Hybrid deep learning network for vascular segmentation in photoacoustic imaging

Photoacoustic (PA) technology has been used extensively on vessel imaging due to its capability of identifying molecular specificities and achieving high optical-diffraction-limited lateral resolution down to the cellular level. Vessel images carry essential medical information that provides guideli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2020-11, Vol.11 (11), p.6445-6457
Hauptverfasser: Yuan, Alan Yilun, Gao, Yang, Peng, Liangliang, Zhou, Lingxiao, Liu, Jun, Zhu, Siwei, Song, Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoacoustic (PA) technology has been used extensively on vessel imaging due to its capability of identifying molecular specificities and achieving high optical-diffraction-limited lateral resolution down to the cellular level. Vessel images carry essential medical information that provides guidelines for a professional diagnosis. Modern image processing techniques provide a decent contribution to vessel segmentation. However, these methods suffer from under or over-segmentation. Thus, we demonstrate both the results of adopting a fully convolutional network and U-net, and propose a hybrid network consisting of both applied on PA vessel images. Comparison results indicate that the hybrid network can significantly increase the segmentation accuracy and robustness.
ISSN:2156-7085
2156-7085
DOI:10.1364/BOE.409246