Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1

Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2020-10, Vol.33 (2), p.108255-108255, Article 108255
Hauptverfasser: McCauley, John P., Petroccione, Maurice A., D’Brant, Lianna Y., Todd, Gabrielle C., Affinnih, Nurat, Wisnoski, Justin J., Zahid, Shergil, Shree, Swasti, Sousa, Alioscka A., De Guzman, Rose M., Migliore, Rosanna, Brazhe, Alexey, Leapman, Richard D., Khmaladze, Alexander, Semyanov, Alexey, Zuloaga, Damian G., Migliore, Michele, Scimemi, Annalisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108255
container_issue 2
container_start_page 108255
container_title Cell reports (Cambridge)
container_volume 33
creator McCauley, John P.
Petroccione, Maurice A.
D’Brant, Lianna Y.
Todd, Gabrielle C.
Affinnih, Nurat
Wisnoski, Justin J.
Zahid, Shergil
Shree, Swasti
Sousa, Alioscka A.
De Guzman, Rose M.
Migliore, Rosanna
Brazhe, Alexey
Leapman, Richard D.
Khmaladze, Alexander
Semyanov, Alexey
Zuloaga, Damian G.
Migliore, Michele
Scimemi, Annalisa
description Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identify cell-type-specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors. Astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation, and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learning in vivo. We identify corticosterone as a key contributor to changes in synaptic strength. These findings highlight important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus, and alter the temporal dynamics of cognitive processing. [Display omitted] •Hippocampal plasticity varies with circadian rhythmicity•Neurons reduce the surface expression of NMDA receptors during the dark phase•Astrocytes retract their processes from synapses during the dark phase•These effects alter synaptic integration and hippocampal-dependent learning McCauley et al. shed light on the molecular and cellular mechanisms that allow hippocampal neurons and astrocytes to shape circadian changes in synaptic plasticity and hippocampal-dependent behaviors. They identify corticosterone as a key molecule mediating these effects, capable of tuning the temporal dynamics of cognitive processing in mice.
doi_str_mv 10.1016/j.celrep.2020.108255
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7700820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124720312444</els_id><sourcerecordid>2451381259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-462c02235fcc58d7b1e3c1b505e35cc70674394bffd58618edaa230948ae946b3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS1ERKIkf4CQl2xm8LMfG6RRixCkQCIBa8tdrgaPeuzG7o40f49HkxcbvKmSXXWrfA8hbzlbc8arD9s14JhwWgsmDleN0PoVOROC8xUXqn79Ij8llzlvWTkV47xVb8iplExLKeszAp1PYJ23gX6Nbhnt7GOgcaDfcEkxZGqDo5s8pwj7GTPtYij5mOn3fbDT7IHejTaX6Oc99YFe-2mKYHeTHekmoaXdhl-Qk8GOGS8f4jn5efXpR3e9urn9_KXb3KxAVXJeqUoAE0LqAUA3ru45SuC9ZhqlBqhZVSvZqn4YnG4q3qCzVkjWqsZiq6penpOPR91p6XfoAMuqdjRT8jub9iZab_59Cf63-RXvTV2z4iArAu8fBFL8s2Cezc7nYvRoA8YlG6E0lw0Xui2l6lgKKeaccHgaw5k5IDJbc0RkDojMEVFpe_dyxaemRyDPf8Bi1L3HZDJ4DIDOJ4TZuOj_P-EvYsek7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451381259</pqid></control><display><type>article</type><title>Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>McCauley, John P. ; Petroccione, Maurice A. ; D’Brant, Lianna Y. ; Todd, Gabrielle C. ; Affinnih, Nurat ; Wisnoski, Justin J. ; Zahid, Shergil ; Shree, Swasti ; Sousa, Alioscka A. ; De Guzman, Rose M. ; Migliore, Rosanna ; Brazhe, Alexey ; Leapman, Richard D. ; Khmaladze, Alexander ; Semyanov, Alexey ; Zuloaga, Damian G. ; Migliore, Michele ; Scimemi, Annalisa</creator><creatorcontrib>McCauley, John P. ; Petroccione, Maurice A. ; D’Brant, Lianna Y. ; Todd, Gabrielle