Predicting Clinical Outcome with Phenotypic Clusters in COVID-19 Pneumonia: An Analysis of 12,066 Hospitalized Patients from the Spanish Registry SEMI-COVID-19

(1) Background: Different clinical presentations in COVID-19 are described to date, from mild to severe cases. This study aims to identify different clinical phenotypes in COVID-19 pneumonia using cluster analysis and to assess the prognostic impact among identified clusters in such patients. (2) Me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical medicine 2020-10, Vol.9 (11), p.3488
Hauptverfasser: Rubio-Rivas, Manuel, Corbella, Xavier, Mora-Luján, José María, Loureiro-Amigo, Jose, López Sampalo, Almudena, Yera Bergua, Carmen, Esteve Atiénzar, Pedro Jesús, Díez García, Luis Felipe, Gonzalez Ferrer, Ruth, Plaza Canteli, Susana, Pérez Piñeiro, Antía, Cortés Rodríguez, Begoña, Jorquer Vidal, Leyre, Pérez Catalán, Ignacio, León Téllez, Marta, Martín Oterino, José Ángel, Martín González, María Candelaria, Serrano Carrillo de Albornoz, José Luis, García Sardon, Eva, Alcalá Pedrajas, José Nicolás, Martin-Urda Diez-Canseco, Anabel, Esteban Giner, María José, Tellería Gómez, Pablo, Ramos-Rincón, José Manuel, Gómez-Huelgas, Ricardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 3488
container_title Journal of clinical medicine
container_volume 9
creator Rubio-Rivas, Manuel
Corbella, Xavier
Mora-Luján, José María
Loureiro-Amigo, Jose
López Sampalo, Almudena
Yera Bergua, Carmen
Esteve Atiénzar, Pedro Jesús
Díez García, Luis Felipe
Gonzalez Ferrer, Ruth
Plaza Canteli, Susana
Pérez Piñeiro, Antía
Cortés Rodríguez, Begoña
Jorquer Vidal, Leyre
Pérez Catalán, Ignacio
León Téllez, Marta
Martín Oterino, José Ángel
Martín González, María Candelaria
Serrano Carrillo de Albornoz, José Luis
García Sardon, Eva
Alcalá Pedrajas, José Nicolás
Martin-Urda Diez-Canseco, Anabel
Esteban Giner, María José
Tellería Gómez, Pablo
Ramos-Rincón, José Manuel
Gómez-Huelgas, Ricardo
description (1) Background: Different clinical presentations in COVID-19 are described to date, from mild to severe cases. This study aims to identify different clinical phenotypes in COVID-19 pneumonia using cluster analysis and to assess the prognostic impact among identified clusters in such patients. (2) Methods: Cluster analysis including 11 phenotypic variables was performed in a large cohort of 12,066 COVID-19 patients, collected and followed-up from 1 March to 31 July 2020, from the nationwide Spanish Society of Internal Medicine (SEMI)-COVID-19 Registry. (3) Results: Of the total of 12,066 patients included in the study, most were males (7052, 58.5%) and Caucasian (10,635, 89.5%), with a mean age at diagnosis of 67 years (standard deviation (SD) 16). The main pre-admission comorbidities were arterial hypertension (6030, 50%), hyperlipidemia (4741, 39.4%) and diabetes mellitus (2309, 19.2%). The average number of days from COVID-19 symptom onset to hospital admission was 6.7 (SD 7). The triad of fever, cough, and dyspnea was present almost uniformly in all 4 clinical phenotypes identified by clustering. Cluster C1 (8737 patients, 72.4%) was the largest, and comprised patients with the triad alone. Cluster C2 (1196 patients, 9.9%) also presented with ageusia and anosmia; cluster C3 (880 patients, 7.3%) also had arthromyalgia, headache, and sore throat; and cluster C4 (1253 patients, 10.4%) also manifested with diarrhea, vomiting, and abdominal pain. Compared to each other, cluster C1 presented the highest in-hospital mortality (24.1% vs. 4.3% vs. 14.7% vs. 18.6%; < 0.001). The multivariate study identified age, gender (male), body mass index (BMI), arterial hypertension, chronic obstructive pulmonary disease (COPD), ischemic cardiopathy, chronic heart failure, chronic hepatopathy, Charlson's index, heart rate and respiratory rate upon admission >20 bpm, lower PaO2/FiO2 at admission, higher levels of C-reactive protein (CRP) and lactate dehydrogenase (LDH), and the phenotypic cluster as independent factors for in-hospital death. (4) Conclusions: The present study identified 4 phenotypic clusters in patients with COVID-19 pneumonia, which predicted the in-hospital prognosis of clinical outcomes.
