Performance Parameters of Inductively Coupled Plasma Optical Emission Spectrometry and Graphite Furnace Atomic Absorption Spectrometry Techniques for Pd and Pt Determination in Automotive Catalysts
Palladium (Pd) and platinum (Pt) are extensively used as catalysts in the petrochemical and automotive industries, and due to high demand for them on the market, their recycling from spent supported catalysts is clearly needed. To assess the content of Pd and Pt in catalysts in order to establish th...
Gespeichert in:
Veröffentlicht in: | Materials 2020-11, Vol.13 (22), p.5136 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 5136 |
container_title | Materials |
container_volume | 13 |
creator | Senila, Marin Cadar, Oana Senila, Lacrimioara Böringer, Sarah Seaudeau-Pirouley, Karine Ruiu, Andrea Lacroix-Desmazes, Patrick |
description | Palladium (Pd) and platinum (Pt) are extensively used as catalysts in the petrochemical and automotive industries, and due to high demand for them on the market, their recycling from spent supported catalysts is clearly needed. To assess the content of Pd and Pt in catalysts in order to establish their commercial value or to evaluate the recovery efficiency of technologies used for recycling, reliable analytical methods for determination of these elements are required. Spectrometric methods, such as inductively coupled plasma optical emission spectrometry (ICP-OES) and graphite furnace atomic absorption spectrometry (GFAAS) are powerful tools that can be employed for the determination of Pd and Pt in various sample matrices. However, these methods allow only the injection of liquid samples. In this regard, the digestion of solid sample by microwave-assisted acid extraction procedures at high pressures and temperatures is often used. In this study, a microwave acid digestion method was optimized for the extraction of Pd and Pt from spent catalysts, using a four-step program, at a maximum 200 °C. The resulting solutions were analyzed using ICP-OES, at two different wavelengths for each metal (Pd at 340.458 and 363.470 nm, and Pt at 265.945 and 214.423 nm, respectively) and using GFAAS (Pd at 247.64 nm, Pt at 265.94 nm). Five types of spent catalyst were analyzed and the standard deviations of repeatability for five parallel samples were less than predicted relative standard deviations (PRSD%) calculated using Horvitz’s equation for all the analyzed samples. |
doi_str_mv | 10.3390/ma13225136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7697727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461859531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-5d6be9e2f80805e05d32b425352fddb34e9b63d51e2fab2aca497fd1bce75e53</originalsourceid><addsrcrecordid>eNpdkt2K2zAQhU1p6S7bvekTCHrTFtJakmVHN4WQ7h8E1tDcm7E0brTYkivJgTzgvlflZOlPdCMhfefMYTRZ9p7mXziX-dcBKGdMUF6-yi6plOWCyqJ4_c_5IrsO4SlPi3O6ZPJtdsE5y5koxWX2XKPvnB_AKiQ1eBgwog_EdeTB6klFs8f-QNZuGnvUpO4hDEAex2gU9ORmMCEYZ8mPEVX0Lon9gYDV5M7DuDMRye3kLSTvVXSDUWTVBueT-lyzRbWz5teEgaQ4pNZHlzqS73OewVg4aowlqyk5uTkXWUOE_hBieJe96aAPeP2yX2Xb25vt-n6xebx7WK82C1XQKi6ELluUyLplvswF5kJz1hZMcME6rVteoGxLrgVNCLQMFBSy6jRtFVYCBb_Kvp1sx6kdUCu00UPfjN4M4A-NA9P8_2LNrvnp9k1VyqpiVTL4dDLYncnuV5tmvsv5_Eml3NPEfnwp5t3cl9ikZivse7DoptCwoqRLIQWf0Q9n6JOb294fKcbKsljyRH0-Ucq7EDx2fxLQvJlnqfk7S_w3VpO_ow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462266483</pqid></control><display><type>article</type><title>Performance Parameters of Inductively Coupled Plasma Optical Emission Spectrometry and Graphite Furnace Atomic Absorption Spectrometry Techniques for Pd and Pt Determination in Automotive Catalysts</title><source>PubMed Central (Open Access)</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Senila, Marin ; Cadar, Oana ; Senila, Lacrimioara ; Böringer, Sarah ; Seaudeau-Pirouley, Karine ; Ruiu, Andrea ; Lacroix-Desmazes, Patrick</creator><creatorcontrib>Senila, Marin ; Cadar, Oana ; Senila, Lacrimioara ; Böringer, Sarah ; Seaudeau-Pirouley, Karine ; Ruiu, Andrea ; Lacroix-Desmazes, Patrick</creatorcontrib><description>Palladium (Pd) and platinum (Pt) are extensively used as catalysts in the petrochemical and automotive industries, and due to high demand for them on the market, their