C. ; Affinnih, Nurat ; Wisnoski, Justin J. ; Zahid, Shergil ; Shree, Swasti ; Sousa, Alioscka A. ; De Guzman, Rose M. ; Migliore, Rosanna ; Brazhe, Alexey ; Leapman, Richard D. ; Khmaladze, Alexander ; Semyanov, Alexey ; Zuloaga, Damian G. ; Migliore, Michele ; Scimemi, Annalisa</creatorcontrib><description>Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identify cell-type-specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors. Astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation, and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learning in vivo. We identify corticosterone as a key contributor to changes in synaptic strength. These findings highlight important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus, and alter the temporal dynamics of cognitive processing. [Display omitted] •Hippocampal plasticity varies with circadian rhythmicity•Neurons reduce the surface expression of NMDA receptors during the dark phase•Astrocytes retract their processes from synapses during the dark phase•These effects alter synaptic integration and hippocampal-dependent learning McCauley et al. shed light on the molecular and cellular mechanisms that allow hippocampal neurons and astrocytes to shape circadian changes in synaptic plasticity and hippocampal-dependent behaviors. They identify corticosterone as a key molecule mediating these effects, capable of tuning the temporal dynamics of cognitive processing in mice.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2020.108255</identifier><identifier>PMID: 33053337</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism ; Amino Acid Transport System X-AG - metabolism ; Animals ; astrocytes ; Astrocytes - physiology ; CA1 Region, Hippocampal - physiology ; CA1 Region, Hippocampal - ultrastructure ; Circadian Clocks - genetics ; Circadian Rhythm - physiology ; circadian rhythms ; corticosterone ; Corticosterone - metabolism ; Darkness ; Excitatory Postsynaptic Potentials - physiology ; Gene Expression Regulation ; glutamate ; Glutamic Acid - metabolism ; hippocampus ; learning and memory ; Memory - physiology ; Mice, Inbred C57BL ; Neuronal Plasticity - physiology ; Neurons - physiology ; Neuropil Threads - metabolism ; Open Field Test ; Receptors, N-Methyl-D-Aspartate - metabolism ; synapses ; Synapses - physiology ; synaptic integration ; Time Factors</subject><ispartof>Cell reports (Cambridge), 2020-10, Vol.33 (2), p.108255-108255, Article 108255</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-462c02235fcc58d7b1e3c1b505e35cc70674394bffd58618edaa230948ae946b3</citedby><cites>FETCH-LOGICAL-c463t-462c02235fcc58d7b1e3c1b505e35cc70674394bffd58618edaa230948ae946b3</cites><orcidid>0000-0001-9034-7849 ; 0000-0002-2429-079X ; 0000-0001-7628-8811 ; 0000-0001-6476-8535 ; 0000-0003-0330-3595 ; 0000-0003-4333-4310 ; 0000-0002-9771-2623 ; 0000-0001-7591-6855 ; 0000-0001-7443-5363 ; 0000-0003-4975-093X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33053337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCauley, John P.</creatorcontrib><creatorcontrib>Petroccione, Maurice A.</creatorcontrib><creatorcontrib>D’Brant, Lianna Y.</creatorcontrib><creatorcontrib>Todd, Gabrielle C.</creatorcontrib><creatorcontrib>Affinnih, Nurat</creatorcontrib><creatorcontrib>Wisnoski, Justin J.</creatorcontrib><creatorcontrib>Zahid, Shergil</creatorcontrib><creatorcontrib>Shree, Swasti</creatorcontrib><creatorcontrib>Sousa, Alioscka A.</creatorcontrib><creatorcontrib>De Guzman, Rose M.</creatorcontrib><creatorcontrib>Migliore, Rosanna</creatorcontrib><creatorcontrib>Brazhe, Alexey</creatorcontrib><creatorcontrib>Leapman, Richard D.