doi_str_mv 10.3390/jcm9113488
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7693215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641055101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f13f8e7a15d2cb0a89b569033262721927b2cff4ab172bde1355a25046616fc53</originalsourceid><addsrcrecordid>eNpdkd1q3DAQhU1paEKamz5AEfSmlLjVSLZk96IQNmmzkLJL0_bWyLK01mJLriQ3bF6mr1qF_LbDwAzMx-EwJ8teAX5PaY0_bOVYA9Ciqp5lBwRznmNa0edP9v3sKIQtTlVVBQH-ItunFCivoT7I_qy96oyMxm7QYjDWSDGg1RylGxW6MrFH615ZF3eTkQmYQ1Q-IGPRYvVzeZpDjdZWzaOzRnxEJza1GHbBBOQ0AnKMGUPnLkwmisFcqw6tRTTKxoC0dyOKvUKXk7Am9Oib2pgQ_Q5dnn1d5vfyL7M9LYagju7mYfbj89n3xXl-sfqyXJxc5LLALOYaqK4UF1B2RLZYVHVbshpTShjhBGrCWyK1LkQLnLSdAlqWgpS4YAyYliU9zD7d6k5zO6pOJo9eDM3kzSj8rnHCNP9erOmbjfvdcFZTAjcCb-8EvPs1qxCb0QSphkFY5ebQkKLkpCKEsIS--Q_dutmnxyWKFYDLEjAk6t0tJb0LwSv9YAZwcxN98xh9gl8_tf-A3gdN_wKUe6gg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641055101</pqid></control><display><type>article</type><title>Predicting Clinical Outcome with Phenotypic Clusters in COVID-19 Pneumonia: An Analysis of 12,066 Hospitalized Patients from the Spanish Registry SEMI-COVID-19</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rubio-Rivas, Manuel ; Corbella, Xavier ; Mora-Luján, José María ; Loureiro-Amigo, Jose ; López Sampalo, Almudena ; Yera Bergua, Carmen ; Esteve Atiénzar, Pedro Jesús ; Díez García, Luis Felipe ; Gonzalez Ferrer, Ruth ; Plaza Canteli, Susana ; Pérez Piñeiro, Antía ; Cortés Rodríguez, Begoña ; Jorquer Vidal, Leyre ; Pérez Catalán, Ignacio ; León Téllez, Marta ; Martín Oterino, José Ángel ; Martín González, María Candelaria ; Serrano Carrillo de Albornoz, José Luis ; García Sardon, Eva ; Alcalá Pedrajas, José Nicolás ; Martin-Urda Diez-Canseco, Anabel ; Esteban Giner, María José ; Tellería Gómez, Pablo ; Ramos-Rincón, José Manuel ; Gómez-Huelgas, Ricardo</creator><creatorcontrib>Rubio-Rivas, Manuel ; Corbella, Xavier ; Mora-Luján, José María ; Loureiro-Amigo, Jose ; López Sampalo, Almudena ; Yera Bergua, Carmen ; Esteve Atiénzar, Pedro Jesús ; Díez García, Luis Felipe ; Gonzalez Ferrer, Ruth ; Plaza Canteli, Susana ; Pérez Piñeiro, Antía ; Cortés Rodríguez, Begoña ; Jorquer Vidal, Leyre ; Pérez Catalán, Ignacio ; León Téllez, Marta ; Martín Oterino, José Ángel ; Martín González, María Candelaria ; Serrano Carrillo de Albornoz, José Luis ; García Sardon, Eva ; Alcalá Pedrajas, José Nicolás ; Martin-Urda Diez-Canseco, Anabel ; Esteban Giner, María José ; Tellería Gómez, Pablo ; Ramos-Rincón, José Manuel ; Gómez-Huelgas, Ricardo</creatorcontrib><description>(1) Background: Different clinical presentations in COVID-19 are described to date, from mild to severe cases. This study aims to identify different clinical phenotypes in COVID-19 pneumonia using cluster analysis and to assess the prognostic impact among identified clusters in such patients. (2) Methods: Cluster analysis including 11 phenotypic variables was performed in a large cohort of 12,066 COVID-19 patients, collected and followed-up from 1 March to 31 July 2020, from the nationwide Spanish Society of Internal Medicine (SEMI)-COVID-19 Registry. (3) Results: Of the total of 12,066 patients included in the study, most were males (7052, 58.5%) and Caucasian (10,635, 89.5%), with a mean age at diagnosis of 67 years (standard deviation (SD) 16). The