3D Printed Multiplexed Competitive Migration Assays with Spatially Programmable Release Sources

Here, a 3D printed multiplexed competitive migration assay is reported for characterizing a chemotactic response in the presence of multiple spatially distributed chemoattractants. The utility of the assay is demonstrated by examining the chemotactic response of human glioblastoma cells to spatially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced biosystems 2020-01, Vol.4 (1), p.e1900225-n/a
Hauptverfasser: Haring, Alexander P., Thompson, Emily G., Hernandez, Raymundo D., Laheri, Sahil, Harrigan, Megan E., Lear, Taylor, Sontheimer, Harald, Johnson, Blake N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e1900225
container_title Advanced biosystems
container_volume 4
creator Haring, Alexander P.
Thompson, Emily G.
Hernandez, Raymundo D.
Laheri, Sahil
Harrigan, Megan E.
Lear, Taylor
Sontheimer, Harald
Johnson, Blake N.
description Here, a 3D printed multiplexed competitive migration assay is reported for characterizing a chemotactic response in the presence of multiple spatially distributed chemoattractants. The utility of the assay is demonstrated by examining the chemotactic response of human glioblastoma cells to spatially opposing chemotactic gradients of epidermal growth factor (EGF) and bradykinin (BK). Competitive migration assays involving spatially opposing gradients of EGF and BK that are optimized in the absence of the second chemoattractant show that 46% more glioblastoma cells migrate toward EGF sources. The migration velocities of human glioblastoma cells toward EGF and BK sources are reduced by 7.6 ± 2.2% and 11.6 ± 6.3% relative to those found in the absence of the spatially opposing chemoattractant. This work provides new insight to the chemotactic response associated with glioblastoma‐vasculature interactions and a versatile, user‐friendly platform for characterizing the chemotactic response of cells in the presence of multiple spatially distributed chemoattractants. A 3D printed migration assay for the analysis of a chemotactic response in the presence of spatially distributed sources of chemoattractants is presented. The assay enables multiplexed studies with on‐plate controls. The device has broad applications ranging from the analysis of competitive chemotactic responses associated with diseases and development of 3D printed constructs.
doi_str_mv 10.1002/adbi.201900225
format Article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7687855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADBI201900225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4405-111d3b9e308f78220aa240de8946a1507b26c422d5a91fd8df1961b713c1a1643</originalsourceid><addsrcrecordid>eNqFkFtPwjAYhhujEYLcemn2B4b92q1rb0wQPJBANKLXTbd1UNMdsg5w_94RFPXKq-_0vs-XvAhdAh4BxuRapbEZEQyiG0h4gvqEMuZHQcRPf_U9NHTuHWMMnFEeinPUo4QICiTqI0mn3nNtikan3mJjG1NZ_dH1kzKvdGMas9Xewqxq1Ziy8MbOqdZ5O9OsvWXV7ZS1becvO0Geq9hq70VbrZz2luWmTrS7QGeZsk4Pv-oAvd3fvU4e_fnTw2wynvtJEODQB4CUxkJTzLOIE4KVIgFONRcBUxDiKCYsCQhJQyUgS3magWAQR0ATUMACOkA3B261iXOdJrpoamVlVZtc1a0slZF_L4VZy1W5lRHjEQ_DDjA6AJK6dK7W2dELWO7Tlvu05THtznD1--NR_p1tJxAHwc5Y3f6Dk-Pp7ewH_gnS041Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D Printed Multiplexed Competitive Migration Assays with Spatially Programmable Release Sources</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Haring, Alexander P. ; Thompson, Emily G. ; Hernandez, Raymundo D. ; Laheri, Sahil ; Harrigan, Megan E. ; Lear, Taylor ; Sontheimer, Harald ; Johnson, Blake N.</creator><creatorcontrib>Haring, Alexander P. ; Thompson, Emily G. ; Hernandez, Raymundo D. ; Laheri, Sahil ; Harrigan, Megan E. ; Lear, Taylor ; Sontheimer, Harald ; Johnson, Blake N.