</creatorcontrib><creatorcontrib>Khmaladze, Alexander</creatorcontrib><creatorcontrib>Semyanov, Alexey</creatorcontrib><creatorcontrib>Zuloaga, Damian G.</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><creatorcontrib>Scimemi, Annalisa</creatorcontrib><title>Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identify cell-type-specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors. Astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation, and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learning in vivo. We identify corticosterone as a key contributor to changes in synaptic strength. These findings highlight important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus, and alter the temporal dynamics of cognitive processing. [Display omitted] •Hippocampal plasticity varies with circadian rhythmicity•Neurons reduce the surface expression of NMDA receptors during the dark phase•Astrocytes retract their processes from synapses during the dark phase•These effects alter synaptic integration and hippocampal-dependent learning McCauley et al. shed light on the molecular and cellular mechanisms that allow hippocampal neurons and astrocytes to shape circadian changes in synaptic plasticity and hippocampal-dependent behaviors. They identify corticosterone as a key molecule mediating these effects, capable of tuning the temporal dynamics of cognitive processing in mice.</description><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism</subject><subject>Amino Acid Transport System X-AG - metabolism</subject><subject>Animals</subject><subject>astrocytes</subject><subject>Astrocytes - physiology</subject><subject>CA1 Region, Hippocampal - physiology</subject><subject>CA1 Region, Hippocampal - ultrastructure</subject><subject>Circadian Clocks - genetics</subject><subject>Circadian Rhythm - physiology</subject><subject>circadian rhythms</subject><subject>corticosterone</subject><subject>Corticosterone - metabolism</subject><subject>Darkness</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Gene Expression Regulation</subject><subject>glutamate</subject><subject>Glutamic Acid - metabolism</subject><subject>hippocampus</subject><subject>learning and memory</subject><subject>Memory - physiology</subject><subject>Mice, Inbred C57BL</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Neuropil Threads - metabolism</subject><subject>Open Field Test</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>synapses</subject><subject>Synapses - physiology</subject><subject>synaptic integration</subject><subject>Time Factors</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRS1ERKIkf4CQl2xm8LMfG6RRixCkQCIBa8tdrgaPeuzG7o40f49HkxcbvKmSXXWrfA8hbzlbc8arD9s14JhwWgsmDleN0PoVOROC8xUXqn79Ij8llzlvWTkV47xVb8iplExLKeszAp1PYJ23gX6Nbhnt7GOgcaDfcEkxZGqDo5s8pwj7GTPtYij5mOn3fbDT7IHejTaX6Oc99YFe-2mKYHeTHekmoaXdhl-Qk8GOGS8f4jn5efXpR3e9urn9_KXb3KxAVXJeqUoAE0LqAUA3ru45SuC9ZhqlBqhZVSvZqn4YnG4q3qCzVkjWqsZiq6penpOPR91p6XfoAMuqdjRT8jub9iZab_59Cf63-RXvTV2z4iArAu8fBFL8s2Cezc7nYvRoA8YlG6E0lw0Xui2l6lgKKeaccHgaw5k5IDJbc0RkDojMEVFpe_dyxaemRyDPf8Bi1L3HZDJ4DIDOJ4TZuOj_P-EvYsek7w</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>McCauley, John P.</creator><creator>Petroccione, Maurice A.</creator><creator>D’Brant, Lianna Y.</creator><creator>Todd, Gabrielle C.</creator><creator>Affinnih, Nurat</creator><creator>Wisnoski, Justin J.</creator><creator>Zahid, Shergil</creator><creator>Shree, Swasti</creator><creator>Sousa, Alioscka A.</creator><creator>De Guzman, Rose M.</creator><creator>Migliore, Rosanna</creator><creator>Brazhe, Alexey</creator><creator>Leapman, Richard D.</creator><creator>Khmaladze, Alexander</creator><creator>Semyanov, Alexey</creator><creator>Zuloaga, Damian G.