main pre-admission comorbidities were arterial hypertension (6030, 50%), hyperlipidemia (4741, 39.4%) and diabetes mellitus (2309, 19.2%). The average number of days from COVID-19 symptom onset to hospital admission was 6.7 (SD 7). The triad of fever, cough, and dyspnea was present almost uniformly in all 4 clinical phenotypes identified by clustering. Cluster C1 (8737 patients, 72.4%) was the largest, and comprised patients with the triad alone. Cluster C2 (1196 patients, 9.9%) also presented with ageusia and anosmia; cluster C3 (880 patients, 7.3%) also had arthromyalgia, headache, and sore throat; and cluster C4 (1253 patients, 10.4%) also manifested with diarrhea, vomiting, and abdominal pain. Compared to each other, cluster C1 presented the highest in-hospital mortality (24.1% vs. 4.3% vs. 14.7% vs. 18.6%; &lt; 0.001). The multivariate study identified age, gender (male), body mass index (BMI), arterial hypertension, chronic obstructive pulmonary disease (COPD), ischemic cardiopathy, chronic heart failure, chronic hepatopathy, Charlson's index, heart rate and respiratory rate upon admission &gt;20 bpm, lower PaO2/FiO2 at admission, higher levels of C-reactive protein (CRP) and lactate dehydrogenase (LDH), and the phenotypic cluster as independent factors for in-hospital death. (4) Conclusions: The present study identified 4 phenotypic clusters in patients with COVID-19 pneumonia, which predicted the in-hospital prognosis of clinical outcomes.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm9113488</identifier><identifier>PMID: 33137919</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Body mass index ; Clinical medicine ; Cluster analysis ; COVID-19 ; Fatalities ; Mortality ; Olfaction disorders ; Taste disorders</subject><ispartof>Journal of clinical medicine, 2020-10, Vol.9 (11), p.3488</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f13f8e7a15d2cb0a89b569033262721927b2cff4ab172bde1355a25046616fc53</citedby><cites>FETCH-LOGICAL-c406t-f13f8e7a15d2cb0a89b569033262721927b2cff4ab172bde1355a25046616fc53</cites><orcidid>0000-0002-2146-378X ; 0000-0002-6501-9867 ; 0000-0002-6451-8971 ; 0000-0002-5598-5180 ; 0000-0001-9889-0272 ; 0000-0002-9909-3555 ; 0000-0002-9548-1374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693215/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693215/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33137919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rubio-Rivas, Manuel</creatorcontrib><creatorcontrib>Corbella, Xavier</creatorcontrib><creatorcontrib>Mora-Luján, José María</creatorcontrib><creatorcontrib>Loureiro-Amigo, Jose</creatorcontrib><creatorcontrib>López Sampalo, Almudena</creatorcontrib><creatorcontrib>Yera Bergua, Carmen</creatorcontrib><creatorcontrib>Esteve Atiénzar, Pedro Jesús</creatorcontrib><creatorcontrib>Díez García, Luis Felipe</creatorcontrib><creatorcontrib>Gonzalez Ferrer, Ruth</creatorcontrib><creatorcontrib>Plaza Canteli, Susana</creatorcontrib><creatorcontrib>Pérez Piñeiro, Antía</creatorcontrib><creatorcontrib>Cortés Rodríguez, Begoña</creatorcontrib><creatorcontrib>Jorquer Vidal, Leyre</creatorcontrib><creatorcontrib>Pérez Catalán, Ignacio</creatorcontrib><creatorcontrib>León Téllez, Marta</creatorcontrib><creatorcontrib>Martín Oterino, José