</creatorcontrib><description>Here, a 3D printed multiplexed competitive migration assay is reported for characterizing a chemotactic response in the presence of multiple spatially distributed chemoattractants. The utility of the assay is demonstrated by examining the chemotactic response of human glioblastoma cells to spatially opposing chemotactic gradients of epidermal growth factor (EGF) and bradykinin (BK). Competitive migration assays involving spatially opposing gradients of EGF and BK that are optimized in the absence of the second chemoattractant show that 46% more glioblastoma cells migrate toward EGF sources. The migration velocities of human glioblastoma cells toward EGF and BK sources are reduced by 7.6 ± 2.2% and 11.6 ± 6.3% relative to those found in the absence of the spatially opposing chemoattractant. This work provides new insight to the chemotactic response associated with glioblastoma‐vasculature interactions and a versatile, user‐friendly platform for characterizing the chemotactic response of cells in the presence of multiple spatially distributed chemoattractants. A 3D printed migration assay for the analysis of a chemotactic response in the presence of spatially distributed sources of chemoattractants is presented. The assay enables multiplexed studies with on‐plate controls. The device has broad applications ranging from the analysis of competitive chemotactic responses associated with diseases and development of 3D printed constructs.</description><identifier>ISSN: 2366-7478</identifier><identifier>EISSN: 2366-7478</identifier><identifier>DOI: 10.1002/adbi.201900225</identifier><identifier>PMID: 32293127</identifier><language>eng</language><publisher>Germany</publisher><subject>Bradykinin - pharmacology ; Cell Line, Tumor ; Cell Migration Assays - instrumentation ; Cell Migration Assays - methods ; Chemotactic Factors - pharmacology ; Chemotaxis - drug effects ; Epidermal Growth Factor - pharmacology ; Equipment Design ; Glioblastoma ; gradients ; Humans ; microextrusion 3D printing ; Microfluidic Analytical Techniques - instrumentation ; microphysiological neural systems ; neural system‐on‐a‐chip ; organ‐on‐a‐chip ; Printing, Three-Dimensional</subject><ispartof>Advanced biosystems, 2020-01, Vol.4 (1), p.e1900225-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4405-111d3b9e308f78220aa240de8946a1507b26c422d5a91fd8df1961b713c1a1643</citedby><cites>FETCH-LOGICAL-c4405-111d3b9e308f78220aa240de8946a1507b26c422d5a91fd8df1961b713c1a1643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadbi.201900225$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadbi.201900225$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32293127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haring, Alexander P.</creatorcontrib><creatorcontrib>Thompson, Emily G.</creatorcontrib><creatorcontrib>Hernandez, Raymundo D.</creatorcontrib><creatorcontrib>Laheri, Sahil</creatorcontrib><creatorcontrib>Harrigan, Megan E.</creatorcontrib><creatorcontrib>Lear, Taylor</creatorcontrib><creatorcontrib>Sontheimer, Harald</creatorcontrib><creatorcontrib>Johnson, Blake N.</creatorcontrib><title>3D Printed Multiplexed Competitive Migration Assays with Spatially Programmable Release Sources</title><title>Advanced biosystems</title><addtitle>Adv Biosyst</addtitle><description>Here, a 3D printed multiplexed competitive migration assay is reported for characterizing a chemotactic response in the presence of multiple spatially distributed chemoattractants. The utility of the assay is demonstrated by examining the chemotactic response of human glioblastoma cells to spatially opposing chemotactic gradients of epidermal growth factor (EGF) and bradykinin (BK). Competitive migration assays involving spatially opposing gradients of EGF and BK that are optimized in the absence of the second chemoattractant show that 46% more glioblastoma cells migrate