro-C ; Pol II ; Promoter Regions, Genetic ; TAD ; transcription ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Molecular cell, 2020-05, Vol.78 (3), p.539-553.e8</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-642e1e80bedc9dcc0ab30262b6b8fbb160ff8bec5ee8c6be1c3d3cd8f67b97d03</citedby><cites>FETCH-LOGICAL-c529t-642e1e80bedc9dcc0ab30262b6b8fbb160ff8bec5ee8c6be1c3d3cd8f67b97d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2020.03.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32213323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsieh, Tsung-Han S.</creatorcontrib><creatorcontrib>Cattoglio, Claudia</creatorcontrib><creatorcontrib>Slobodyanyuk, Elena</creatorcontrib><creatorcontrib>Hansen, Anders S.</creatorcontrib><creatorcontrib>Rando, Oliver J.</creatorcontrib><creatorcontrib>Tjian, Robert</creatorcontrib><creatorcontrib>Darzacq, Xavier</creatorcontrib><title>Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods by using high-resolution Micro-C to probe links between 3D genome organization and transcriptional regulation in mouse stem cells. Combinatorial binding of transcription factors, cofactors, and chromatin modifiers spatially segregates TAD regions into various finer-scale structures with distinct regulatory features including stripes, dots, and domains linking promoters-to-promoters (P-P) or enhancers-to-promoters (E-P) and bundle contacts between Polycomb regions. E-P stripes extending from the edge of domains predominantly link co-expressed loci, often in the absence of CTCF and cohesin occupancy. Acute inhibition of transcription disrupts these gene-related folding features without altering higher-order chromatin structures. Our study uncovers previously obscured finer-scale genome organization, establishing functional links between chromatin folding and gene regulation.
[Display omitted]
•Micro-C resolves mammalian chromatin folding down to single nucleosomes•Nested structures are the prevalent folding feature within TADs•Transcription drives short-range interactions connecting enhancers and promoters•Only a subset of fine-scale structures appears to be CTCF- and cohesin-specific
Hsieh et al. describe chromatin folding at single-nucleosome resolution in mammalian cells using Micro-C, an enhanced chromosome conformation capture method. Micro-C uncovers genome-wide, fine-scale chromatin organizational features shaped by gene activity, transcriptional regulation, and gene silencing.</description><subject>30 nm chromatin fiber</subject><subject>3D genome</subject><subject>Animals</subject><subject>CCCTC-Binding Factor - genetics</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Assembly and Disassembly - genetics</subject><subject>CTCF</subject><subject>DNA Polymerase II - genetics</subject><subject>DNA Polymerase II - metabolism</subject><subject>Embryonic Stem Cells - physiology</subject><subject>Enhancer Elements, Genetic</subject><subject>enhancer-promoter (E-P) interactions</subject><subject>Gene Expression Regulation</subject><subject>Genome Components</subject><subject>loop extrusion</subject><subject>Mice</subject><subject>Micro-C</subject><subject>Pol II</subject><subject>Promoter Regions, Genetic</subject><subject>TAD</subject><subject>transcription</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhq2Kqi2Ff1ChHLkkjO3ESS5IaKGAtG0lVM6WPyZdL4m92NmV-u9xtdvSXnqakWbmmZn3JeSCQkWBik_ragqjwbFiwKACXgGwI3JGoW_Lmor6zSFnrWhOyduU1gC0brr-hJxyxijnjJ-R61-Ywrhz_q6YV1jwr8VSeZuM2mARhuI2Kp9MdJvZBV8unf-DtrhS06RGp3yxWMUwqdn54jKMNkPekeNBjQnfH-I5-X357Xbxo1zefP-5-LIsTcP6uRQ1Q4odaLSmt8aA0hyYYFrobtCaChiGTqNpEDsjNFLDLTe2G0Sr-9YCPyef99zNVk8Zgn6OapSb6CYV72VQTr6seLeSd2En2xZ4w-oM-HgAxPB3i2mWk0tZzVF5DNskGe_qLGzbidxa71tNDClFHJ7WUJAPVsi13FshH6yQwGW2Io99eH7i09Cj9v9_wCzUzmGUyTj0Bq2LaGZpg3t9wz8mH56y</recordid><startdate>20200507</startdate><enddate>20200507</enddate><creator>Hsieh, Tsung-Han S.</creator><creator>Cattoglio, Claudia</creator><creator>Slobodyanyuk, Elena</creator><creator>Hansen, Anders S.</creator><creator>Rando, Oliver J.