Ángel</creatorcontrib><creatorcontrib>Martín González, María Candelaria</creatorcontrib><creatorcontrib>Serrano Carrillo de Albornoz, José Luis</creatorcontrib><creatorcontrib>García Sardon, Eva</creatorcontrib><creatorcontrib>Alcalá Pedrajas, José Nicolás</creatorcontrib><creatorcontrib>Martin-Urda Diez-Canseco, Anabel</creatorcontrib><creatorcontrib>Esteban Giner, María José</creatorcontrib><creatorcontrib>Tellería Gómez, Pablo</creatorcontrib><creatorcontrib>Ramos-Rincón, José Manuel</creatorcontrib><creatorcontrib>Gómez-Huelgas, Ricardo</creatorcontrib><title>Predicting Clinical Outcome with Phenotypic Clusters in COVID-19 Pneumonia: An Analysis of 12,066 Hospitalized Patients from the Spanish Registry SEMI-COVID-19</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>(1) Background: Different clinical presentations in COVID-19 are described to date, from mild to severe cases. This study aims to identify different clinical phenotypes in COVID-19 pneumonia using cluster analysis and to assess the prognostic impact among identified clusters in such patients. (2) Methods: Cluster analysis including 11 phenotypic variables was performed in a large cohort of 12,066 COVID-19 patients, collected and followed-up from 1 March to 31 July 2020, from the nationwide Spanish Society of Internal Medicine (SEMI)-COVID-19 Registry. (3) Results: Of the total of 12,066 patients included in the study, most were males (7052, 58.5%) and Caucasian (10,635, 89.5%), with a mean age at diagnosis of 67 years (standard deviation (SD) 16). The main pre-admission comorbidities were arterial hypertension (6030, 50%), hyperlipidemia (4741, 39.4%) and diabetes mellitus (2309, 19.2%). The average number of days from COVID-19 symptom onset to hospital admission was 6.7 (SD 7). The triad of fever, cough, and dyspnea was present almost uniformly in all 4 clinical phenotypes identified by clustering. Cluster C1 (8737 patients, 72.4%) was the largest, and comprised patients with the triad alone. Cluster C2 (1196 patients, 9.9%) also presented with ageusia and anosmia; cluster C3 (880 patients, 7.3%) also had arthromyalgia, headache, and sore throat; and cluster C4 (1253 patients, 10.4%) also manifested with diarrhea, vomiting, and abdominal pain. Compared to each other, cluster C1 presented the highest in-hospital mortality (24.1% vs. 4.3% vs. 14.7% vs. 18.6%; &lt; 0.001). The multivariate study identified age, gender (male), body mass index (BMI), arterial hypertension, chronic obstructive pulmonary disease (COPD), ischemic cardiopathy, chronic heart failure, chronic hepatopathy, Charlson's index, heart rate and respiratory rate upon admission &gt;20 bpm, lower PaO2/FiO2 at admission, higher levels of C-reactive protein (CRP) and lactate dehydrogenase (LDH), and the phenotypic cluster as independent factors for in-hospital death. (4) Conclusions: The present study identified 4 phenotypic clusters in patients with COVID-19 pneumonia, which predicted the in-hospital prognosis of clinical outcomes.