toward EGF sources. The migration velocities of human glioblastoma cells toward EGF and BK sources are reduced by 7.6 ± 2.2% and 11.6 ± 6.3% relative to those found in the absence of the spatially opposing chemoattractant. This work provides new insight to the chemotactic response associated with glioblastoma‐vasculature interactions and a versatile, user‐friendly platform for characterizing the chemotactic response of cells in the presence of multiple spatially distributed chemoattractants. A 3D printed migration assay for the analysis of a chemotactic response in the presence of spatially distributed sources of chemoattractants is presented. The assay enables multiplexed studies with on‐plate controls. The device has broad applications ranging from the analysis of competitive chemotactic responses associated with diseases and development of 3D printed constructs.</description><subject>Bradykinin - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Cell Migration Assays - instrumentation</subject><subject>Cell Migration Assays - methods</subject><subject>Chemotactic Factors - pharmacology</subject><subject>Chemotaxis - drug effects</subject><subject>Epidermal Growth Factor - pharmacology</subject><subject>Equipment Design</subject><subject>Glioblastoma</subject><subject>gradients</subject><subject>Humans</subject><subject>microextrusion 3D printing</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>microphysiological neural systems</subject><subject>neural system‐on‐a‐chip</subject><subject>organ‐on‐a‐chip</subject><subject>Printing, Three-Dimensional</subject><issn>2366-7478</issn><issn>2366-7478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkFtPwjAYhhujEYLcemn2B4b92q1rb0wQPJBANKLXTbd1UNMdsg5w_94RFPXKq-_0vs-XvAhdAh4BxuRapbEZEQyiG0h4gvqEMuZHQcRPf_U9NHTuHWMMnFEeinPUo4QICiTqI0mn3nNtikan3mJjG1NZ_dH1kzKvdGMas9Xewqxq1Ziy8MbOqdZ5O9OsvWXV7ZS1becvO0Geq9hq70VbrZz2luWmTrS7QGeZsk4Pv-oAvd3fvU4e_fnTw2wynvtJEODQB4CUxkJTzLOIE4KVIgFONRcBUxDiKCYsCQhJQyUgS3magWAQR0ATUMACOkA3B261iXOdJrpoamVlVZtc1a0slZF_L4VZy1W5lRHjEQ_DDjA6AJK6dK7W2dELWO7Tlvu05THtznD1--NR_p1tJxAHwc5Y3f6Dk-Pp7ewH_gnS041Z</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Haring, Alexander P.</creator><creator>Thompson, Emily G.</creator><creator>Hernandez, Raymundo D.</creator><creator>Laheri, Sahil</creator><creator>Harrigan, Megan E.</creator><creator>Lear, Taylor</creator><creator>Sontheimer, Harald</creator><creator>Johnson, Blake N.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>202001</creationdate><title>3D Printed Multiplexed Competitive Migration Assays with Spatially Programmable Release Sources</title><author>Haring, Alexander P. ; Thompson, Emily G. ; Hernandez, Raymundo D. ; Laheri, Sahil ; Harrigan, Megan E. ; Lear, Taylor ; Sontheimer, Harald ; Johnson, Blake N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4405-111d3b9e308f78220aa240de8946a1507b26c422d5a91fd8df1961b713c1a1643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bradykinin - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Cell Migration Assays - instrumentation</topic><topic>Cell Migration Assays - methods</topic><topic>Chemotactic Factors - pharmacology</topic><topic>Chemotaxis - drug effects</topic><topic>Epidermal Growth Factor - pharmacology</topic><topic>Equipment Design</topic><topic>Glioblastoma</topic><topic>gradients</topic><topic>Humans</topic><topic>microextrusion 3D printing</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>microphysiological neural systems</topic><topic>neural system‐on‐a‐chip</topic><topic>organ‐on‐a‐chip</topic><topic>Printing, Three-Dimensional</topic><toplevel>online_resources</toplevel><creatorcontrib>Haring, Alexander P.</creatorcontrib><creatorcontrib>Thompson, Emily G.</creatorcontrib><creatorcontrib>Hernandez, Raymundo D.