Deep learning for small and big data in psychiatry
Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of 'small' experimental samples using conven...
Gespeichert in:
Veröffentlicht in: | Neuropsychopharmacology (New York, N.Y.) N.Y.), 2021-01, Vol.46 (1), p.176-190 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 190 |
---|---|
container_issue | 1 |
container_start_page | 176 |
container_title | Neuropsychopharmacology (New York, N.Y.) |
container_volume | 46 |
creator | Koppe, Georgia Meyer-Lindenberg, Andreas Durstewitz, Daniel |
description | Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of 'small' experimental samples using conventional statistical approaches has largely failed to capture the heterogeneity underlying psychiatric phenotypes. Modern algorithms and approaches from machine learning, particularly deep learning, provide new hope to address these issues given their outstanding prediction performance in other disciplines. The strength of deep learning algorithms is that they can implement very complicated, and in principle arbitrary predictor-response mappings efficiently. This power comes at a cost, the need for large training (and test) samples to infer the (sometimes over millions of) model parameters. This appears to be at odds with the as yet rather 'small' samples available in psychiatric human research to date (n |
doi_str_mv | 10.1038/s41386-020-0767-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7689428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424438334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-514ad1a7d502960d0c02ab63e870afe87375812dbaece2e9c00ee889e421ff903</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMoun78AC9S8OKlOsmkSXoRZP0EwYuCt5C207XSbdekFdZfb5ZVUS-ZQ555mZeHsUMOpxzQnAXJ0agUBKSglU4_NtiEawmpQvm8ySZgckw54vMO2w3hFYBnWplttoNCKSOlmDBxSbRIWnK-a7pZUvc-CXPXtonrqqRoZknlBpc0XbIIy_KlcYNf7rOt2rWBDr7mHnu6vnqc3qb3Dzd304v7tJQ5DmnGpau401UGIldQQQnCFQrJaHB1fFFnhouqcFSSoLwEIDImJyl4XeeAe-x8nbsYizlVJXWDd61d-Gbu_NL2rrF_f7rmxc76dxs75lKYGHDyFeD7t5HCYOdNKKltXUf9GKyQQko0iDKix__Q1370XawXKY0CtQKMFF9Tpe9D8FT_HMPBrozYtREbjdiVEfsRd45-t_jZ-FaAnxcvhoc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473237603</pqid></control><display><type>article</type><title>Deep learning for small and big data in psychiatry</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><creator>Koppe, Georgia ; Meyer-Lindenberg, Andreas ; Durstewitz, Daniel</creator><creatorcontrib>Koppe, Georgia ; Meyer-Lindenberg, Andreas ; Durstewitz, Daniel</creatorcontrib><description>Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of 'small' experimental samples using conventional statistical approaches has largely failed to capture the heterogeneity underlying psychiatric phenotypes. Modern algorithms and approaches from machine learning, particularly deep learning, provide new hope to address these issues given their outstanding prediction performance in other disciplines. The strength of deep learning algorithms is that they can implement very complicated, and in principle arbitrary predictor-response mappings efficiently. This power comes at a cost, the need for large training (and test) samples to infer the (sometimes over millions of) model parameters. This appears to be at odds with the as yet rather 'small' samples available in psychiatric human research to date (n < 10,000), and the ambition of predicting treatment at the single subject level (n = 1). Here, we aim at giving a comprehensive overview on how we can yet use such models for prediction in psychiatry. We review how machine learning approaches compare to more traditional statistical hypothesis-driven approaches, how their complexity relates to the need of large sample sizes, and what we can do to optimally use these powerful techniques in psychiatric neuroscience.</description><identifier>ISSN: 0893-133X</identifier><identifier>EISSN: 1740-634X</identifier><identifier>DOI: 10.1038/s41386-020-0767-z</identifier><identifier>PMID: 32668442</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Algorithms ; Big Data ; Deep Learning ; Humans ; Learning algorithms ; Machine Learning ; Mental disorders ; Mental Disorders - therapy ; Nervous system ; Neuropsychopharmacology Reviews ; Phenotypes ; Psychiatry ; Statistics</subject><ispartof>Neuropsychopharmacology (New York, N.Y.), 2021-01, Vol.46 (1), p.176-190</ispartof><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-514ad1a7d502960d0c02ab63e870afe87375812dbaece2e9c00ee889e421ff903</citedby><cites>FETCH-LOGICAL-c493t-514ad1a7d502960d0c02ab63e870afe87375812dbaece2e9c00ee889e421ff903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689428/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689428/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32668442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koppe, Georgia</creatorcontrib><creatorcontrib>Meyer-Lindenberg, Andreas</creatorcontrib><creatorcontrib>Durstewitz, Daniel</creatorcontrib><title>Deep learning for small and big data in psychiatry</title><title>Neuropsychopharmacology (New York, N.Y.)