recycling from spent supported catalysts is clearly needed. To assess the content of Pd and Pt in catalysts in order to establish their commercial value or to evaluate the recovery efficiency of technologies used for recycling, reliable analytical methods for determination of these elements are required. Spectrometric methods, such as inductively coupled plasma optical emission spectrometry (ICP-OES) and graphite furnace atomic absorption spectrometry (GFAAS) are powerful tools that can be employed for the determination of Pd and Pt in various sample matrices. However, these methods allow only the injection of liquid samples. In this regard, the digestion of solid sample by microwave-assisted acid extraction procedures at high pressures and temperatures is often used. In this study, a microwave acid digestion method was optimized for the extraction of Pd and Pt from spent catalysts, using a four-step program, at a maximum 200 °C. The resulting solutions were analyzed using ICP-OES, at two different wavelengths for each metal (Pd at 340.458 and 363.470 nm, and Pt at 265.945 and 214.423 nm, respectively) and using GFAAS (Pd at 247.64 nm, Pt at 265.94 nm). Five types of spent catalyst were analyzed and the standard deviations of repeatability for five parallel samples were less than predicted relative standard deviations (PRSD%) calculated using Horvitz’s equation for all the analyzed samples.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13225136</identifier><identifier>PMID: 33202565</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Absorption spectroscopy ; Acid digestion ; Analytical chemistry ; Atomic absorption analysis ; Catalysis ; Catalysts ; Chemical Sciences ; Economic conditions ; Efficiency ; Emission ; Graphite ; Inductively coupled plasma ; Laboratories ; Material chemistry ; Mathematical analysis ; Metals ; Optical emission spectroscopy ; Palladium ; Platinum ; Recycling ; Reference materials ; Scientific imaging ; Spectrometry ; Standard deviation</subject><ispartof>Materials, 2020-11, Vol.13 (22), p.5136</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-5d6be9e2f80805e05d32b425352fddb34e9b63d51e2fab2aca497fd1bce75e53</citedby><cites>FETCH-LOGICAL-c417t-5d6be9e2f80805e05d32b425352fddb34e9b63d51e2fab2aca497fd1bce75e53</cites><orcidid>0000-0001-6738-6356 ; 0000-0002-5791-0449 ; 0000-0002-0197-7062 ; 0000-0002-0879-9211 ; 0000-0003-2627-0212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697727/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697727/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03033169$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Senila, Marin</creatorcontrib><creatorcontrib>Cadar, Oana</creatorcontrib><creatorcontrib>Senila, Lacrimioara</creatorcontrib><creatorcontrib>Böringer, Sarah</creatorcontrib><creatorcontrib>Seaudeau-Pirouley, Karine</creatorcontrib><creatorcontrib>Ruiu, Andrea</creatorcontrib><creatorcontrib>Lacroix-Desmazes, Patrick</creatorcontrib><title>Performance Parameters of Inductively Coupled Plasma Optical Emission Spectrometry and Graphite Furnace Atomic Absorption Spectrometry Techniques for Pd and Pt Determination in Automotive Catalysts</title><title>Materials</title><description>Palladium (Pd) and platinum (Pt) are extensively used as catalysts in the petrochemical and automotive industries, and due to high demand for them on the market, their recycling from spent supported catalysts is clearly needed. To assess the content of Pd and Pt in catalysts in order to establish their commercial value or to evaluate the recovery efficiency of technologies used for recycling, reliable analytical methods for determination of these elements are required. Spectrometric methods, such as inductively coupled plasma optical emission spectrometry (ICP-OES) and graphite furnace atomic absorption spectrometry (GFAAS) are powerful tools that can be employed for the determination of Pd and Pt in various sample matrices. However, these methods allow only the injection of liquid samples. In this regard, the digestion of solid sample by microwave-assisted acid extraction procedures at high pressures and temperatures is often used. In this study, a microwave acid digestion method was optimized for the extraction of Pd and Pt from spent catalysts, using a four-step program, at a maximum 200 °C. The resulting solutions were analyzed using ICP-OES, at two different wavelengths for each metal (Pd at 340.458 and 363.470 nm, and Pt at 265.945 and 214.423 nm, respectively) and using GFAAS (Pd at 247.64 nm, Pt at 265.94 nm). Five types of spent catalyst were analyzed and the standard deviations of repeatability for five parallel samples were less than predicted relative standard deviations (PRSD%) calculated using Horvitz’s equation for all the analyzed samples.