</creatorcontrib><creatorcontrib>Laheri, Sahil</creatorcontrib><creatorcontrib>Harrigan, Megan E.</creatorcontrib><creatorcontrib>Lear, Taylor</creatorcontrib><creatorcontrib>Sontheimer, Harald</creatorcontrib><creatorcontrib>Johnson, Blake N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced biosystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haring, Alexander P.</au><au>Thompson, Emily G.</au><au>Hernandez, Raymundo D.</au><au>Laheri, Sahil</au><au>Harrigan, Megan E.</au><au>Lear, Taylor</au><au>Sontheimer, Harald</au><au>Johnson, Blake N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printed Multiplexed Competitive Migration Assays with Spatially Programmable Release Sources</atitle><jtitle>Advanced biosystems</jtitle><addtitle>Adv Biosyst</addtitle><date>2020-01</date><risdate>2020</risdate><volume>4</volume><issue>1</issue><spage>e1900225</spage><epage>n/a</epage><pages>e1900225-n/a</pages><issn>2366-7478</issn><eissn>2366-7478</eissn><abstract>Here, a 3D printed multiplexed competitive migration assay is reported for characterizing a chemotactic response in the presence of multiple spatially distributed chemoattractants. The utility of the assay is demonstrated by examining the chemotactic response of human glioblastoma cells to spatially opposing chemotactic gradients of epidermal growth factor (EGF) and bradykinin (BK). Competitive migration assays involving spatially opposing gradients of EGF and BK that are optimized in the absence of the second chemoattractant show that 46% more glioblastoma cells migrate toward EGF sources. The migration velocities of human glioblastoma cells toward EGF and BK sources are reduced by 7.6 ± 2.2% and 11.6 ± 6.3% relative to those found in the absence of the spatially opposing chemoattractant. This work provides new insight to the chemotactic response associated with glioblastoma‐vasculature interactions and a versatile, user‐friendly platform for characterizing the chemotactic response of cells in the presence of multiple spatially distributed chemoattractants. A 3D printed migration assay for the analysis of a chemotactic response in the presence of spatially distributed sources of chemoattractants is presented. The assay enables multiplexed studies with on‐plate controls. The device has broad applications ranging from the analysis of competitive chemotactic responses associated with diseases and development of 3D printed constructs.</abstract><cop>Germany</cop><pmid>32293127</pmid><doi>10.1002/adbi.201900225</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2366-7478
ispartof Advanced biosystems, 2020-01, Vol.4 (1), p.e1900225-n/a
issn 2366-7478
2366-7478
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7687855
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bradykinin - pharmacology
Cell Line, Tumor
Cell Migration Assays - instrumentation
Cell Migration Assays - methods
Chemotactic Factors - pharmacology
Chemotaxis - drug effects
Epidermal Growth Factor - pharmacology
Equipment Design
Glioblastoma
gradients
Humans
microextrusion 3D printing
Microfluidic Analytical Techniques - instrumentation
microphysiological neural systems
neural system‐on‐a‐chip
organ‐on‐a‐chip
Printing, Three-Dimensional
title 3D Printed Multiplexed Competitive Migration Assays with Spatially Programmable Release Sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printed%20Multiplexed%20Competitive%20Migration%20Assays%20with%20Spatially%20Programmable%20Release%20Sources&rft.jtitle=Advanced%20biosystems&rft.au=Haring,%20Alexander%20P.&rft.date=2020-01&rft.volume=4&rft.issue=1&rft.spage=e1900225&rft.epage=n/a&rft.pages=e1900225-n/a&rft.issn=2366-7478&rft.eissn=2366-7478&rft_id=info:doi/10.1002/adbi.201900225&rft_dat=%3Cwiley_pubme%3EADBI201900225%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32293127&rfr_iscdi=true