Deep learning for small and big data in psychiatry

Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of 'small' experimental samples using conven...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropsychopharmacology (New York, N.Y.) N.Y.), 2021-01, Vol.46 (1), p.176-190
Hauptverfasser: Koppe, Georgia, Meyer-Lindenberg, Andreas, Durstewitz, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue 1
container_start_page 176
container_title Neuropsychopharmacology (New York, N.Y.)
container_volume 46
creator Koppe, Georgia
Meyer-Lindenberg, Andreas
Durstewitz, Daniel
description Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of 'small' experimental samples using conventional statistical approaches has largely failed to capture the heterogeneity underlying psychiatric phenotypes. Modern algorithms and approaches from machine learning, particularly deep learning, provide new hope to address these issues given their outstanding prediction performance in other disciplines. The strength of deep learning algorithms is that they can implement very complicated, and in principle arbitrary predictor-response mappings efficiently. This power comes at a cost, the need for large training (and test) samples to infer the (sometimes over millions of) model parameters. This appears to be at odds with the as yet rather 'small' samples available in psychiatric human research to date (n 
doi_str_mv 10.1038/s41386-020-0767-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7689428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424438334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-514ad1a7d502960d0c02ab63e870afe87375812dbaece2e9c00ee889e421ff903</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMoun78AC9S8OKlOsmkSXoRZP0EwYuCt5C207XSbdekFdZfb5ZVUS-ZQ555mZeHsUMOpxzQnAXJ0agUBKSglU4_NtiEawmpQvm8ySZgckw54vMO2w3hFYBnWplttoNCKSOlmDBxSbRIWnK-a7pZUvc-CXPXtonrqqRoZknlBpc0XbIIy_KlcYNf7rOt2rWBDr7mHnu6vnqc3qb3Dzd304v7tJQ5DmnGpau401UGIldQQQnCFQrJaHB1fFFnhouqcFSSoLwEIDImJyl4XeeAe-x8nbsYizlVJXWDd61d-Gbu_NL2rrF_f7rmxc76dxs75lKYGHDyFeD7t5HCYOdNKKltXUf9GKyQQko0iDKix__Q1370XawXKY0CtQKMFF9Tpe9D8FT_HMPBrozYtREbjdiVEfsRd45-t_jZ-FaAnxcvhoc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473237603</pqid></control><display><type>article</type><title>Deep learning for small and big data in psychiatry</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><creator>Koppe, Georgia ; Meyer-Lindenberg, Andreas ; Durstewitz, Daniel</creator><creatorcontrib>Koppe, Georgia ; Meyer-Lindenberg, Andreas ; Durstewitz, Daniel</creatorcontrib><description>Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of 'small' experimental samples using conventional statistical approaches has largely failed to capture the heterogeneity underlying psychiatric phenotypes. Modern algorithms and approaches from machine learning, particularly deep learning, provide new hope to address these issues given their outstanding prediction performance in other disciplines. The strength of deep learning algorithms is that they can implement very complicated, and in principle arbitrary predictor-response mappings efficiently. This power comes at a cost, the need for large training (and test) samples to infer the (sometimes over millions of) model parameters. This appears to be at odds with the as yet rather 'small' samples available in psychiatric human research to date (n &lt; 10,000), and the ambition of predicting treatment at the single subject level (n = 1). Here, we aim at giving a comprehensive overview on how we can yet use such models for prediction in psychiatry. We review how machine learning approaches compare to more traditional statistical hypothesis-driven approaches, how their complexity relates to the need of large sample sizes, and what we can do to optimally use these powerful techniques in psychiatric neuroscience.</description><identifier>ISSN: 0893-133X</identifier><identifier>EISSN: 1740-634X</identifier><identifier>DOI: 10.1038/s41386-020-0767-z</identifier><identifier>PMID: 32668442</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Algorithms ; Big Data ; Deep Learning ; Humans ; Learning algorithms ; Machine Learning ; Mental disorders ; Mental Disorders - therapy ; Nervous system ; Neuropsychopharmacology Reviews ; Phenotypes ; Psychiatry ; Statistics</subject><ispartof>Neuropsychopharmacology (New York, N.Y.), 2021-01, Vol.46 (1), p.176-190</ispartof><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-514ad1a7d502960d0c02ab63e870afe87375812dbaece2e9c00ee889e421ff903</citedby><cites>FETCH-LOGICAL-c493t-514ad1a7d502960d0c02ab63e870afe87375812dbaece2e9c00ee889e421ff903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689428/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689428/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32668442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koppe, Georgia</creatorcontrib><creatorcontrib>Meyer-Lindenberg, Andreas</creatorcontrib><creatorcontrib>Durstewitz, Daniel</creatorcontrib><title>Deep learning for small and big data in psychiatry</title><title>Neuropsychopharmacology (New York, N.Y.)