</creator><creator>Migliore, Michele</creator><creator>Scimemi, Annalisa</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9034-7849</orcidid><orcidid>https://orcid.org/0000-0002-2429-079X</orcidid><orcidid>https://orcid.org/0000-0001-7628-8811</orcidid><orcidid>https://orcid.org/0000-0001-6476-8535</orcidid><orcidid>https://orcid.org/0000-0003-0330-3595</orcidid><orcidid>https://orcid.org/0000-0003-4333-4310</orcidid><orcidid>https://orcid.org/0000-0002-9771-2623</orcidid><orcidid>https://orcid.org/0000-0001-7591-6855</orcidid><orcidid>https://orcid.org/0000-0001-7443-5363</orcidid><orcidid>https://orcid.org/0000-0003-4975-093X</orcidid></search><sort><creationdate>20201013</creationdate><title>Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1</title><author>McCauley, John P. ; Petroccione, Maurice A. ; D’Brant, Lianna Y. ; Todd, Gabrielle C. ; Affinnih, Nurat ; Wisnoski, Justin J. ; Zahid, Shergil ; Shree, Swasti ; Sousa, Alioscka A. ; De Guzman, Rose M. ; Migliore, Rosanna ; Brazhe, Alexey ; Leapman, Richard D. ; Khmaladze, Alexander ; Semyanov, Alexey ; Zuloaga, Damian G. ; Migliore, Michele ; Scimemi, Annalisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-462c02235fcc58d7b1e3c1b505e35cc70674394bffd58618edaa230948ae946b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism</topic><topic>Amino Acid Transport System X-AG - metabolism</topic><topic>Animals</topic><topic>astrocytes</topic><topic>Astrocytes - physiology</topic><topic>CA1 Region, Hippocampal - physiology</topic><topic>CA1 Region, Hippocampal - ultrastructure</topic><topic>Circadian Clocks - genetics</topic><topic>Circadian Rhythm - physiology</topic><topic>circadian rhythms</topic><topic>corticosterone</topic><topic>Corticosterone - metabolism</topic><topic>Darkness</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Gene Expression Regulation</topic><topic>glutamate</topic><topic>Glutamic Acid - metabolism</topic><topic>hippocampus</topic><topic>learning and memory</topic><topic>Memory - physiology</topic><topic>Mice, Inbred C57BL</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Neuropil Threads - metabolism</topic><topic>Open Field Test</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>synapses</topic><topic>Synapses - physiology</topic><topic>synaptic integration</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCauley, John P.</creatorcontrib><creatorcontrib>Petroccione, Maurice A.</creatorcontrib><creatorcontrib>D’Brant, Lianna Y.</creatorcontrib><creatorcontrib>Todd, Gabrielle C.</creatorcontrib><creatorcontrib>Affinnih, Nurat</creatorcontrib><creatorcontrib>Wisnoski, Justin J.</creatorcontrib><creatorcontrib>Zahid, Shergil</creatorcontrib><creatorcontrib>Shree, Swasti</creatorcontrib><creatorcontrib>Sousa, Alioscka A.</creatorcontrib><creatorcontrib>De Guzman, Rose M.</creatorcontrib><creatorcontrib>Migliore, Rosanna</creatorcontrib><creatorcontrib>Brazhe, Alexey</creatorcontrib><creatorcontrib>Leapman, Richard D.</creatorcontrib><creatorcontrib>Khmaladze, Alexander</creatorcontrib><creatorcontrib>Semyanov, Alexey</creatorcontrib><creatorcontrib>Zuloaga, Damian G.</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><creatorcontrib>Scimemi, Annalisa</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCauley, John P.</au><au>Petroccione, Maurice A.</au><au>D’Brant, Lianna Y.</au><au>Todd, Gabrielle C.</au><au>Affinnih, Nurat</au><au>Wisnoski, Justin J.</au><au>Zahid, Shergil</au><au>Shree, Swasti</au><au>Sousa, Alioscka A.</au><au>De Guzman, Rose M.</au><au>Migliore, Rosanna</au><au>Brazhe, Alexey</au><au>Leapman, Richard D.</au><au>Khmaladze, Alexander</au><au>Semyanov, Alexey</au><au>Zuloaga, Damian G.