</description><subject>Body mass index</subject><subject>Clinical medicine</subject><subject>Cluster analysis</subject><subject>COVID-19</subject><subject>Fatalities</subject><subject>Mortality</subject><subject>Olfaction disorders</subject><subject>Taste disorders</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd1q3DAQhU1paEKamz5AEfSmlLjVSLZk96IQNmmzkLJL0_bWyLK01mJLriQ3bF6mr1qF_LbDwAzMx-EwJ8teAX5PaY0_bOVYA9Ciqp5lBwRznmNa0edP9v3sKIQtTlVVBQH-ItunFCivoT7I_qy96oyMxm7QYjDWSDGg1RylGxW6MrFH615ZF3eTkQmYQ1Q-IGPRYvVzeZpDjdZWzaOzRnxEJza1GHbBBOQ0AnKMGUPnLkwmisFcqw6tRTTKxoC0dyOKvUKXk7Am9Oib2pgQ_Q5dnn1d5vfyL7M9LYagju7mYfbj89n3xXl-sfqyXJxc5LLALOYaqK4UF1B2RLZYVHVbshpTShjhBGrCWyK1LkQLnLSdAlqWgpS4YAyYliU9zD7d6k5zO6pOJo9eDM3kzSj8rnHCNP9erOmbjfvdcFZTAjcCb-8EvPs1qxCb0QSphkFY5ebQkKLkpCKEsIS--Q_dutmnxyWKFYDLEjAk6t0tJb0LwSv9YAZwcxN98xh9gl8_tf-A3gdN_wKUe6gg</recordid><startdate>20201029</startdate><enddate>20201029</enddate><creator>Rubio-Rivas, Manuel</creator><creator>Corbella, Xavier</creator><creator>Mora-Luján, José María</creator><creator>Loureiro-Amigo, Jose</creator><creator>López Sampalo, Almudena</creator><creator>Yera Bergua, Carmen</creator><creator>Esteve Atiénzar, Pedro Jesús</creator><creator>Díez García, Luis Felipe</creator><creator>Gonzalez Ferrer, Ruth</creator><creator>Plaza Canteli, Susana</creator><creator>Pérez Piñeiro, Antía</creator><creator>Cortés Rodríguez, Begoña</creator><creator>Jorquer Vidal, Leyre</creator><creator>Pérez Catalán, Ignacio</creator><creator>León Téllez, Marta</creator><creator>Martín Oterino, José Ángel</creator><creator>Martín González, María Candelaria</creator><creator>Serrano Carrillo de Albornoz, José Luis</creator><creator>García Sardon, Eva</creator><creator>Alcalá Pedrajas, José Nicolás</creator><creator>Martin-Urda Diez-Canseco, Anabel</creator><creator>Esteban Giner, María José</creator><creator>Tellería Gómez, Pablo</creator><creator>Ramos-Rincón, José Manuel</creator><creator>Gómez-Huelgas, Ricardo</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2146-378X</orcidid><orcidid>https://orcid.org/0000-0002-6501-9867</orcidid><orcidid>https://orcid.org/0000-0002-6451-8971</orcidid><orcidid>https://orcid.org/0000-0002-5598-5180</orcidid><orcidid>https://orcid.org/0000-0001-9889-0272</orcidid><orcidid>https://orcid.org/0000-0002-9909-3555</orcidid><orcidid>https://orcid.org/0000-0002-9548-1374</orcidid></search><sort><creationdate>20201029</creationdate><title>Predicting Clinical Outcome with Phenotypic Clusters in COVID-19 Pneumonia: An Analysis of 12,066 Hospitalized Patients from the Spanish Registry SEMI-COVID-19</title><author>Rubio-Rivas, Manuel ; Corbella, Xavier ; Mora-Luján, José María ; Loureiro-Amigo, Jose ; López Sampalo, Almudena ; Yera Bergua, Carmen ; Esteve Atiénzar, Pedro Jesús ; Díez García, Luis Felipe ; Gonzalez Ferrer, Ruth ; Plaza Canteli, Susana ; Pérez Piñeiro, Antía ; Cortés Rodríguez, Begoña ; Jorquer Vidal, Leyre ; Pérez Catalán, Ignacio ; León Téllez, Marta ; Martín Oterino, José Ángel ; Martín González, María Candelaria ; Serrano Carrillo de Albornoz, José Luis ; García Sardon, Eva ; Alcalá Pedrajas, José Nicolás ; Martin-Urda Diez-Canseco, Anabel ; Esteban Giner, María José ; Tellería Gómez, Pablo ; Ramos-Rincón, José Manuel ; Gómez-Huelgas, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f13f8e7a15d2cb0a89b569033262721927b2cff4ab172bde1355a25046616fc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Body mass index</topic><topic>Clinical medicine</topic><topic>Cluster analysis</topic><topic>COVID-19</topic><topic>Fatalities</topic><topic>Mortality</topic><topic>Olfaction