</description><subject>Absorption spectroscopy</subject><subject>Acid digestion</subject><subject>Analytical chemistry</subject><subject>Atomic absorption analysis</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical Sciences</subject><subject>Economic conditions</subject><subject>Efficiency</subject><subject>Emission</subject><subject>Graphite</subject><subject>Inductively coupled plasma</subject><subject>Laboratories</subject><subject>Material chemistry</subject><subject>Mathematical analysis</subject><subject>Metals</subject><subject>Optical emission spectroscopy</subject><subject>Palladium</subject><subject>Platinum</subject><subject>Recycling</subject><subject>Reference materials</subject><subject>Scientific imaging</subject><subject>Spectrometry</subject><subject>Standard deviation</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkt2K2zAQhU1p6S7bvekTCHrTFtJakmVHN4WQ7h8E1tDcm7E0brTYkivJgTzgvlflZOlPdCMhfefMYTRZ9p7mXziX-dcBKGdMUF6-yi6plOWCyqJ4_c_5IrsO4SlPi3O6ZPJtdsE5y5koxWX2XKPvnB_AKiQ1eBgwog_EdeTB6klFs8f-QNZuGnvUpO4hDEAex2gU9ORmMCEYZ8mPEVX0Lon9gYDV5M7DuDMRye3kLSTvVXSDUWTVBueT-lyzRbWz5teEgaQ4pNZHlzqS73OewVg4aowlqyk5uTkXWUOE_hBieJe96aAPeP2yX2Xb25vt-n6xebx7WK82C1XQKi6ELluUyLplvswF5kJz1hZMcME6rVteoGxLrgVNCLQMFBSy6jRtFVYCBb_Kvp1sx6kdUCu00UPfjN4M4A-NA9P8_2LNrvnp9k1VyqpiVTL4dDLYncnuV5tmvsv5_Eml3NPEfnwp5t3cl9ikZivse7DoptCwoqRLIQWf0Q9n6JOb294fKcbKsljyRH0-Ucq7EDx2fxLQvJlnqfk7S_w3VpO_ow</recordid><startdate>20201114</startdate><enddate>20201114</enddate><creator>Senila, Marin</creator><creator>Cadar, Oana</creator><creator>Senila, Lacrimioara</creator><creator>Böringer, Sarah</creator><creator>Seaudeau-Pirouley, Karine</creator><creator>Ruiu, Andrea</creator><creator>Lacroix-Desmazes, Patrick</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6738-6356</orcidid><orcidid>https://orcid.org/0000-0002-5791-0449</orcidid><orcidid>https://orcid.org/0000-0002-0197-7062</orcidid><orcidid>https://orcid.org/0000-0002-0879-9211</orcidid><orcidid>https://orcid.org/0000-0003-2627-0212</orcidid></search><sort><creationdate>20201114</creationdate><title>Performance Parameters of Inductively Coupled Plasma Optical Emission Spectrometry and Graphite Furnace Atomic Absorption Spectrometry Techniques for Pd and Pt Determination in Automotive Catalysts</title><author>Senila, Marin ; Cadar, Oana ; Senila, Lacrimioara ; Böringer, Sarah ; Seaudeau-Pirouley, Karine ; Ruiu, Andrea ; Lacroix-Desmazes, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-5d6be9e2f80805e05d32b425352fddb34e9b63d51e2fab2aca497fd1bce75e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectroscopy</topic><topic>Acid digestion</topic><topic>Analytical chemistry</topic><topic>Atomic absorption analysis</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical Sciences</topic><topic>Economic conditions</topic><topic>Efficiency</topic><topic>Emission</topic><topic>Graphite</topic><topic>Inductively coupled plasma</topic><topic>Laboratories</topic><topic>Material chemistry</topic><topic>Mathematical analysis</topic><topic>Metals</topic><topic>Optical emission spectroscopy</topic><topic>Palladium</topic><topic>Platinum</topic><topic>Recycling</topic><topic>Reference materials</topic><topic>Scientific imaging</topic><topic>Spectrometry</topic><topic>Standard