</title><addtitle>Neuropsychopharmacology</addtitle><description>Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of 'small' experimental samples using conventional statistical approaches has largely failed to capture the heterogeneity underlying psychiatric phenotypes. Modern algorithms and approaches from machine learning, particularly deep learning, provide new hope to address these issues given their outstanding prediction performance in other disciplines. The strength of deep learning algorithms is that they can implement very complicated, and in principle arbitrary predictor-response mappings efficiently. This power comes at a cost, the need for large training (and test) samples to infer the (sometimes over millions of) model parameters. This appears to be at odds with the as yet rather 'small' samples available in psychiatric human research to date (n < 10,000), and the ambition of predicting treatment at the single subject level (n = 1). Here, we aim at giving a comprehensive overview on how we can yet use such models for prediction in psychiatry. We review how machine learning approaches compare to more traditional statistical hypothesis-driven approaches, how their complexity relates to the need of large sample sizes, and what we can do to optimally use these powerful techniques in psychiatric neuroscience.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mental disorders</subject><subject>Mental Disorders - therapy</subject><subject>Nervous system</subject><subject>Neuropsychopharmacology Reviews</subject><subject>Phenotypes</subject><subject>Psychiatry</subject><subject>Statistics</subject><issn>0893-133X</issn><issn>1740-634X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU1LxDAQhoMoun78AC9S8OKlOsmkSXoRZP0EwYuCt5C207XSbdekFdZfb5ZVUS-ZQ555mZeHsUMOpxzQnAXJ0agUBKSglU4_NtiEawmpQvm8ySZgckw54vMO2w3hFYBnWplttoNCKSOlmDBxSbRIWnK-a7pZUvc-CXPXtonrqqRoZknlBpc0XbIIy_KlcYNf7rOt2rWBDr7mHnu6vnqc3qb3Dzd304v7tJQ5DmnGpau401UGIldQQQnCFQrJaHB1fFFnhouqcFSSoLwEIDImJyl4XeeAe-x8nbsYizlVJXWDd61d-Gbu_NL2rrF_f7rmxc76dxs75lKYGHDyFeD7t5HCYOdNKKltXUf9GKyQQko0iDKix__Q1370XawXKY0CtQKMFF9Tpe9D8FT_HMPBrozYtREbjdiVEfsRd45-t_jZ-FaAnxcvhoc</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Koppe, Georgia</creator><creator>Meyer-Lindenberg, Andreas</creator><creator>Durstewitz, Daniel</creator><general>Nature Publishing Group</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210101</creationdate><title>Deep learning for small and big data in psychiatry</title><author>Koppe, Georgia ; Meyer-Lindenberg, Andreas ; Durstewitz, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-514ad1a7d502960d0c02ab63e870afe87375812dbaece2e9c00ee889e421ff903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mental disorders</topic><topic>Mental Disorders - therapy</topic><topic>Nervous system</topic><topic>Neuropsychopharmacology Reviews</topic><topic>Phenotypes</topic><topic>Psychiatry</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koppe, Georgia</creatorcontrib><creatorcontrib>Meyer-Lindenberg, Andreas</creatorcontrib><creatorcontrib>Durstewitz, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koppe, Georgia</au><au>Meyer-Lindenberg, Andreas</au><au>Durstewitz, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for small and big data in psychiatry</atitle><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle><addtitle>Neuropsychopharmacology</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>46</volume><issue>1</issue><spage>176</spage><epage>190</epage><pages>176-190</pages><issn>0893-133X</issn><eissn>1740-634X</eissn><abstract>Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of 'small' experimental samples using conventional statistical approaches has largely failed to capture the heterogeneity underlying psychiatric phenotypes. Modern algorithms and approaches from machine learning, particularly deep learning, provide new hope to address these issues given their outstanding prediction performance in other disciplines. The strength of deep learning algorithms is that they can implement very complicated, and in principle arbitrary predictor-response mappings efficiently. This power comes at a cost, the need for large training (and test) samples to infer the (sometimes over millions of) model parameters. This appears to be at odds with the as yet rather 'small' samples available in psychiatric human research to date (n < 10,000), and the ambition of predicting treatment at the single subject level (n = 1). Here, we aim at giving a comprehensive overview on how we can yet use such models for prediction in psychiatry. We review how machine learning approaches compare to more traditional statistical hypothesis-driven approaches, how their complexity relates to the need of large sample sizes, and what we can do to optimally use these powerful techniques in psychiatric neuroscience.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>32668442</pmid><doi>10.1038/s41386-020-0767-z</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-133X |
ispartof | Neuropsychopharmacology (New York, N.Y.), 2021-01, Vol.46 (1), p.176-190 |
issn | 0893-133X 1740-634X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7689428 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature - Complete Springer Journals; PubMed Central |
subjects | Algorithms Big Data Deep Learning Humans Learning algorithms Machine Learning Mental disorders Mental Disorders - therapy Nervous system Neuropsychopharmacology Reviews Phenotypes Psychiatry Statistics |
title | Deep learning for small and big data in psychiatry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20small%20and%20big%20data%20in%20psychiatry&rft.jtitle=Neuropsychopharmacology%20(New%20York,%20N.Y.)&rft.au=Koppe,%20Georgia&rft.date=2021-01-01&rft.volume=46&rft.issue=1&rft.spage=176&rft.epage=190&rft.pages=176-190&rft.issn=0893-133X&rft.eissn=1740-634X&rft_id=info:doi/10.1038/s41386-020-0767-z&rft_dat=%3Cproquest_pubme%3E2424438334%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473237603&rft_id=info:pmid/32668442&rfr_iscdi=true |