</title><addtitle>Neuropsychopharmacology</addtitle><description>Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of 'small' experimental samples using conventional statistical approaches has largely failed to capture the heterogeneity underlying psychiatric phenotypes. Modern algorithms and approaches from machine learning, particularly deep learning, provide new hope to address these issues given their outstanding prediction performance in other disciplines. The strength of deep learning algorithms is that they can implement very complicated, and in principle arbitrary predictor-response mappings efficiently. This power comes at a cost, the need for large training (and test) samples to infer the (sometimes over millions of) model parameters. This appears to be at odds with the as yet rather 'small' samples available in psychiatric human research to date (n &lt; 10,000), and the ambition of predicting treatment at the single subject level (n = 1). Here, we aim at giving a comprehensive overview on how we can yet use such models for prediction in psychiatry. We review how machine learning approaches compare to more traditional statistical hypothesis-driven approaches, how their complexity relates to the need of large sample sizes, and what we can do to optimally use these powerful techniques in psychiatric neuroscience.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mental disorders</subject><subject>Mental Disorders - therapy</subject><subject>Nervous system</subject><subject>Neuropsychopharmacology Reviews</subject><subject>Phenotypes</subject><subject>Psychiatry</subject><subject>Statistics</subject><issn>0893-133X</issn><issn>1740-634X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU1LxDAQhoMoun78AC9S8OKlOsmkSXoRZP0EwYuCt5C207XSbdekFdZfb5ZVUS-ZQ555mZeHsUMOpxzQnAXJ0agUBKSglU4_NtiEawmpQvm8ySZgckw54vMO2w3hFYBnWplttoNCKSOlmDBxSbRIWnK-a7pZUvc-CXPXtonrqqRoZknlBpc0XbIIy_KlcYNf7rOt2rWBDr7mHnu6vnqc3qb3Dzd304v7tJQ5DmnGpau401UGIldQQQnCFQrJaHB1fFFnhouqcFSSoLwEIDImJyl4XeeAe-x8nbsYizlVJXWDd61d-Gbu_NL2rrF_f7rmxc76dxs75lKYGHDyFeD7t5HCYOdNKKltXUf9GKyQQko0iDKix__Q1370XawXKY0CtQKMFF9Tpe9D8FT_HMPBrozYtREbjdiVEfsRd45-t_jZ-FaAnxcvhoc</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Koppe, Georgia</creator><creator>Meyer-Lindenberg, Andreas</creator><creator>Durstewitz, Daniel</creator><general>Nature Publishing Group</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210101</creationdate><title>Deep learning for small and big data in psychiatry</title><author>Koppe, Georgia ; Meyer-Lindenberg, Andreas ; Durstewitz, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-514ad1a7d502960d0c02ab63e870afe87375812dbaece2e9c00ee889e421ff903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mental disorders</topic><topic>Mental Disorders - therapy</topic><topic>Nervous system</topic><topic>Neuropsychopharmacology Reviews</topic><topic>Phenotypes</topic><topic>Psychiatry</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koppe, Georgia</creatorcontrib><creatorcontrib>Meyer-Lindenberg, Andreas</creatorcontrib><creatorcontrib>Durstewitz, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koppe, Georgia</au><au>Meyer-Lindenberg, Andreas</au><au>Durstewitz, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for small and big data in psychiatry</atitle><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle><addtitle>Neuropsychopharmacology</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>46</volume><issue>1</issue><spage>176</spage><epage>190</epage><pages>176-190</pages><issn>0893-133X</issn><eissn>1740-634X</eissn><abstract>Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of 'small' experimental samples using conventional statistical approaches has largely failed to capture the heterogeneity underlying psychiatric phenotypes. Modern algorithms and approaches from machine learning, particularly deep learning, provide new hope to address these issues given their outstanding prediction performance in other disciplines. The strength of deep learning algorithms is that they can implement very complicated, and in principle arbitrary predictor-response mappings efficiently. This power comes at a cost, the need for large training (and test) samples to infer the (sometimes over millions of) model parameters. This appears to be at odds with the as yet rather 'small' samples available in psychiatric human research to date (n &lt; 10,000), and the ambition of predicting treatment at the single subject level (n = 1). Here, we aim at giving a comprehensive overview on how we can yet use such models for prediction in psychiatry. We review how machine learning approaches compare to more traditional statistical hypothesis-driven approaches, how their complexity relates to the need of large sample sizes, and what we can do to optimally use these powerful techniques in psychiatric neuroscience.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>32668442</pmid><doi>10.1038/s41386-020-0767-z</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-133X
ispartof Neuropsychopharmacology (New York, N.Y.), 2021-01, Vol.46 (1), p.176-190
issn 0893-133X
1740-634X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7689428
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature - Complete Springer Journals; PubMed Central
subjects Algorithms
Big Data
Deep Learning
Humans
Learning algorithms
Machine Learning
Mental disorders
Mental Disorders - therapy
Nervous system
Neuropsychopharmacology Reviews
Phenotypes
Psychiatry
Statistics
title Deep learning for small and big data in psychiatry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20small%20and%20big%20data%20in%20psychiatry&rft.jtitle=Neuropsychopharmacology%20(New%20York,%20N.Y.)&rft.au=Koppe,%20Georgia&rft.date=2021-01-01&rft.volume=46&rft.issue=1&rft.spage=176&rft.epage=190&rft.pages=176-190&rft.issn=0893-133X&rft.eissn=1740-634X&rft_id=info:doi/10.1038/s41386-020-0767-z&rft_dat=%3Cproquest_pubme%3E2424438334%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473237603&rft_id=info:pmid/32668442&rfr_iscdi=true