deviation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senila, Marin</creatorcontrib><creatorcontrib>Cadar, Oana</creatorcontrib><creatorcontrib>Senila, Lacrimioara</creatorcontrib><creatorcontrib>Böringer, Sarah</creatorcontrib><creatorcontrib>Seaudeau-Pirouley, Karine</creatorcontrib><creatorcontrib>Ruiu, Andrea</creatorcontrib><creatorcontrib>Lacroix-Desmazes, Patrick</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senila, Marin</au><au>Cadar, Oana</au><au>Senila, Lacrimioara</au><au>Böringer, Sarah</au><au>Seaudeau-Pirouley, Karine</au><au>Ruiu, Andrea</au><au>Lacroix-Desmazes, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Parameters of Inductively Coupled Plasma Optical Emission Spectrometry and Graphite Furnace Atomic Absorption Spectrometry Techniques for Pd and Pt Determination in Automotive Catalysts</atitle><jtitle>Materials</jtitle><date>2020-11-14</date><risdate>2020</risdate><volume>13</volume><issue>22</issue><spage>5136</spage><pages>5136-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Palladium (Pd) and platinum (Pt) are extensively used as catalysts in the petrochemical and automotive industries, and due to high demand for them on the market, their recycling from spent supported catalysts is clearly needed. To assess the content of Pd and Pt in catalysts in order to establish their commercial value or to evaluate the recovery efficiency of technologies used for recycling, reliable analytical methods for determination of these elements are required. Spectrometric methods, such as inductively coupled plasma optical emission spectrometry (ICP-OES) and graphite furnace atomic absorption spectrometry (GFAAS) are powerful tools that can be employed for the determination of Pd and Pt in various sample matrices. However, these methods allow only the injection of liquid samples. In this regard, the digestion of solid sample by microwave-assisted acid extraction procedures at high pressures and temperatures is often used. In this study, a microwave acid digestion method was optimized for the extraction of Pd and Pt from spent catalysts, using a four-step program, at a maximum 200 °C. The resulting solutions were analyzed using ICP-OES, at two different wavelengths for each metal (Pd at 340.458 and 363.470 nm, and Pt at 265.945 and 214.423 nm, respectively) and using GFAAS (Pd at 247.64 nm, Pt at 265.94 nm). Five types of spent catalyst were analyzed and the standard deviations of repeatability for five parallel samples were less than predicted relative standard deviations (PRSD%) calculated using Horvitz’s equation for all the analyzed samples.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33202565</pmid><doi>10.3390/ma13225136</doi><orcidid>https://orcid.org/0000-0001-6738-6356</orcidid><orcidid>https://orcid.org/0000-0002-5791-0449</orcidid><orcidid>https://orcid.org/0000-0002-0197-7062</orcidid><orcidid>https://orcid.org/0000-0002-0879-9211</orcidid><orcidid>https://orcid.org/0000-0003-2627-0212</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2020-11, Vol.13 (22), p.5136 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7697727 |
source | PubMed Central (Open Access); MDPI - Multidisciplinary Digital Publishing Institute; Free E-Journal (出版社公開部分のみ); Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Absorption spectroscopy Acid digestion Analytical chemistry Atomic absorption analysis Catalysis Catalysts Chemical Sciences Economic conditions Efficiency Emission Graphite Inductively coupled plasma Laboratories Material chemistry Mathematical analysis Metals Optical emission spectroscopy Palladium Platinum Recycling Reference materials Scientific imaging Spectrometry Standard deviation |
title | Performance Parameters of Inductively Coupled Plasma Optical Emission Spectrometry and Graphite Furnace Atomic Absorption Spectrometry Techniques for Pd and Pt Determination in Automotive Catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Parameters%20of%20Inductively%20Coupled%20Plasma%20Optical%20Emission%20Spectrometry%20and%20Graphite%20Furnace%20Atomic%20Absorption%20Spectrometry%20Techniques%20for%20Pd%20and%20Pt%20Determination%20in%20Automotive%20Catalysts&rft.jtitle=Materials&rft.au=Senila,%20Marin&rft.date=2020-11-14&rft.volume=13&rft.issue=22&rft.spage=5136&rft.pages=5136-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13225136&rft_dat=%3Cproquest_pubme%3E2461859531%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462266483&rft_id=info:pmid/33202565&rfr_iscdi=true |