disorders</topic><topic>Taste disorders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubio-Rivas, Manuel</creatorcontrib><creatorcontrib>Corbella, Xavier</creatorcontrib><creatorcontrib>Mora-Luján, José María</creatorcontrib><creatorcontrib>Loureiro-Amigo, Jose</creatorcontrib><creatorcontrib>López Sampalo, Almudena</creatorcontrib><creatorcontrib>Yera Bergua, Carmen</creatorcontrib><creatorcontrib>Esteve Atiénzar, Pedro Jesús</creatorcontrib><creatorcontrib>Díez García, Luis Felipe</creatorcontrib><creatorcontrib>Gonzalez Ferrer, Ruth</creatorcontrib><creatorcontrib>Plaza Canteli, Susana</creatorcontrib><creatorcontrib>Pérez Piñeiro, Antía</creatorcontrib><creatorcontrib>Cortés Rodríguez, Begoña</creatorcontrib><creatorcontrib>Jorquer Vidal, Leyre</creatorcontrib><creatorcontrib>Pérez Catalán, Ignacio</creatorcontrib><creatorcontrib>León Téllez, Marta</creatorcontrib><creatorcontrib>Martín Oterino, José Ángel</creatorcontrib><creatorcontrib>Martín González, María Candelaria</creatorcontrib><creatorcontrib>Serrano Carrillo de Albornoz, José Luis</creatorcontrib><creatorcontrib>García Sardon, Eva</creatorcontrib><creatorcontrib>Alcalá Pedrajas, José Nicolás</creatorcontrib><creatorcontrib>Martin-Urda Diez-Canseco, Anabel</creatorcontrib><creatorcontrib>Esteban Giner, María José</creatorcontrib><creatorcontrib>Tellería Gómez, Pablo</creatorcontrib><creatorcontrib>Ramos-Rincón, José Manuel</creatorcontrib><creatorcontrib>Gómez-Huelgas, Ricardo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rubio-Rivas, Manuel</au><au>Corbella, Xavier</au><au>Mora-Luján, José María</au><au>Loureiro-Amigo, Jose</au><au>López Sampalo, Almudena</au><au>Yera Bergua, Carmen</au><au>Esteve Atiénzar, Pedro Jesús</au><au>Díez García, Luis Felipe</au><au>Gonzalez Ferrer, Ruth</au><au>Plaza Canteli, Susana</au><au>Pérez Piñeiro, Antía</au><au>Cortés Rodríguez, Begoña</au><au>Jorquer Vidal, Leyre</au><au>Pérez Catalán, Ignacio</au><au>León Téllez, Marta</au><au>Martín Oterino, José Ángel</au><au>Martín González, María Candelaria</au><au>Serrano Carrillo de Albornoz, José Luis</au><au>García Sardon, Eva</au><au>Alcalá Pedrajas, José Nicolás</au><au>Martin-Urda Diez-Canseco, Anabel</au><au>Esteban Giner, María José</au><au>Tellería Gómez, Pablo</au><au>Ramos-Rincón, José Manuel</au><au>Gómez-Huelgas, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Clinical Outcome with Phenotypic Clusters in COVID-19 Pneumonia: An Analysis of 12,066 Hospitalized Patients from the Spanish Registry SEMI-COVID-19</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2020-10-29</date><risdate>2020</risdate><volume>9</volume><issue>11</issue><spage>3488</spage><pages>3488-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>(1) Background: Different clinical presentations in COVID-19 are described to date, from mild to severe cases. This study aims to identify different clinical phenotypes in COVID-19 pneumonia using cluster analysis and to assess the prognostic impact among identified clusters in such patients. (2) Methods: Cluster analysis including 11 phenotypic variables was performed in a large cohort of 12,066 COVID-19 patients, collected and followed-up from 1 March to 31 July 2020, from the nationwide Spanish Society of Internal Medicine (SEMI)-COVID-19 