</au><au>Migliore, Michele</au><au>Scimemi, Annalisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>33</volume><issue>2</issue><spage>108255</spage><epage>108255</epage><pages>108255-108255</pages><artnum>108255</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identify cell-type-specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors. Astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation, and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learning in vivo. We identify corticosterone as a key contributor to changes in synaptic strength. These findings highlight important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus, and alter the temporal dynamics of cognitive processing. [Display omitted] •Hippocampal plasticity varies with circadian rhythmicity•Neurons reduce the surface expression of NMDA receptors during the dark phase•Astrocytes retract their processes from synapses during the dark phase•These effects alter synaptic integration and hippocampal-dependent learning McCauley et al. shed light on the molecular and cellular mechanisms that allow hippocampal neurons and astrocytes to shape circadian changes in synaptic plasticity and hippocampal-dependent behaviors. They identify corticosterone as a key molecule mediating these effects, capable of tuning the temporal dynamics of cognitive processing in mice.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33053337</pmid><doi>10.1016/j.celrep.2020.108255</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9034-7849</orcidid><orcidid>https://orcid.org/0000-0002-2429-079X</orcidid><orcidid>https://orcid.org/0000-0001-7628-8811</orcidid><orcidid>https://orcid.org/0000-0001-6476-8535</orcidid><orcidid>https://orcid.org/0000-0003-0330-3595</orcidid><orcidid>https://orcid.org/0000-0003-4333-4310</orcidid><orcidid>https://orcid.org/0000-0002-9771-2623</orcidid><orcidid>https://orcid.org/0000-0001-7591-6855</orcidid><orcidid>https://orcid.org/0000-0001-7443-5363</orcidid><orcidid>https://orcid.org/0000-0003-4975-093X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2020-10, Vol.33 (2), p.108255-108255, Article 108255
issn 2211-1247
2211-1247
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7700820
source MEDLINE; DOAJ Directory of Open Access Journals; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - metabolism
Amino Acid Transport System X-AG - metabolism
Animals
astrocytes
Astrocytes - physiology
CA1 Region, Hippocampal - physiology
CA1 Region, Hippocampal - ultrastructure
Circadian Clocks - genetics
Circadian Rhythm - physiology
circadian rhythms
corticosterone
Corticosterone - metabolism
Darkness
Excitatory Postsynaptic Potentials - physiology
Gene Expression Regulation
glutamate
Glutamic Acid - metabolism
hippocampus
learning and memory
Memory - physiology
Mice, Inbred C57BL
Neuronal Plasticity - physiology
Neurons - physiology
Neuropil Threads - metabolism
Open Field Test
Receptors, N-Methyl-D-Aspartate - metabolism
synapses
Synapses - physiology
synaptic integration
Time Factors
title Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circadian%20Modulation%20of%20Neurons%20and%20Astrocytes%20Controls%20Synaptic%20Plasticity%20in%20Hippocampal%20Area%20CA1&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=McCauley,%20John%20P.&rft.date=2020-10-13&rft.volume=33&rft.issue=2&rft.spage=108255&rft.epage=108255&rft.pages=108255-108255&rft.artnum=108255&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2020.108255&rft_dat=%3Cproquest_pubme%3E2451381259%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451381259&rft_id=info:pmid/33053337&rft_els_id=S2211124720312444&rfr_iscdi=true