</creator><creator>Tjian, Robert</creator><creator>Darzacq, Xavier</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200507</creationdate><title>Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding</title><author>Hsieh, Tsung-Han S. ; Cattoglio, Claudia ; Slobodyanyuk, Elena ; Hansen, Anders S. ; Rando, Oliver J. ; Tjian, Robert ; Darzacq, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-642e1e80bedc9dcc0ab30262b6b8fbb160ff8bec5ee8c6be1c3d3cd8f67b97d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>30 nm chromatin fiber</topic><topic>3D genome</topic><topic>Animals</topic><topic>CCCTC-Binding Factor - genetics</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Assembly and Disassembly - genetics</topic><topic>CTCF</topic><topic>DNA Polymerase II - genetics</topic><topic>DNA Polymerase II - metabolism</topic><topic>Embryonic Stem Cells - physiology</topic><topic>Enhancer Elements, Genetic</topic><topic>enhancer-promoter (E-P) interactions</topic><topic>Gene Expression Regulation</topic><topic>Genome Components</topic><topic>loop extrusion</topic><topic>Mice</topic><topic>Micro-C</topic><topic>Pol II</topic><topic>Promoter Regions, Genetic</topic><topic>TAD</topic><topic>transcription</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Tsung-Han S.</creatorcontrib><creatorcontrib>Cattoglio, Claudia</creatorcontrib><creatorcontrib>Slobodyanyuk, Elena</creatorcontrib><creatorcontrib>Hansen, Anders S.</creatorcontrib><creatorcontrib>Rando, Oliver J.</creatorcontrib><creatorcontrib>Tjian, Robert</creatorcontrib><creatorcontrib>Darzacq, Xavier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Tsung-Han S.</au><au>Cattoglio, Claudia</au><au>Slobodyanyuk, Elena</au><au>Hansen, Anders S.</au><au>Rando, Oliver J.</au><au>Tjian, Robert</au><au>Darzacq, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2020-05-07</date><risdate>2020</risdate><volume>78</volume><issue>3</issue><spage>539</spage><epage>553.e8</epage><pages>539-553.e8</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Whereas folding of genomes at the large scale of epigenomic compartments and topologically associating domains (TADs) is now relatively well understood, how chromatin is folded at finer scales remains largely unexplored in mammals. Here, we overcome some limitations of conventional 3C-based methods by using high-resolution Micro-C to probe links between 3D genome organization and transcriptional regulation in mouse stem cells. Combinatorial binding of transcription factors, cofactors, and chromatin modifiers spatially segregates TAD regions into various finer-scale structures with distinct regulatory features including stripes, dots, and domains linking promoters-to-promoters (P-P) or enhancers-to-promoters (E-P) and bundle contacts between Polycomb regions. E-P stripes extending from the edge of domains predominantly link co-expressed loci, often in the absence of CTCF and cohesin occupancy. Acute inhibition of transcription disrupts these gene-related folding features without altering higher-order chromatin structures. Our study uncovers previously obscured finer-scale genome organization, establishing functional links between chromatin folding and gene regulation.
[Display omitted]
•Micro-C resolves mammalian chromatin folding down to single nucleosomes•Nested structures are the prevalent folding feature within TADs•Transcription drives short-range interactions connecting enhancers and promoters•Only a subset of fine-scale structures appears to be CTCF- and cohesin-specific
Hsieh et al. describe chromatin folding at single-nucleosome resolution in mammalian cells using Micro-C, an enhanced chromosome conformation capture method. Micro-C uncovers genome-wide, fine-scale chromatin organizational features shaped by gene activity, transcriptional regulation, and gene silencing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32213323</pmid><doi>10.1016/j.molcel.2020.03.002</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2020-05, Vol.78 (3), p.539-553.e8 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7703524 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | 30 nm chromatin fiber 3D genome Animals CCCTC-Binding Factor - genetics Chromatin - chemistry Chromatin - genetics Chromatin - metabolism Chromatin Assembly and Disassembly - genetics CTCF DNA Polymerase II - genetics DNA Polymerase II - metabolism Embryonic Stem Cells - physiology Enhancer Elements, Genetic enhancer-promoter (E-P) interactions Gene Expression Regulation Genome Components loop extrusion Mice Micro-C Pol II Promoter Regions, Genetic TAD transcription Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic |
title | Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20the%203D%20Landscape%20of%20Transcription-Linked%20Mammalian%20Chromatin%20Folding&rft.jtitle=Molecular%20cell&rft.au=Hsieh,%20Tsung-Han%20S.&rft.date=2020-05-07&rft.volume=78&rft.issue=3&rft.spage=539&rft.epage=553.e8&rft.pages=539-553.e8&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.03.002&rft_dat=%3Cproquest_pubme%3E2384202786%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384202786&rft_id=info:pmid/32213323&rft_els_id=S1097276520301507&rfr_iscdi=true |