Registry. (3) Results: Of the total of 12,066 patients included in the study, most were males (7052, 58.5%) and Caucasian (10,635, 89.5%), with a mean age at diagnosis of 67 years (standard deviation (SD) 16). The main pre-admission comorbidities were arterial hypertension (6030, 50%), hyperlipidemia (4741, 39.4%) and diabetes mellitus (2309, 19.2%). The average number of days from COVID-19 symptom onset to hospital admission was 6.7 (SD 7). The triad of fever, cough, and dyspnea was present almost uniformly in all 4 clinical phenotypes identified by clustering. Cluster C1 (8737 patients, 72.4%) was the largest, and comprised patients with the triad alone. Cluster C2 (1196 patients, 9.9%) also presented with ageusia and anosmia; cluster C3 (880 patients, 7.3%) also had arthromyalgia, headache, and sore throat; and cluster C4 (1253 patients, 10.4%) also manifested with diarrhea, vomiting, and abdominal pain. Compared to each other, cluster C1 presented the highest in-hospital mortality (24.1% vs. 4.3% vs. 14.7% vs. 18.6%; &lt; 0.001). The multivariate study identified age, gender (male), body mass index (BMI), arterial hypertension, chronic obstructive pulmonary disease (COPD), ischemic cardiopathy, chronic heart failure, chronic hepatopathy, Charlson's index, heart rate and respiratory rate upon admission &gt;20 bpm, lower PaO2/FiO2 at admission, higher levels of C-reactive protein (CRP) and lactate dehydrogenase (LDH), and the phenotypic cluster as independent factors for in-hospital death. (4) Conclusions: The present study identified 4 phenotypic clusters in patients with COVID-19 pneumonia, which predicted the in-hospital prognosis of clinical outcomes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33137919</pmid><doi>10.3390/jcm9113488</doi><orcidid>https://orcid.org/0000-0002-2146-378X</orcidid><orcidid>https://orcid.org/0000-0002-6501-9867</orcidid><orcidid>https://orcid.org/0000-0002-6451-8971</orcidid><orcidid>https://orcid.org/0000-0002-5598-5180</orcidid><orcidid>https://orcid.org/0000-0001-9889-0272</orcidid><orcidid>https://orcid.org/0000-0002-9909-3555</orcidid><orcidid>https://orcid.org/0000-0002-9548-1374</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0383
ispartof Journal of clinical medicine, 2020-10, Vol.9 (11), p.3488
issn 2077-0383
2077-0383
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7693215
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Body mass index
Clinical medicine
Cluster analysis
COVID-19
Fatalities
Mortality
Olfaction disorders
Taste disorders
title Predicting Clinical Outcome with Phenotypic Clusters in COVID-19 Pneumonia: An Analysis of 12,066 Hospitalized Patients from the Spanish Registry SEMI-COVID-19
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Clinical%20Outcome%20with%20Phenotypic%20Clusters%20in%20COVID-19%20Pneumonia:%20An%20Analysis%20of%2012,066%20Hospitalized%20Patients%20from%20the%20Spanish%20Registry%20SEMI-COVID-19&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Rubio-Rivas,%20Manuel&rft.date=2020-10-29&rft.volume=9&rft.issue=11&rft.spage=3488&rft.pages=3488-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm9113488&rft_dat=%3Cproquest_pubme%3E2641055101%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641055101&rft_id=info:pmid/33137919&rfr_iscdi=true